Loading [MathJax]/extensions/MathZoom.js

0

1
0

文字

分享

0
1
0

難道,你只認領了論文標題和作者光環?--《科學月刊》

科學月刊_96
・2015/11/12 ・2753字 ・閱讀時間約 5 分鐘 ・SR值 560 ・八年級

作者/黃正球(美國貝勒醫學院發育生物學博士,研究領域為瘙癢與疼痛的神經機制,目前於美國聖路易斯華盛頓大學進行博士後研究)

糖尿病是影響現代人健康甚鉅的一種代謝疾病,據統計目前全球約有3%的人口罹患糖尿病,所花費的醫療開銷,一年超過六千億美金。

第一型糖尿病起於胰島β細胞的數量減少或功能異常,造成分泌的胰島素不足。第二型糖尿病則是主要因為胰島素阻抗(insulin resistance),即細胞無法正常反應胰島素引起的生理功能;隨著病情的加重,會進而引發β細胞受損、死亡,導致胰島素分泌的不足。雖然目前有口服降血糖藥物或胰島素注劑可以當作治標的療法,但畢竟調整血糖的功效還是不如身體內健康的β細胞靈活。加上近年研究顯示,成體的β細胞在高血糖刺激或胰島素阻抗的情形下,能進行細胞分裂增生,對胰島素分泌與血糖調控有短期代償的效果,所以如果找到能長期促進β細胞增生的因子,或開發出等效的藥物,從根源醫治糖尿病的夢想也許就不遠了!

1571464801_aeca5a80df_o
目前糖尿病患者只能透過吃藥與注射胰島素來控制,圖為Humalog(優泌樂,降血糖劑)與注射管。 Source: flickr

發現神奇蛋白 糖尿病藥到病除?

在這樣的邏輯和驅力下,科學家們以實驗小鼠為模型,開始了找尋這類因子的征戰。2013年4月,美國哈佛大學的莫爾頓(Doug Melton)與實驗室同儕,在Cell期刊上發表了一篇可能會徹底改變糖尿病治療方法的論文。他們利用一個短肽S961作為胰島素受體拮抗劑,阻斷胰島素的訊息傳遞,在小鼠中建立了第二型糖尿病的模型。如前所述,由於胰島素阻抗作用產生的代償,小鼠的β細胞開始分裂增生,而胰島素分泌也顯著增加。他們先以實驗排除了S961直接影響β細胞增生的可能性,然後進一步利用基因微矩陣(DNA microarray)分析了和代謝有關器官的基因表現,發現有一個基因在第二型糖尿病小鼠的肝臟與白脂肪中大量表現,並且會表達一個能被細胞釋放的蛋白。更令人驚奇的是,在小鼠的肝臟中外加表達這個蛋白,可以促進胰島β細胞的分裂增生和胰島素的分泌,而且能有效調節血糖和葡萄糖耐受能力(glucose tolerance)。於是論文作者將這個神奇的蛋白取名為Betatrophin(胰島β細胞滋養因子)。

-----廣告,請繼續往下閱讀-----

這個革命性的發現,受到Cell期刊肯定,加上哈佛校方的宣傳和眾多媒體爭相報導,不但科學從業者熱烈討論,數以千百計的糖尿病患者也紛紛透過各種管道,詢問這個可能徹底治癒糖尿病的「靈藥」。當然,也吸引了許多投資客與生技製藥業的目光……

但是,很可惜現實不是童話

2014年底,雷傑納隆(Regeneron)藥廠掌管代謝研究的格羅馬達(Jesper Gromada) 與其團隊, 在Cell期刊上刊登了一篇打臉莫爾頓的論文。文中先餵食小鼠高脂飼料以誘發第二型糖尿病,然後檢測野生型小鼠和Betatrophin基因剔除小鼠,胰島β細胞的增生能力。實驗結果證明,Betatrophin 基因剔除小鼠β細胞的增生能力,和野生型小鼠沒有區別。再來作者利用原本莫爾頓實驗室使用的短肽S961,在野生型與Betatrophin基因剔除小鼠上引發第二型糖尿病,測試不同糖尿病模型是否導致不一樣的結果。很不幸的,還是沒有發現這兩個基因型的小鼠,在β細胞的增生上有任何差異。結合上述兩個實驗,得到的結論是Betatrophin對β細胞增生並不是必要條件

