Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

小行星Scheila奇怪的3條塵埃尾現象有解

臺北天文館_96
・2011/11/05 ・1424字 ・閱讀時間約 2 分鐘 ・SR值 500 ・六年級

-----廣告,請繼續往下閱讀-----

由韓國首爾大學(Seoul National University)、日本國立天文台(National Astronomical Observatory of Japan,NOAJ)、日本太空航空科學研究所(Institute of Space and Astronautical Science,ISAS)和日本神戶大學(Kobe University)等機構的行星科學家和天文學家,找出可以解釋第596號小行星Scheila擁有3條塵埃尾(dust tails)如此特殊現象的原因。他們認為在2010年12月3日時,應有另一顆直徑約20-50公尺的小行星,從背對地球的Scheila後方撞擊,才會讓當時的Scheila突然異常增亮,並形成3條奇怪的塵埃尾;而此現象也讓Scheila成為數量極少的主帶彗星之一。(此新聞所用時間日期均為國際標準時,UT)

在2010年12月11.4日,卡塔利納巡天計畫(Catalina Sky Surve)的Steve Larson注意到Scheila亮度異常增加;由於Scheila位在火星與木星之間的主小行星帶中,按理來說,這樣的小行星應該不會有這樣短時間內亮度異常增亮的現象。經由哈柏太空望遠鏡(Hubble Space Telescope)和史威福觀測衛星(Swift Satellite)的觀察,天文學家發現Scheila應該是受到另一顆更小的小行星撞擊,才造成Scheila出現類似彗星的彗尾特徵。然而,Scheila從小行星突然變成彗星的問題雖解決了,但另一疑問再起:這些塵埃尾是在何時發生的?為何一口氣會形成3條彗尾般的塵埃尾特徵?

在Scheila異常增亮後不久,這些天文學家馬上利用8.2米昴望遠鏡主焦點相機、石垣天文台(Ishigakijima Astronomical Observatory)1.05米Murikabushi望遠鏡、夏威夷大學2.2米望遠鏡進行觀測,觀測時間長達3個月以上。圖一上方是Murikabushi望遠鏡在20101年12月12日與19日拍攝的結果,可見塵埃尾的發展。雖然小行星大體上看起來像一個星點,但Scheila看起來卻像彗星。3條塵埃尾的亮度隨時間逐漸降低,最後偵測不到塵埃雲團時,整幅景象變成出現一個昏暗的線性結構。圖一下方是昴望遠鏡於2011年3月2日拍攝的結果。從這些線性結構的影像,這些天文學家估計彗尾輻射出現於2010年12月3.5日,誤差為±1日。Steve Larson注意到Scheila開始亮度異常增加的影像攝於2010年12月3.4日,因此,小行星撞擊Scheila的時間點應該就在12月2日12時~12月3日10時之間。

Figure 1: Top: Optical images of Scheila at three different epochs with different telescopes. Images of the triple dust tails were taken on the 12th and 19th of December 2010 using the Murikabushi Telescope. Bottom: Suprime-Cam on the Subaru Telescope captured this image of the linear structure on the 2nd of March 2011. 圖一

-----廣告,請繼續往下閱讀-----

另外,為了解釋Scheila的3條塵埃尾的成因,這些研究人員利用電腦模擬Scheila在12月3日的塵埃尾出現的狀況,並與在ISAS實驗室的撞擊實驗資料進行比對。圖二是傾斜撞擊所造成的噴濺物(ejecta)型態,其中有2項最明顯的特徵。第一個特徵就是沿撞擊方向所產生的羽狀散佈(downrange plume),應是撞擊碎片或是撞人的小行星蒸發的結果;另一特徵就是撞擊當時,從撞擊點向外擴散的震波會將小行星表面物質挖出向外噴濺,且噴濺物被這些震波推成圓錐狀(conical impact ejecta),圓錐軸心幾乎與撞擊點的表面垂直,最後在撞擊點留下一個隕坑。

Figure 2: Sequence of events after an oblique impact: (a) Object impacts another and generates a shock wave; (b) and (c) increased development of two prominent features, i.e., a downrange plume and conical impact ejecta. 圖二

這些研究人員認為:應該就是這兩個過程造成了Scheila的3條塵埃尾,之後太陽光又將這些塵粒逐漸推離Scheila。經過大量模擬和實驗之後,他們只找到一個幾乎與觀測影像相符的狀況,那就是當小行星從Scheila的後方斜斜撞擊Scheila的結果。(圖三和圖四)

