0

1
0

文字

分享

0
1
0

難道,你只認領了論文標題和作者光環?--《科學月刊》

科學月刊_96
・2015/11/12 ・2753字 ・閱讀時間約 5 分鐘 ・SR值 560 ・八年級

作者/黃正球(美國貝勒醫學院發育生物學博士,研究領域為瘙癢與疼痛的神經機制,目前於美國聖路易斯華盛頓大學進行博士後研究)

糖尿病是影響現代人健康甚鉅的一種代謝疾病,據統計目前全球約有3%的人口罹患糖尿病,所花費的醫療開銷,一年超過六千億美金。

第一型糖尿病起於胰島β細胞的數量減少或功能異常,造成分泌的胰島素不足。第二型糖尿病則是主要因為胰島素阻抗(insulin resistance),即細胞無法正常反應胰島素引起的生理功能;隨著病情的加重,會進而引發β細胞受損、死亡,導致胰島素分泌的不足。雖然目前有口服降血糖藥物或胰島素注劑可以當作治標的療法,但畢竟調整血糖的功效還是不如身體內健康的β細胞靈活。加上近年研究顯示,成體的β細胞在高血糖刺激或胰島素阻抗的情形下,能進行細胞分裂增生,對胰島素分泌與血糖調控有短期代償的效果,所以如果找到能長期促進β細胞增生的因子,或開發出等效的藥物,從根源醫治糖尿病的夢想也許就不遠了!

1571464801_aeca5a80df_o
目前糖尿病患者只能透過吃藥與注射胰島素來控制,圖為Humalog(優泌樂,降血糖劑)與注射管。 Source: flickr

發現神奇蛋白 糖尿病藥到病除?

在這樣的邏輯和驅力下,科學家們以實驗小鼠為模型,開始了找尋這類因子的征戰。2013年4月,美國哈佛大學的莫爾頓(Doug Melton)與實驗室同儕,在Cell期刊上發表了一篇可能會徹底改變糖尿病治療方法的論文。他們利用一個短肽S961作為胰島素受體拮抗劑,阻斷胰島素的訊息傳遞,在小鼠中建立了第二型糖尿病的模型。如前所述,由於胰島素阻抗作用產生的代償,小鼠的β細胞開始分裂增生,而胰島素分泌也顯著增加。他們先以實驗排除了S961直接影響β細胞增生的可能性,然後進一步利用基因微矩陣(DNA microarray)分析了和代謝有關器官的基因表現,發現有一個基因在第二型糖尿病小鼠的肝臟與白脂肪中大量表現,並且會表達一個能被細胞釋放的蛋白。更令人驚奇的是,在小鼠的肝臟中外加表達這個蛋白,可以促進胰島β細胞的分裂增生和胰島素的分泌,而且能有效調節血糖和葡萄糖耐受能力(glucose tolerance)。於是論文作者將這個神奇的蛋白取名為Betatrophin(胰島β細胞滋養因子)。

-----廣告,請繼續往下閱讀-----

這個革命性的發現,受到Cell期刊肯定,加上哈佛校方的宣傳和眾多媒體爭相報導,不但科學從業者熱烈討論,數以千百計的糖尿病患者也紛紛透過各種管道,詢問這個可能徹底治癒糖尿病的「靈藥」。當然,也吸引了許多投資客與生技製藥業的目光……

但是,很可惜現實不是童話

2014年底,雷傑納隆(Regeneron)藥廠掌管代謝研究的格羅馬達(Jesper Gromada) 與其團隊, 在Cell期刊上刊登了一篇打臉莫爾頓的論文。文中先餵食小鼠高脂飼料以誘發第二型糖尿病,然後檢測野生型小鼠和Betatrophin基因剔除小鼠,胰島β細胞的增生能力。實驗結果證明,Betatrophin 基因剔除小鼠β細胞的增生能力,和野生型小鼠沒有區別。再來作者利用原本莫爾頓實驗室使用的短肽S961,在野生型與Betatrophin基因剔除小鼠上引發第二型糖尿病,測試不同糖尿病模型是否導致不一樣的結果。很不幸的,還是沒有發現這兩個基因型的小鼠,在β細胞的增生上有任何差異。結合上述兩個實驗,得到的結論是Betatrophin對β細胞增生並不是必要條件