sea-358943_640
生命生存則水存在為真,但水存在則生命生存為假(還有陽光跟空氣阿!)。我們可以說,生命生存為水存在的「充分非必要條件」,而水存在為生命生存的「必要非充分條件」。而上述「Betatrophin對β細胞增生並不是必要條件」,是β細胞增生為Betatrophin「充分非必要條件」,意即,除了Betatrophin外,還有其他因素影響β細胞增生,但是後面的實驗結果似乎並不支持Betarophine是「充分非必要條件」。 Source: Pixabay

更慘的是,作者在野生型和Betatrophin基因剔除小鼠的肝臟中外加Betatrophin蛋白,發現對β細胞增生、血糖調節、胰島素分泌以及葡萄糖耐受能力,居然一點功效也沒有!這個結果顯示,Betatrophin對β細胞增生連充分條件都不是,雷傑納隆團隊完全無法重複莫爾頓實驗室在2013年所發表的結果,Betatrophin這個靈藥一下被打回不起眼的原名:ANGPTL8(類血管生成素8號)。

緊鄰著雷傑納隆團隊發表的Cell期刊論文旁邊,其實有莫爾頓實驗室發表的更正聲明。他們首先重複了之前在肝臟中表達Betatrophin的實驗,並大大增加了樣本數(從原本的7隻到目前的52隻),計量後發現,外加的Betatrophin對胰島β細胞的增長只有非常細微的幫助(卻可以對胰島素的分泌有明顯的助益?)。而同時他們也承認,剔除Betatrophin基因並不會減少小鼠在第二型糖尿病病程初期β 細胞的增長……

-----廣告,請繼續往下閱讀-----

「七隻小鼠的數據」為什麼你相信了?

從上述事件,我們能得到什麼訊息?又要怎麼去深辨其中的玄機呢?

第一,當我們在科學期刊上閱讀到一個「劃時代」、「革命性」發現的標題時,請先保持一種理性分析的心態,從頭到尾檢測文章中的實驗數據,是否足以撐得起作者的敘述與結論。在Betatrophin的事件中,原本Cell期刊論文裡最關鍵的活體實驗,其實只用了區區7隻小鼠,其中的4隻並沒有任何作用,顯示出的統計差異是源於另外3隻小鼠的樂透效應(Jackpot Effect),所以當樣本數增加到52隻之後,真正可能有生理意義的數據才顯露出來。

再者, 以Cell這樣一個頂尖期刊, 不管是編輯或是審稿者都不該不了解「充分且必要條件」的重要性,但Betatrophin的原始論文裡, 就是少了這麼一個用Betatrophin基因剔除小鼠來顯露必要條件的實驗,不知是否是作者的光環太過耀眼,屏蔽了編輯和審稿者實事求是的審核標竿。

第二,當我們從新聞媒體或網路上聽聞一個科技或醫藥新知,在廣泛轉發親朋好友之前,請盡量查明消息的出處以及相關的科學文章。在網路發達、新聞氾濫的當今社會,有太多良莠不齊的媒介能傳播不實甚至有害的消息,也有太多的假專家或有心人士署名一些似是而非的資訊。網路消息這把雙面刃,怎麼使用得當,對網路普及率這麼高的臺灣民眾來說,的確是一門不簡單的課題。

-----廣告,請繼續往下閱讀-----

最後強調,希望各位讀者在閱讀吸收所謂的科技新知時,請多重視資訊中的立論、證據與邏輯性,做出您個人理性的判斷,當然,受審視的也包括您現在正在讀的這篇評論。

參考文獻
1. Yi, P., Park, J. S. and Melton, D. A., Betatrophin: a hormone that controls pancreatic β cell proliferation, Cell, Vol. 153: 747-58, 2013.
2. Gusarova, V., Alexa, C. A., Na, E. et al., ANGPTL8/betatrophin does not control pancreatic beta cell expansion, Cell, Vol. 159: 691-6, 2014.
3. Yi, P., Park, J. S. and Melton, D. A., Perspectives on the activities of ANGPTL8/betatrophin, Cell, Vol. 159: 467-8, 2014.