Figure 3: Image showing the result of a vast number of computer simulations to reproduce the shape of Scheila triple dust tails observed on December 12, 2010. 圖三

-----廣告,請繼續往下閱讀-----

Figure 4: Orbits of the impacting asteroid and Scheila on December 3, 2010, assuming an impact angle of 45 deg relative to the surface normal vector. Top: Face-on view, projected on the ecliptic plane. Bottom: Edge-on view, projected on the X-Z plane. 圖四

Scheila發現於1906年,發現者德國天文學家August Kopff以他認識的一位英國女學生的名字來為這顆小行星命名。

資料來源:Researchers Explain the Formation of Scheila’s Unusual Triple Dust Tails[2011.10.19]

轉載自台北天文館之網路天文館網站

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
臺北天文館_96
482 篇文章 ・ 44 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

1

1
1

文字

分享

1
1
1
經濟重要還是環境重要?明朝末年發生了什麼事?氣候如何影響國家?——《價崩》導讀
衛城出版_96
・2024/05/07 ・4105字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

眼皮底下的事實:環境史研究者看《價崩》

洪廣冀(臺灣大學地理環境資源學系副教授)

著名的漢學家卜正民以如下段落為《價崩:氣候危機與大明王朝的終結》一書定調:

生活在這個時代,我們彷彿逃不出莫測變幻的手掌心。變化讓人這麼痛苦、氣餒,為了安慰自我,我們便告訴自己:當代的生活特徵就是接連不斷的變化,正是這種不穩定,讓世界變得比以往更複雜。

他告訴我們,作為一個「長壽之人」,「過去十年來,氣候變遷、物價通膨,以及政治豪奪的速度與規模」,他認為也是前所未見。只是,作為一個歷史學者,他還是想問,若我們放大時空的尺度,當代人在過去十年來經歷的變化,真的是前所未見嗎?他的答案是否定的。在一六四○年代早期的中國,也就是明朝末期的中國,是一個連「生存條件都被剝奪,平安度日的尊嚴都被否定的時代」,因為「大規模的氣候寒化、疫情與軍事入侵,奪走數以百萬計的人命」。

在一六四○年代早期的中國,也就是明朝末期的中國,是一個連「生存條件都被剝奪,平安度日的尊嚴都被否定的時代」,因為「大規模的氣候寒化、疫情與軍事入侵,奪走數以百萬計的人命」。
圖/unsplash

藏在眼皮下的事實是什麼?小冰期如何發生?

一六四○年代初期的中國發生什麼事?這便是卜正民試圖回答的問題。他反對傳統史學的兩大見解:一者是訴諸人禍,即訴諸當時宮廷內的派系鬥爭,統治階層道德淪喪,導致民不聊生;二者是訴諸十六至十七全球的白銀貿易,即當時從美洲與日本湧入中國的白銀,造成物價波動與社會不安。卜正民認為,訴諸人禍與貿易會讓我們看不見「藏在眼皮底下的事實」:小冰河時期(簡稱小冰期)。

-----廣告,請繼續往下閱讀-----

廣義地說,小冰期是從十四世紀至十九世紀初期的地球寒化現象,氣溫平均掉了攝氏兩度。乍看之下,攝氏兩度的溫差或許微小,但對作物而言,這樣的溫差已經足夠讓作物減少一次收成,或根本無法收成。再者,必須注意,兩度的溫差是「平均」,即可能是極熱與極寒的氣溫交錯變化造就此兩度溫差。這確實也是在小冰期中發生的事。

地球科學家推測,寒冷的氣候讓兩極的冰山範圍擴張,讓海水變得更鹹,也就是變得更重,影響洋流的流動方式,從而牽引了大氣與洋流間的循環。影響所及,所謂「聖嬰-南方震盪現象」(El Niño-Southern Oscillation, ENSO,即傳統上所說的「聖嬰現象」加「反聖嬰現象」)變得格外激烈,乾旱、水災等極端氣候頻傳。不僅如此,地球科學家也指出,小冰河期也是火山活動格外頻繁的時期。火山噴出的煙塵,遮蔽了太陽輻射,更加速了地球的寒化。