sea-358943_640
生命生存則水存在為真,但水存在則生命生存為假(還有陽光跟空氣阿!)。我們可以說,生命生存為水存在的「充分非必要條件」,而水存在為生命生存的「必要非充分條件」。而上述「Betatrophin對β細胞增生並不是必要條件」,是β細胞增生為Betatrophin「充分非必要條件」,意即,除了Betatrophin外,還有其他因素影響β細胞增生,但是後面的實驗結果似乎並不支持Betarophine是「充分非必要條件」。 Source: Pixabay

更慘的是,作者在野生型和Betatrophin基因剔除小鼠的肝臟中外加Betatrophin蛋白,發現對β細胞增生、血糖調節、胰島素分泌以及葡萄糖耐受能力,居然一點功效也沒有!這個結果顯示,Betatrophin對β細胞增生連充分條件都不是,雷傑納隆團隊完全無法重複莫爾頓實驗室在2013年所發表的結果,Betatrophin這個靈藥一下被打回不起眼的原名:ANGPTL8(類血管生成素8號)。

緊鄰著雷傑納隆團隊發表的Cell期刊論文旁邊,其實有莫爾頓實驗室發表的更正聲明。他們首先重複了之前在肝臟中表達Betatrophin的實驗,並大大增加了樣本數(從原本的7隻到目前的52隻),計量後發現,外加的Betatrophin對胰島β細胞的增長只有非常細微的幫助(卻可以對胰島素的分泌有明顯的助益?)。而同時他們也承認,剔除Betatrophin基因並不會減少小鼠在第二型糖尿病病程初期β 細胞的增長……

-----廣告,請繼續往下閱讀-----

「七隻小鼠的數據」為什麼你相信了?

從上述事件,我們能得到什麼訊息?又要怎麼去深辨其中的玄機呢?

第一,當我們在科學期刊上閱讀到一個「劃時代」、「革命性」發現的標題時,請先保持一種理性分析的心態,從頭到尾檢測文章中的實驗數據,是否足以撐得起作者的敘述與結論。在Betatrophin的事件中,原本Cell期刊論文裡最關鍵的活體實驗,其實只用了區區7隻小鼠,其中的4隻並沒有任何作用,顯示出的統計差異是源於另外3隻小鼠的樂透效應(Jackpot Effect),所以當樣本數增加到52隻之後,真正可能有生理意義的數據才顯露出來。

再者, 以Cell這樣一個頂尖期刊, 不管是編輯或是審稿者都不該不了解「充分且必要條件」的重要性,但Betatrophin的原始論文裡, 就是少了這麼一個用Betatrophin基因剔除小鼠來顯露必要條件的實驗,不知是否是作者的光環太過耀眼,屏蔽了編輯和審稿者實事求是的審核標竿。

第二,當我們從新聞媒體或網路上聽聞一個科技或醫藥新知,在廣泛轉發親朋好友之前,請盡量查明消息的出處以及相關的科學文章。在網路發達、新聞氾濫的當今社會,有太多良莠不齊的媒介能傳播不實甚至有害的消息,也有太多的假專家或有心人士署名一些似是而非的資訊。網路消息這把雙面刃,怎麼使用得當,對網路普及率這麼高的臺灣民眾來說,的確是一門不簡單的課題。

-----廣告,請繼續往下閱讀-----

最後強調,希望各位讀者在閱讀吸收所謂的科技新知時,請多重視資訊中的立論、證據與邏輯性,做出您個人理性的判斷,當然,受審視的也包括您現在正在讀的這篇評論。

參考文獻
1. Yi, P., Park, J. S. and Melton, D. A., Betatrophin: a hormone that controls pancreatic β cell proliferation, Cell, Vol. 153: 747-58, 2013.
2. Gusarova, V., Alexa, C. A., Na, E. et al., ANGPTL8/betatrophin does not control pancreatic beta cell expansion, Cell, Vol. 159: 691-6, 2014.
3. Yi, P., Park, J. S. and Melton, D. A., Perspectives on the activities of ANGPTL8/betatrophin, Cell, Vol. 159: 467-8, 2014.