201510本文選自《科學月刊》2015年10月號

延伸閱讀:
新藥的研發流程
天然的尚好 森林裡的藥方

-----廣告,請繼續往下閱讀-----

什麼?!你還不知道《科學月刊》,我們46歲囉!
入不惑之年還是可以
當個科青

-----廣告,請繼續往下閱讀-----
文章難易度
科學月刊_96
249 篇文章 ・ 3742 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
喝糖比吃糖更肥?飲料慢慢喝比較不會胖!——《大自然就是要你胖!》
天下文化_96
・2024/06/25 ・1953字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

飲料中的添加糖和食物中的添加糖,造成的影響有所不同嗎?

如果生存開關的啟動只與熱量有關,無論是吃軟糖,還是喝汽水,高果糖玉米糖漿所產生的作用理當一樣。但事實並非如此,喝糖通常比吃糖更糟得多。為什麼會這樣?生存開關是由於肝臟中的 ATP 濃度下降所觸發,因此關鍵在於有多少果糖到達肝臟。如果肝臟接收到大量果糖,則 ATP 會大幅下降,刺激生存開關強烈反應。倘若只有少量果糖到達肝臟,果糖代謝效應會比較溫和。這意味著,儘管我們在談論生存開關時,一直將它簡化為一種按鈕,可控制為開或關,但實際狀況比較像是可調整強度的旋轉鈕,會根據狀況產生強弱不同的反應。

換句話說,肝臟的反應是依據接收到的果糖濃度,而不是果糖量。比起果糖一次全部進入的狀況,當果糖緩慢進入時,肝臟接觸到的果糖濃度會比較低。也因為如此,軟性飲料比固體糖類更容易啟動生存開關。軟性飲料含有大量的糖分(以 600 毫升的汽水為例,當中含有約 17 茶匙的高果糖玉米糖漿,其中約 9 茶匙是果糖),通常幾分鐘即可喝完,而且由於是液體,不需要消化,這會讓肝臟中迅速充滿果糖和葡萄糖。相較之下,固體食物必須經過消化,需要更長的時間才能到達肝臟。(這也是完整水果較不易啟動生存開關的原因,因為水果纖維有助於減緩吸收。)因此,固體食物中的果糖到達肝臟的速度較慢,不會讓生存開關一下子轉到最強狀態。

營養學家兼遺傳學家斯皮克曼(John Speakman)進行的實驗證實了這一點,他發現餵食液體糖的小鼠,比餵食固體糖的更肥胖。人體臨床研究也比較食用液體糖(來自軟性飲料或其他飲料)和固體糖(來自糖果和甜點)的差別,所有證據都指向同一個結果:液體糖導致肥胖和(或)糖尿病前期的可能性,比固體糖更高。在一項研究中,將年輕受試者隨機分成兩組,一組每天喝一杯 240 毫升的軟性飲料,一組吃下含糖量相等的軟糖,持續四週,然後恢復正常飲食,也持續四週,並在這段「淨化」期之後,讓兩組受試者交換,原本喝軟性飲料的改吃軟糖,反之亦然,再持續四週。試驗結束時,研究人員發現,受試者在「喝糖」期間攝取的總熱量,比「吃糖」期間多了約 17%。在喝了四週的軟性飲料後,受試者的體重增加,脂肪也增加。相較之下,吃軟糖的四週內,他們的體重並未增加。