地球科學家推測,寒冷的氣候讓兩極的冰山範圍擴張,讓海水變得更鹹,也就是變得更重,影響洋流的流動方式,從而牽引了大氣與洋流間的循環。
圖/unsplash

小冰期的起因為何?目前普遍接受的見解是太陽活動改變。此外,也有研究者指出,這與所謂歐洲人「發現」新大陸有關。受到所謂「哥倫布大交換」的衝擊,美洲原住民大量消失,森林擴張,吸收大量二氧化碳。眾所周知,二氧化碳是溫室氣體;二氧化碳濃度的減低,讓大氣保溫的能力下降,與前述太陽活動與火山噴發的效果耦合,讓寒化成為不可逆的過程。總之,我們現在已經知道,地球是個混沌系統,牽一髮不只動全身,甚至整個身體都會分崩離析。

回到《價崩》這本書。卜正民指出,明朝的存續時間(一三六八至一六四四年)即落在小冰期,並成為明朝覆亡的主因。他將小冰期之於明朝的影響分為六個泥沼期:一、永樂泥淖期(一四○三年至一四○六年)。二、景泰泥淖期(一四五○年至一四五六年)。三、嘉靖泥淖期(一五四四年至一五四五年)。四、萬曆一號泥淖期(一五八六年至一五八九年)。五、萬曆二號泥淖期(一六一五年至一六二○年)。六、崇禎泥淖期(一六三八年至一六四四年)。

-----廣告,請繼續往下閱讀-----

永樂泥淖期欠缺災荒記載,景泰泥淖期以饑荒收尾,嘉靖泥淖期氣候異常乾冷,萬曆一號泥淖期爆發饑荒、洪水、蝗災與大疫,「人民相食,枕籍死亡」;萬曆二號泥淖期的乾旱與水災頻繁,饑荒再度爆發,「朝廷賑濟的請願如潮水湧來」。崇禎泥淖期是明代乃至於「整個千年期間最慘痛的七年」,「米粟踊貴,餓殍載道」。一六四四年四月末,闖王李自成兵臨北京,致書要求崇禎帝歸順。崇禎不從,在命皇后、貴妃與女兒自盡後,他爬上皇居後的煤山,自縊身亡。李自成稱帝後,滿人入關,將中國納入大清國版圖。

不可忽視的幽靈?拔除合理征服者的解釋,明朝滅亡原因還有哪些?

如此的歷史解釋是否會流於環境決定論?卜正民的回答是:「如果環境決定論的幽靈就在門外徘徊,我也不會在分析時將其拒於門外。」那麼,是什麼讓寫出《縱樂的困惑》、《維梅爾的帽子》等名著的歷史學者相信環境的決定作用?答案就是糧價。

卜正民先生像。
圖/wikipedia

以他的話來說,「太陽能與人類需求的關係,是透過糧價調節的。從景泰年間到崇禎年間,糧價在五次環境泥淖其中激增,每一次都把價格多往上推一截,這樣的事實也說服我必須採用氣候史的大框架。」卜正民表示,「一旦經濟體仰賴太陽輻射為能源來源,那麼無論大自然是幽而不顯還是顯而易見,都必然是社會或國家生命力的決定因素。」

在結語「氣候與歷史」中,卜正民再次反駁那些把明朝覆滅推給「失德」的見解。他認為,這種論調是「合理化明清兩朝遞嬗的過程」,且「編出這種敘事並為之背書的,就是征服者」。他強調,「明朝的滅亡固然不能推給災荒糧價,但講述崇禎末年重大危機時不把氣候因素納入考慮,那簡直就像莎士比亞所言,宛如癡人說夢,充滿著喧譁與騷動,卻沒有任何意義。」

-----廣告,請繼續往下閱讀-----

然而,不至於將環境決定論「拒於門外」是一回事,認為社會變遷就此被環境「決定」,又是另一回事。卜正民並不認為,面對氣候因素帶來的種種挑戰,明朝各級官員只能雙手一攤,感嘆天要亡我,不做任何努力。就如其他生活在小冰期的人們一般,卜正民認為,明朝人建設基礎設施、育種、建立制度、開發新科技與控制生育力等;但問題是,一六三○年代晚期的種種災害,並未催出社會的適應力,反倒是摧毀其適應力。

拜此時勃發的火山活動與激烈的聖嬰-南方震盪現象「之賜」,不論是政府還是市場,都變不出糧食。卜正民認為,至少在前五個泥淖期,明朝人還是表現出相當的韌性,努力予以調適。然而,進入崇禎泥淖期後,春夏乾冷,田地龜裂,運河無水。當每公斤的米得需要兩千五百公升的水,而老天爺就是不願意降下一滴雨時,糧食供應體系就此崩潰,連帶把物價與政治體系拖下去陪葬。

是誰忽略了眼皮底下的事實?這段歷史帶給我們什麼警訊?