201510本文選自《科學月刊》2015年10月號

延伸閱讀:
新藥的研發流程
天然的尚好 森林裡的藥方

-----廣告,請繼續往下閱讀-----

什麼?!你還不知道《科學月刊》,我們46歲囉!
入不惑之年還是可以
當個科青

文章難易度
科學月刊_96
249 篇文章 ・ 3553 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

2
0

文字

分享

0
2
0
人體吸收新突破:SEDDS 的魔力
鳥苷三磷酸 (PanSci Promo)_96
・2024/05/03 ・1194字 ・閱讀時間約 2 分鐘

-----廣告,請繼續往下閱讀-----

本文由 紐崔萊 委託,泛科學企劃執行。 

營養品的吸收率如何?

藥物和營養補充品,似乎每天都在我們的生活中扮演著越來越重要的角色。但你有沒有想過,這些關鍵分子,可能無法全部被人體吸收?那該怎麼辦呢?答案或許就在於吸收率!讓我們一起來揭開這個謎團吧!

你吃下去的營養品,可以有效地被吸收嗎?圖/envato

當我們吞下一顆膠囊時,這個小小的丸子就開始了一場奇妙的旅程。從口進入消化道,與胃液混合,然後被推送到小腸,最後透過腸道被吸收進入血液。這個過程看似簡單,但其實充滿了挑戰。

首先,我們要面對的挑戰是藥物的溶解度。有些成分很難在水中溶解,這意味著它們在進入人體後可能無法被有效吸收。特別是對於脂溶性成分,它們需要透過油脂的介入才能被吸收,而這個過程相對複雜,吸收率也較低。

-----廣告,請繼續往下閱讀-----

你有聽過「藥物遞送系統」嗎?

為了解決這個問題,科學家們開發了許多藥物遞送系統,其中最引人注目的就是自乳化藥物遞送系統(Self-Emulsifying Drug Delivery Systems,簡稱 SEDDS),也被稱作吸收提升科技。這項科技的核心概念是利用遞送系統中的油脂、界面活性劑和輔助界面活性劑,讓藥物與營養補充品一進到腸道,就形成微細的乳糜微粒,從而提高藥物的吸收率。

自乳化藥物遞送系統,也被稱作吸收提升科技。 圖/envato

還有一點,這些經過 SEDDS 科技處理過的脂溶性藥物,在腸道中形成乳糜微粒之後,會經由腸道的淋巴系統吸收,因此可以繞過肝臟的首渡效應,減少損耗,同時保留了更多的藥物活性。這使得原本難以吸收的藥物,如用於愛滋病或新冠病毒療程的抗反轉錄病毒藥利托那韋(Ritonavir),以及緩解心絞痛的硝苯地平(Nifedipine),能夠更有效地發揮作用。

除了在藥物治療中的應用,SEDDS 科技還廣泛運用於營養補充品領域。許多脂溶性營養素,如維生素 A、D、E、K 和魚油中的 EPA、DHA,都可以通過 SEDDS 科技提高其吸收效率,從而更好地滿足人體的營養需求。

隨著科技的進步,藥品能打破過往的限制,發揮更大的療效,也就相當於有更高的 CP 值。SEDDS 科技的出現,便是增加藥物和營養補充品吸收率的解決方案之一。未來,隨著科學科技的不斷進步,相信會有更多藥物遞送系統 DDS(Drug Delivery System)問世,為人類健康帶來更多的好處。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
199 篇文章 ・ 304 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