液體糖導致肥胖和(或)糖尿病前期的可能性,比固體糖更高。圖/envato

液體糖比固體糖更容易導致肥胖,而且喝液體糖的速度也會造成影響。為了證明這一點,我們在伊斯坦堡科曲大學的合作夥伴坎貝,提供蘋果汁給志願的受試者,這些蘋果汁內的果糖含量與軟性飲料相似。坎貝讓一半的人在 5 分鐘內喝下 500 毫升果汁,另一半則是每隔 15 分鐘喝下 125 毫升,用一小時喝完 500 毫升的果汁。一小時結束時,雖然兩組人喝下的蘋果汁分量一樣,但兩組間的差異卻非常驚人。5 分鐘內喝完蘋果汁的人,體內的尿酸和血管加壓素(肥胖荷爾蒙)快速增加。相較之下,花一小時喝完蘋果汁的受試者,尿酸和血管加壓素的變化比較緩和。由於尿酸和血管加壓素升高相當於生存開關活化的證據,這表示如果一定要喝軟性飲料,慢慢享用會比大口豪飲來得安全。

-----廣告,請繼續往下閱讀-----
含糖飲料慢慢喝會比大口豪飲來得安全。圖/envato

幾年前,曾有人基於軟性飲料含糖量高,提議紐約市政府對軟性飲料課稅。軟性飲料業者指出其他食品也含有大量的糖,專挑軟性飲料課稅並不公平。基於這項爭議,再加上其他因素,飲料稅法案最後沒有通過。但根據前面提到的研究,軟性飲料業界的論點其實有誤。

根據液體糖和固體糖的研究,還可以得到一個結論:「魚與熊掌或許可以兼得」。也就是說,享用富含糖類的甜點時,如果吃得夠慢,或許可能避免觸發生存開關。這時蛋糕就只是熱量而已。問題是,要慢慢的吃甜點幾乎是不可能的事!

喝軟性飲料時不能大口暢飲,而得用一小時的時間慢慢啜飲完畢,也同樣不容易。另外,與其單獨飲用軟性飲料,不如在用餐之間慢慢喝,畢竟邊吃邊喝,讓液體中的糖與食物混合,可減慢吸收速度。

重點

液體糖比固體糖更有害,大口喝下軟性飲料是啟動生存開關最有效的方法。含糖軟性飲料、能量飲料、果汁、含糖的茶和咖啡,全都應該避免。如果偶爾想放縱一下,請放慢飲用速度,並一定要與食物搭配。

-----廣告,請繼續往下閱讀-----

——本文摘自《大自然就是要你胖!》,2024 年 06 月,天下文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

天下文化_96
142 篇文章 ・ 624 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

1
1

文字

分享

0
1
1
替晶片打造數學工具的喬治.布爾(George Boole)
數感實驗室_96
・2024/06/01 ・561字 ・閱讀時間約 1 分鐘

-----廣告,請繼續往下閱讀-----

本文由 國立臺灣師範大學 委託,泛科學企劃執行。 

煮湯時看到調理包背面寫著「加水且加入鹽巴或味精,就大功告成了」。

這句話該怎麼解讀呢?邏輯思維好的人可能很快就能反應過來,意思是加水是必須的,鹽巴和味精至少要加一個。當然,兩者都加也行,但似乎不太健康。

你可能會說:「煮湯時誰會想那麼多?這太哲學了!」其實,19 世紀有位數學家將邏輯建立在數學而非哲學之上,他的貢獻深深影響了現代電腦的運算。他就是我們今天的主角——喬治.布爾(George Boole)。

-----廣告,請繼續往下閱讀-----

在工作會議中,清晰的邏輯思維能幫助我們有條理地表達觀點,並迅速理解他人的意見;程式設計中,邏輯是核心,透過布林代數和邏輯運算,電腦能根據條件執行不同的任務,在智慧家電中利用邏輯閘判斷多個輸入條件來控制輸出結果。

因此,布爾提出的這一套邏輯思維與布林代數,不僅在學術領域至關重要,更是日常生活中不可或缺的工具。

更多、更完整的內容,歡迎上數感實驗室 Numeracy Lab 的 youtube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

數感實驗室_96
76 篇文章 ・ 50 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/