回到卜正民所稱的「眼皮底下的事實」。我們要問,是誰忽略了這項事實?誰是這對眼皮的擁有者?卜正民的答案有二。一則是以研究社會、政治與環境變遷的人文社會科學研究者。以小冰期的相關研究為例,他表示,當他開始研究明代中國糧價變異與氣候變化之關係時,驚訝地發現,「其他地方的環境史對糧價幾乎不提」。與之對照,精通糧價的歷史研究者,如不是太快地把糧價理解為「公平交易」的指標,便是視之為社會關係的一環,忽略了糧食必得是在特定的環境條件下孕育出來的。

另一個忽略氣候或環境此事實者便是卜正民的同代人,也就是在閱讀這本書的你我。現代人對物價飛漲的關注程度遠比全球暖化、極端氣候與環境破壞來得高;畢竟,前者是切身之痛,後者則相當遙遠,是北極熊與紅毛猩猩的事。
圖/unsplash

另一個忽略氣候或環境此事實者便是卜正民的同代人,也就是在閱讀這本書的你我。現代人對物價飛漲的關注程度遠比全球暖化、極端氣候與環境破壞來得高;畢竟,前者是切身之痛,後者則相當遙遠,是北極熊與紅毛猩猩的事。然而,卜正民的分析告訴我們,即便明代中國離現在相當遙遠,所謂的小冰期至少也是一百五十年以上的事,但物價恐怕還是可作為某種氣候指標。換言之,若人們以關心物價的熱誠來關心環境,面對當代的環境危機,說不定人們多少可找出個解方。

-----廣告,請繼續往下閱讀-----

此外,讓人心生警惕的是,卜正民告訴我們,小冰期多少是個漫長的地球系統變化。小冰期本身並未造成明朝衰亡,是相伴的極端氣候摧毀了明代社會的韌性與調適。他也認為,面對小冰期、火山噴發與聖嬰-南方震盪現象誘發的極端氣候,從後見之明來看,明朝人也做了他們可以做的,但也只多苟延殘喘了七年,且還是生存條件都被剝奪、生活尊嚴都被否定的七年。

那麼,當人類誘發的氣候變遷可能已加劇了聖嬰-南方震盪現象,讓去年(二○二三年)夏天成為有紀錄以來地球最熱的夏天,而極端氣候彷彿成為日常,人類還有多少時間可以調適?如果說明朝多少是被地球系統的正常運作摧毀,當今地球系統的異常,是人類自己造成的,數百年後的歷史學家,在回顧這段歷史時,恐怕無法如卜正民對待明朝人一樣地寬厚,只能說這是咎由自取。諸如此類的思考,都讓《價崩》有了跨越時代的現實意義。

畢竟,明朝人不是外星人,他們跟我們都生活在同一個地球上。

——本文摘自《價崩:氣候危機與大明王朝的終結》,2024 年 05 月,城出版出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
所有討論 1
衛城出版_96
4 篇文章 ・ 4 位粉絲
"每個人心中都有一座城。每個人在心裡攜帶著文明的種子。 守衛讀者心中之城,與文明的生命力。"

0

3
2

文字

分享

0
3
2
量子力學可以幫你判斷物體溫度?從古典物理過渡到近代的一大推手——黑體輻射
PanSci_96
・2024/03/24 ・3639字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

1894 年,美國物理學家邁克生(Albert Abraham Michelson)作為芝加哥大學物理系的創立者,在為學校的瑞爾森物理實驗室(Ryerson Physical Laboratory)落成典禮致詞時,表示:「雖然無法斷言說,未來的物理學不會比過去那些驚奇更令人驚嘆,但似乎大部分的重要基本原則都已經被穩固地建立了。」

以我們現在的後見之明,這段話聽起來固然錯得離譜,但在當時,從 17、18 到 19 世紀,在伽利略、牛頓、馬克士威等前輩的的貢獻之下,物理學已經達成了非凡的成就。