1
0

文字

分享

1
1
0
如何找到肺癌對應基因?臨床實驗幫助病友翻轉病情!
careonline_96
・2024/04/24 ・2515字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

給 每一位剛踏上抗癌路上的鬥士與戰友

確診晚期肺癌的病友,在治療初期若是能與醫師密切配合,就有機會可以找到很好的治療方式,讓病情翻轉。進入治療前,首先會透過基因檢測,找出關鍵的基因突變,若是未發現常見基因突變,也可利用次世代基因定序,找出罕見基因。肺癌的治療已像慢性病一樣,只要妥善運用基因檢測與接續治療策略,就有機會延長病友的存活期,無論是帶有 EGFR、ALK、ROS1、BRAF、HER2、RET、MET、KRAS、NTRK 等基因突變,目前也都已經有很好的標靶藥物可治療,病友只要了解自己的疾病概況,與醫師充分溝通,一起把握每一次治療的機會!

大林慈濟醫院副院長賴俊良醫師

次世代基因定序助攻!揪出罕見肺癌改善病友預後

一名確診晚期肺癌的 50 多歲男性,在進行一般的基因檢測時並沒有找到突變基因,病程也加速惡化,且伴隨糖尿病、高血壓、腎功能衰退,全身嚴重浮腫。所幸,再接受次世代基因定序檢測後,很幸運地發現他是較罕見的 MET 基因。賴俊良醫師說,MET 基因分為不同的突變型,而該名病友屬於較少見的擴增型,後續在使用相對應的標靶藥物治療後,全身浮腫的狀況逐漸改善,病情也受到控制,且恢復到原本的工作與生活。

標靶藥物各有專攻 找到對應基因才能發揮效果

台灣的肺腺癌以 EGFR 基因突變為主,其他基因突變相對稀少,包含 ALK、KRAS、BRAF、ROS1、RET、NTRK 等。賴俊良醫師說,由於國人常見的致癌基因約佔一半以上,因此,通常會先檢測這些突變基因,若是找不到突變基因,則是會採取更先進的檢測方法找出突變基因,而次世代基因定序是目前肺癌精準治療的重要工具,可以更準確地找到驅動關鍵基因,醫師也可以從而制定精準的治療策略,進而大幅改變病友的預後。

晚期肺癌的治療藥物已有相當大的突破與進展,在過去不知道有這些基因突變時,部分病友的預後較差,但現在針對主要的驅動基因,幾乎都有相對應的藥物可以治療,賴俊良醫師說,有些病友知道標靶藥物治療成效佳,堅持只接受標靶治療,其實概念上並沒有這麼簡單,不同的驅動基因要使用不同的標靶藥物,才有辦法發揮治療效果。

臨床試驗安全性高 為病友帶來新契機

一般人聽到臨床試驗,常直覺是白老鼠,賴俊良醫師說,這樣的錯誤觀念仍有待匡正,其實所有藥物都必須先經過動物實驗,確認有明顯的治療成效,才會進到人體試驗,且第一期、二期、三期分別有不同的條件與目的,只有在第一期和第二期執行成果中,顯示其具有前景的試驗,才會進入第三期,在臺灣進行的臨床試驗都已具有相當完善的規範,也會在保護受試者的情況下進行。病友若是治療遇到瓶頸時或是可能需要自費或是參加臨床試驗,賴俊良醫師建議,若符合可以參加臨床試驗的條件,病友及家屬可以進一步與主治醫師討論了解,也有機會可以找到新契機,讓病情翻轉。

-----廣告,請繼續往下閱讀-----

他的故事 談面對恐懼

罹癌就像暴風雨 家人陪我度過每個關卡

曾經聽人家說「罹癌是上天給的禮物」,這個天上掉下來的禮物很痛苦、很折磨,也狠狠把我 K 醒!才 53 歲的我,去(2023)年 3 月起連續兩個月咳個不停,確診為肺腺癌第四期,我的腦子一團亂,醫師開始為我化療,治療期間我吃不下、甚至沒辦法走路,家人擔心再化療下去可能連命都沒了。