我們現在稱為古典的物理學,對於整個世界的描述幾乎是面面俱到了,事實上沒有人預料到 20 世紀將出現徹底顛覆世界物理學認知的重要理論,量子力學。

而這最一開始竟只是出自於一件不起眼的研究,關於物體發出的光。

-----廣告,請繼續往下閱讀-----

萬物皆輻射

在此我們要先理解一個觀念:所有物體無時無刻不在發出電磁波輻射,包括了你、我、你正使用的螢幕,以及我們生活中的所有物品。

至於為什麼會這樣子呢?其中一個主要原因是,物體都是由原子、分子組成,所以內部充滿了帶電粒子,例如電子。這些帶電粒子隨著溫度,時時刻刻不停地擾動著,在過程中,就會以電磁波的形式放出能量。

除了上述原因之外,物體發出的電磁波輻射,還可能有其他來源,我們就暫時省略不提。無論如何,從小到大我們都學過的,熱的傳遞方式分成傳導、對流、輻射三種,其中的輻射,就是我們現在在談的,物體以電磁波形式發出的能量。

那麼,這些輻射能量有什麼樣的特徵呢?為了搞清楚這件事,我們必須先找個適當的範本來研究。

-----廣告,請繼續往下閱讀-----

理想上最好的選擇是,這個範本必須能夠吸收所有外在環境照射在上面的光線,只會發出因自身溫度而產生的電磁輻射。這樣子的話,我們去測量它發出的電磁波,就不會受到反射的電磁波干擾,而能確保電磁波是來自它自己本身。

這樣子的理想物體,稱為黑體;畢竟,黑色物體之所以是黑的,就是因為它能夠吸收外在環境光線,且不太會反射。而在我們日常生活中,最接近理想的黑體,就是一點也不黑、還超亮的太陽!這是因為我們很大程度可以肯定,太陽發出來的光,幾乎都是源於它自身,而非反射自外在環境的光線。

或者我們把一個空腔打洞後,從洞口發出的電磁波,也會近似於黑體輻射,因為所有入射洞口的光都會進入空腔,而不被反射。煉鐵用的鼓風爐,就類似這樣子的結構。

到目前為止,一切聽起來都只是物理學上一個平凡的研究題目。奇怪的是,在對電磁學已經擁有完整瞭解的 19 世紀後半到 20 世紀初,科學家儘管已經藉由實驗得到了觀測數據,但要用以往的物理理論正確推導出黑體的電磁波輻射,卻遇到困難。正是由此開始,古典物理學出現了破口。

-----廣告,請繼續往下閱讀-----

黑體輻射

由黑體發出的輻射,以現在理論所知,長得像這個樣子。縱軸代表黑體輻射出來的能量功率,橫軸代表黑體輻射出來的電磁波波長。

在理想狀況下,黑體輻射只跟黑體的溫度有關,而跟黑體的形狀和材質無關。

以溫度分別處在絕對溫標 3000K、4000K 和 5000K 的黑體輻射為例,我們可以看到,隨著黑體的溫度越高,輻射出來的能量功率也越大;同時,輻射功率最高的波段,也朝短波長、高頻率的方向靠近。

為了解釋這個曲線,物理學家們開始運用「當時」畢生所學來找出函數方程式,分成了兩派:

-----廣告,請繼續往下閱讀-----

一派是 1896 年,由德國物理學家維因(Wilhelm Carl Werner Otto Fritz Franz Wien),由熱力學出發推導出的黑體輻射公式,另一派,在 1900 與 1905 年,英國物理學家瑞立(John William Strutt, 3rd Baron Rayleigh)和金斯(James Jeans),則是藉由電磁學概念,也推導出了他們的黑體輻射公式,稱為瑞立-金斯定律。

你看,若是同時擺上這兩個推導公式,會發現他們都各自對了一半?

維因近似 Wien approximation 只在高頻率的波段才精確。而瑞立-金斯定律只對低頻率波段比較精確,更預測輻射的強度會隨著電磁波頻率的提升而趨近無限大,等等,無限大?――這顯然不合理,因為現實中的黑體並不會放出無限大的能量。

顯然這兩個解釋都不夠精確。

-----廣告,請繼續往下閱讀-----

就這樣,在 1894 年邁克生才說,物理學可能沒有更令人驚嘆的東西了,結果沒幾年,古典物理學築起的輝煌成就,被黑體輻射遮掩了部分光芒,而且沒人知道,這是怎麼一回事。

普朗克的黑體輻射公式

就在古典物理學面臨進退維谷局面的時候,那個男人出現了——德國物理學家普朗克(Max Planck)。

1878年學生時代的普朗克。圖/wikimedia

普朗克於 1900 年就推導出了他的黑體輻射公式,比上述瑞立和金斯最終在 1905 年提出的結果要更早,史稱普朗克定律(Planck’s law)。普朗克假想,在黑體中,存在許多帶電且不斷振盪、稱為「振子」的虛擬單元,並假設它們的能量只能是某個基本單位能量的整數倍。

這個基本單位能量寫成 E=hν,和電磁輻射的頻率 ν 成正比,比例常數 h 則稱為普朗克常數。換言之,黑體輻射出來的能量,以hν為基本單位、是一個個可數的「量」加起來的,也就是能量被「量子化」了。

-----廣告,請繼續往下閱讀-----

根據以上假設,再加上不同能量的「振子」像是遵循熱力學中的粒子分佈,普朗克成功推導出吻合黑體輻射實驗觀測的公式。

普朗克的方程式,同時包含了維因近似和瑞立-金斯定律的優點,不管在低頻率還是高頻率的波段,都非常精確。如果我們比較在地球大氣層頂端觀測到的太陽輻射光譜,可以發現觀測數據和普朗克的公式吻合得非常好。

其實有趣的是普朗克根本不認為這是物理現象,他認為,他假設的能量量子化,只是數學上用來推導的手段,而沒有察覺他在物理上的深遠涵意。但無論如何,普朗克成功解決了黑體輻射的難題,並得到符合觀測的方程式。直到現在,我們依然使用著普朗克的方程式來描述黑體輻射。不只如此,在現實生活中,有許多的應用,都由此而來。

正因為不同溫度的物體,會發出不同特徵的電磁波,反過來想,藉由測量物體發出的電磁波,我們就能得知該物體的溫度。在疫情期間,我們可以看到某些場合會放置螢幕,上面呈現類似這樣子的畫面。

-----廣告,請繼續往下閱讀-----

事實上,這些儀器測量的,是特定波長的紅外線。紅外線屬於不可見光,也是室溫物體所發出的電磁輻射中,功率最大的波段。只要分析我們身體發出的紅外線,就能在一定程度上判斷我們的體溫。當然,一來我們都不是完美的黑體,二來環境因素也可能產生干擾,所以還是會有些許誤差。

藉由黑體輻射的研究,我們還可以將黑體的溫度與發出的可見光顏色標準化。

在畫面中,有彩虹背景的部分,代表可見光的範圍,當黑體的溫度越高,發出的電磁輻射,在可見光部分越偏冷色系。當我們在購買燈泡的時候,會在包裝上看到色溫標示,就是由此而來。所以,如果你想要溫暖一點的光線,就要購買色溫較低,約兩、三千 K 左右的燈泡。

結語

事實上,在黑體輻射研究最蓬勃發展的 19 世紀後半,正值第二次工業革命,當時鋼鐵的鍛冶技術出現許多重大進步。

德國鐵血宰相俾斯麥曾經說,當代的重大問題要用鐵和血來解決。

就傳統而言,煉鋼要靠工匠用肉眼,從鋼鐵的顏色來判斷溫度,但若能更精確地判斷溫度,無疑會有很大幫助。

德國作為鋼鐵業發達國家,在黑體輻射的研究上,曾做出許多貢獻,這一方面固然可能是學術的求知慾使然,但另一方面,也可以說跟社會的需求與脈動是完全吻合的。
總而言之,普朗克藉由引進能量量子化的概念,成功用數學式描述了黑體輻射;這件事成為後來量子力學發展的起點。儘管普朗克本人沒有察覺能量量子化背後的深意,但有另一位勇者在數年後繼承了普朗克的想法,並做出意味深長的詮釋,那就是下一個故事的主角――愛因斯坦的事了。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
PanSci_96
1262 篇文章 ・ 2408 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

1

3
0

文字

分享

1
3
0
平民登月計劃?核融合真的來了?——2023 最值得關注十大科學事件(下)
PanSci_96
・2023/01/31 ・3226字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

在上一篇中,我們介紹了將在 2023 年發生的五個醫藥健康大事件。

延伸閱讀:
用迷幻藥治憂鬱?基因編輯療法將通過批准?——2023 最值得關注十大科學事件(上)

這次我們轉向能源、宇宙與科技領域,從首趟平民月球之旅、物理學的標準模型新發現,再到第一個核廢料永久儲存設施正式營運!