就像落水的人,拼命想抓住救生圈,經過不斷打聽,朋友介紹到大林慈濟賴副院長的門診。第一次住院待了 33 天,治療期間,好像一個人漂浮在汪洋中,害怕上不了岸,擔心得連呼吸都困難;沒想到最後可以出院,體力還變好,原本沒辦法行走,後來能夠走出醫院,過了這個坎,好像就沒有什麼好怕的了。

過去從事餐飲業,每天至少一包菸,加上廚房的油煙,破壞身體免疫力。以前認為跟家人除夕吃團圓飯很平常,罹癌住院 33 天的經驗,讓我知道這個「平常」代表「幸福」。治療中,太太、兒女一路陪我度過每個關卡,從身體不舒服的第一天,到住院、標靶藥物和門診追蹤,可靠又溫暖的陪在身旁。

我有十幾年糖尿病的歷史,罹癌後發現血壓、腎臟指數飆高,全身浮腫,醫院安排做次世代基因定序檢測,醫師說,我是 MET 基因中第二類比較少見的擴增型,從去年 5 月開始服用標靶藥物治療,全身浮腫的狀況改善了,病情也控制住,除了容易累,體力比較差,沒有影響到生活,我想老天爺在給我機會。

-----廣告,請繼續往下閱讀-----

癌症就像一場暴風雨,考驗自己的內心,生活變得很慌亂,遇到事情就去面對它、解決它,慢慢把腳步站穩後,暴風雨過去了,接下來的每一天都要好好過,或許癌症真的是一個生命的禮物,敦促著我們找回人生最重要的事,也提醒正在看這封信的學弟妹們,醫療這麼發達,穩定用藥就可以擁有好的生活品質,不要放棄;開心是一天,不開心也是一天未來每一天,我選擇開心地過。

所有討論 1

2

0
0

文字

分享

2
0
0
心房顫動提高中風風險?心房顫動有哪些警訊?如何治療?
careonline_96
・2024/04/12 ・2546字 ・閱讀時間約 5 分鐘

「有一位 40 歲的男士,因為左腰痛來到急診室。」新竹馬偕醫院心臟內科林柏霖醫師表示,「檢查發現,居然是心房顫動造成的血栓流到腎動脈,而造成腎臟中風。」

經過醫療團隊緊急手術,取出左腎動脈裡的血栓,成功保住了腎臟。林柏霖醫師說,為了避免心房顫動持續形成血栓導致嚴重併發症,建議患者要積極處理。該患者選擇接受冷凍導管消融術,順利恢復正常心律,也預計未來再度中風的風險會降低。

心房顫動為臨床常見的一種心律不整,好發在 65 歲以上的中老年人身上,因此隨著台灣人口老化的趨勢,患病人口的比例也越來越高。林柏霖醫師說,高血壓、高血脂、糖尿病、心肌梗塞、心臟衰竭等皆是引起心房顫動的危險因子。另外,像是甲狀腺亢進、肥胖、睡眠呼吸中止症也會增加心房顫動的風險。

心房顫動是心房受到異常電訊號刺激而出現快速且不規則收縮,在台灣的盛行率大概是 1% 至 2%。林柏霖醫師表示,心房顫動發作時大約 20% 的病人沒有明顯症狀,所以完全不曉得自己的心律有問題。由於心室收縮的速率可能忽快忽慢,患者可能出現心悸、胸悶、頭暈、虛弱無力、呼吸急促等症狀。