No. 5 氣候與能源衝擊

世界各國能否聽從科學家的警告,採取實際行動,朝淨零之路前進嗎?看起來不行。由於疫情與俄烏戰爭,去年 11 月在埃及舉辦的「聯合國氣候變化會議 COP27」幾乎是原地踏步。

不過還是有一個重要的決議,那就是建立氣候損失和損害基金。根據協議,排放量較高的富裕國家將在經濟上補償受氣候變化影響最大的貧窮國家。「過渡委員會」將於 2023 年 3 月底前舉行會議,提出資金運用的建議,並在 11 月的 COP28 會議上提交給世界各地的代表。

-----廣告,請繼續往下閱讀-----

至於核能的部分,新型核分裂發電與核融合發電,都會在 2023 年有所進展。

另外,世界上第一個核廢料儲存設施,今年將在芬蘭西南海岸外的奧爾基洛托島正式啟用。這個由芬蘭政府於 2015 年批准建造的地下處置庫,將負責封存超過 6500 噸有放射性的鈾;這些鈾會被裝在銅罐中,再用厚厚的粘土覆蓋,最後埋在地下 400 公尺深的花崗岩隧道內,預期將被密封數十萬年,直到輻射水平達到完全無害的程度。

另一個好消息是,今年 1 月 1 日就任的巴西總統——魯拉(Luiz Inácio Lula da Silva),將推翻前任總統開放的雨林開發,保護生態與文化。

然而深海則有新危機。若 2023 年 7 月前,聯合國的國際海床管理局(ISA)沒能讓各國對深海採礦管理準則達成共識,那海底的礦產資源可能會被某些政府和企業盯上,不受限制地開挖,海洋生態將迎來浩劫……。

-----廣告,請繼續往下閱讀-----

許多關於能源的抉擇包含了科學和政治,能源短缺也激勵了綠能跟潔淨能源的投資力道及採用意願;至於今年還會不會發生更棘手的麻煩?使能源轉型更加舉步維艱。

巴西新任總統推翻雨林開發,保護生態與文化。圖/Envato Elements

No. 4 超越標準模型

2022 年 4 月,美國費米國家加速器實驗室的物理學家,公佈了渺子 g-2 實驗的首批結果;這項實驗研究了被稱為「渺子的短命粒子在磁場中的行為」。

過去 50 年來,標準模型(Standard Model)[註]的理論預測通過了所有測試,但其實物理學家普遍認為標準模型肯定還不完備,並且認為可以從渺子身上找到破綻;如果今年再次公佈更精確的數據,顯示渺子的磁矩比理論預測來得大,那就代表還有新粒子等待被發現,而標準模型就得修正。

位於中國廣東的江門地下的微中子實驗觀測站,也將在今年展開尋找超越標準模型的物理學之旅;利用位於地下七百公尺的探測器,來準確測量微中子的振盪。

-----廣告,請繼續往下閱讀-----

註:標準模型為能描述強核力、弱核力、電磁力這三種基本力,以及所有物質基本粒子的理論。

另外,物理學家們在今年會有升級的新設備。第一個是 LCLS-II 直線加速器相干光源 2 代(Linac Coherent Light Source-II),它將創造終極 X 射線機器,看到分子內原子的運動!另一個則是新的重力波獵人—— Matter-Wave Laser Interferometric Gravitation Antenna(物質波雷射干涉重力天線);這個設施把銣原子冷卻成「物質波」,能夠梳理黑洞和其他超大質量天體碰撞產生的時空漣漪,揪出現有重力波設施錯放的事件,甚至可以幫我們尋找暗物質!

而在瑞典隆德附近、由歐洲 17 國攜手成立的歐洲散裂中子源(ESS),將使用史上最強大的線性質子加速器產生強中子束,來研究材料的結構;雖然預計 2025 年才會完工,但於今年迎來第一批研究人員,開始實驗。

No.3 就是要抬頭看天空

許多人心中 2022 年科學事件第一名,正是韋伯太空望遠鏡傳回的驚人照片;沒有意外的話,韋伯在 2023 年會繼續大顯身手,揭露星系演變的真相,與遙遠系外行星的生命印記,找尋地球之外的生命。

今年還會有更多驚喜!來自於新的太空望遠鏡,如:由歐洲太空總署開發的歐幾里得太空望遠鏡,今年發射後將繞行太陽六年,拍攝宇宙的 3D 圖;日本宇宙航空研究開發機構 JAXA 的 X 射線成像、光譜任務 XRISM,則是繞地球軌道運行的太空望遠鏡,將探測來自遙遠恆星和星系的 X 射線,預計在今年 4 月升空。