-----廣告,請繼續往下閱讀-----

同時心房顫動可能導致血液滯留,而漸漸形成血塊。林柏霖醫師解釋,當血塊脫落,隨著血液流出心臟,就會造成嚴重併發症。比如血塊流入冠狀動脈,會造成心肌梗塞;血塊流入腦部,會造成腦中風;血塊流入腎臟,會造成腎中風;血塊流入腸系膜,會造成腸中風;血塊流入四肢,會造成肢體中風。這些併發症都相當棘手,可能導致失能,甚至危及性命。

林柏霖醫師強調:「心房顫動會大幅提高中風的風險,最好能早期發現,早期介入治療!」

民眾可以透過例行性健檢中的心電圖診斷心房顫動,不過尚有部分患者屬於陣發性心房顫動,偶而發作後過一陣子又恢復正常心律。林柏霖醫師說,若必要時可使用 24 小時連續心電圖或是植入式心律監測器,長時間紀錄心律,才能夠正確診斷。目前則有些智慧型穿戴裝置亦提供測量心電圖的功能,若發現心律異常的狀況,務必盡快就醫,由心臟科醫師進行判讀。

積極治療心房顫動,才能降低中風風險

心房顫動的治療方式,可以用 ABC 口訣來說明。林柏霖醫師說,A 是 Anticoagulant(使用抗凝血劑);B 是 Better Rhythm Control(積極控制心律);C 是 Comorbidity(治療共病症),針對心房顫動患者,必須同時治療各種共病症,例如高血壓、高血脂、糖尿病等。

-----廣告,請繼續往下閱讀-----

使用抗凝血劑,能夠避免形成血液形成血栓。林柏霖醫師說,在控制心律方面可以用藥物或手術的方式來治療心律不整,手術方式包含傳統電氣燒灼術與新式冷凍導管消融術。

心房顫動手術治療是以心導管的方式進行。林柏霖醫師說明:在接受半身麻醉後,醫師會從患者鼠蹊部的股靜脈穿刺,放入導管延伸到右心房,再從右心房穿刺進入左心房。

由於導致心房顫動的異常電訊號大多來自肺靜脈,所以手術目的就是阻隔異常電訊號的傳遞。林柏霖醫師解釋,傳統電氣燒灼術是在肺靜脈周圍進行點狀燒灼,而冷凍消融術是使用冷凍球囊,利用低溫造成連續性電訊號的破壞。

「傳統電氣燒灼術是以導管前端,沿著肺靜脈開口周圍,一點一點地進行燒灼。利用熱能讓局部組織發生凝固性壞死,阻斷電訊號。」林柏霖醫師說,「新式冷凍導管消融術,是將一個球囊放入肺靜脈,接著注入液態的冷凍劑,讓球囊的溫度下降到攝氏零下 30 度至 50 度,造成一圈連續性的冷凍損傷阻隔異常電訊號。冷凍導管消融術的優勢在於手術時間約可縮短一半,大約兩個小時左右。因為手術時間短,安全性就會提高,也可以降低病人在手術過程中,因為時間過久而感到不適的發生。但還是提醒,若病患面臨術式的選擇,必須根據自身狀況和醫師討論,才能選擇最適合患者的方案!」

-----廣告,請繼續往下閱讀-----

「針對心房顫動,一定要及早發現、及早治療。」林柏霖醫師說。

年紀較大、具有危險因子的民眾要注意自己的心律是否規則,定期檢查才能及早發現問題。一旦發現有心房顫動,特別是陣發性心房顫動或者已經造成症狀的心房顫動,都要積極介入治療,利用藥物或手術的方式,將心房顫動的問題根除。

貼心小提醒


心房顫動發作時可能沒有明顯症狀,但是心房顫動會造成 5 倍以上的中風機率,是個非常需要重視的疾病。林柏霖醫師叮嚀,建議大家平時要好好控制血壓、血脂、血糖,維持規律運動及正常作息,避免抽菸、喝酒。

如果出現心悸、頭暈、胸悶、無力、呼吸急促等症狀,便要盡快就醫。早期發現、早期治療心房顫動才能降低中風的機會!

-----廣告,請繼續往下閱讀-----
所有討論 2