-----廣告,請繼續往下閱讀-----

在地球上,位於智利的薇拉魯賓天文台(Vera C. Rubin Observatory)將於今年 7 月啟用;其望遠鏡採用特殊的三鏡面設計,相機包含超過 30 億像素的固態探測器,每三個夜晚就能掃描整個南天,也是監測可能危害地球小行星的守護者之一。而世界上最大的可動望遠鏡——新疆奇台射電望遠鏡(QTT)也將在今年完工;其口徑達 110 公尺,能夠觀測天空中 75% 的星星。

詹姆斯.韋伯太空望遠鏡(James Webb Space Telescope,JWST)去年發布的圖片——史蒂芬五重星系。圖/維基百科

No. 2 好多月球任務,還有一個鐵小行星

2022/12/11 這天,包括阿拉伯聯合大公國的拉希德漫遊者月球車、NASA 的月球手電筒立方衛星、以及日本的白兔 HAKUTO-R M1 登陸器,共同搭乘 SpaceX 的獵鷹九號發射升空;HAKUTO-R 如今正緩緩帶著拉希德前往月球,預計在今年 4 月著陸。

而印度太空研究組織 ISRO 的第三次探月任務月球飛船 Chandrayaan-3,預計今年年中發射,並於月球的南極著陸。

還有首次民間人士的月球之旅 dearMoon。SpaceX 的 Starship 將載著 11 位平民上太空,包含創業家、明星跟 YouTuber;如果 Starship 成功發射,將會成為史上最大的火箭。Blue Origin 的 New Glenn 也預計在今年首度發射。若兩者都成功,將推動太空科學與商業進入新時代,讓進入太空的成本大幅下降。

-----廣告,請繼續往下閱讀-----

歐洲太空總署的木星冰月探測器 JUICE 也將在今年 4 月升空,並於 2031 年抵達木星系統;目標是研究木星以及三顆衛星:木衛二三四的環境,了解他們有沒有可能支持生命存在。

NASA 將於今年 10 月後發射延遲了一年的 Psyche 靈神星小行星軌道飛行器,其研究對象為 16 Psyche 靈神星小行星;科學家認為它可能不是一般的小行星,而是一顆年輕行星裸露的鐵核心。如果今年順利發射,將在 2029 年到達。 

看來對太空迷來說,2023 又將是幸福熱鬧的一年。

由超大型望遠鏡(Very Large Telescope,VLT)拍攝的靈神星。圖/維基百科

No.1 GPT-4 跟 AlphaFold 的衝擊波襲來

借過借過,AI 已預約登上 2023 年最大科學事件!

-----廣告,請繼續往下閱讀-----

如果 GPT-3.5 開發的 ChatGPT 還沒有嚇到你,那 GPT-4 就要來了!

而在科學領域,DeepMind 的 AlphaFold 帶來的衝擊不亞於 ChatGPT;它能夠根據蛋白質的一維氨基酸序列,準確預測折疊後的三維形狀,對生物與醫療研究影響非常大。 AlphaFold 2 於 2021 年發布了另外 2 億多種蛋白質的結構,幾個月來,來自 190 個國家/地區、超過 50 萬名研究人員,使用 AlphaFold 研究了 200 萬種不同的蛋白質結構。另外,Meta 的 ESMFold 的速度甚至又比 AlphaFold 快 60 倍,預測的蛋白質超過 6 億種!

基於 AlphaFold 跟 ESMFold 的研究量將大大增加,這些龐大新知識也將開始應用於各學科,包括新疫苗和塑膠開發。

法規管制總是比科技進步緩慢,隨著 AI 越來越強大、滲透到社會的方方面面,各國政府必須回應。歐盟在今年將通過人工智慧法案,為使用人工智慧制定標準,其他國家和科技巨頭將密切關注,跟進與調適。

-----廣告,請繼續往下閱讀-----
圖/GIPHY

以上就是「2023 最值得關注十大科學事件」,你最期待的是哪一個?哪個是你心中的 No.1?又有哪些我們漏掉了,但你覺得該列入的呢?歡迎留言討論!

歡迎訂閱 Pansci Youtube 頻道 鎖定 2023 年的每一個科學大事件!

-----廣告,請繼續往下閱讀-----
所有討論 1
PanSci_96
1262 篇文章 ・ 2408 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。