0

3
2

文字

分享

0
3
2

元素週期表的蛻變—《科學月刊》

科學月刊_96
・2015/11/01 ・4856字 ・閱讀時間約 10 分鐘 ・SR值 584 ・九年級

國民法官生存指南:用足夠的智識面對法庭裡的一切。

作者:張 澔(義守大學通識教育中心副教授)

十九世紀的週期表,就像一張天空星座圖,充滿了神祕的美感,如此迷人的圖案似乎暗藏了構成萬物的傳奇密碼。元素的性質與原子量之間是否存在某一種關係?這不是一個突然的想法,而是西方自然哲學對於自然奧祕的一種猜測與預測,而門得列夫並不是唯一有這種想法的人,然而為何大家卻只推崇他的成就?在20世紀初,隨著量子化學的發展,再加上新發現的元素,週期表如何逐漸蛻變成我們今天所看到的面貌?

monpeo
門得列夫。Source: Wikipedia

元素週期表的創生

元素及原子是兩個構成近代化學發展的基石。從古希臘時代,不論是元素或者原子,便定義為構成自然萬物的最小物質。既然是構成萬物的最小單位,自然成為化學家夢想征服的聖地,如此才能真正瞭解萬物構成的奧祕。

十八世紀末拉瓦節的化學革命,讓我們逐漸開始知道哪些才是真正的元素,而十九世紀初道耳吞所提的原子理論,又讓原子量成為化學化合時必備的數據。在1815~1816年之間,英國化學家普勞特(William Prout, 1785~1850)觀察到,當時所知各種元素的原子重量都是氫原子重量的整數倍。1829年德國化學家德貝萊納(Johann Wolfgang Döbereiner, 1780~1849)提出了「三元群」(Triaden)規則,把當時已知的53個元素中的30個元素分成三大組。

在1862年法國化學家尚古多(Alexandre-Émile Béguyer de Chancourtois, 1820~1886),以義大利化學家坎尼扎羅(Stanislao Cannizzaro, 1826~1910)在1858 年於法國科學院宣讀元素週期表的論文中,將原子量數值作為基礎,闡述元素會按原子量大小來排列,呈現「碲螺旋」狀(telluric helix),因「碲」元素排列在此螺旋圖案的中間。

從1863年開始,英國化學家紐蘭德(John Alexander Reina Newland, 1837~1898)開始研究化學元素性質的週期性。1865年他受德貝萊納「三元群」的啟發,把當時已知的61 種元素按照原子量的大小順序排列,發現每隔7種元素便出現性質相似週期性,就如同音樂中的音階一樣,他稱之為八音律法(Law of Octaves)。

1864 年德國化學家邁爾(Julius Lothar Meyer, 1830~1895) 完成《近代化學理論》(Die Modernen Theorien der Chemie),在書中,他按照元素的化學鍵,將28個元素分為6族。但是在1870年的時候,他卻按元素及原子量的關係來排列它們的週期性。

門得列夫的崛起

1869年3月6日,在聖彼得市的蘇俄化學學會上,有一篇關於元素性質與原子重量有關的論文發表,署名門得列夫(Dmitri Ivanovich Mendeleev, 1834~1907),因為那天他正好生病,所以是由他的同事來宣讀。在同年,門得列夫將這篇論文節錄整理成二頁的德文,以〈有關元素的性質與其原子量的關係〉為標題,發表在《化學期刊》(Zeitschrift für Chemie)。在兩頁的內容中,包含一張元素週期表。

MOND
門得列夫發表在《化學期刊》的週期表。(Meyer, L., Mendelejeff, D., Das Naturliche System der Chemischen Elemente – Ostwald’s Klassiker der Exakten Wissenschaften Nr. 68, Zeitschrift für Chemie, 1895.)

除此之外,尚有數個註解如:元素,按原子量的大小,性質會呈現逐步的變化; 化學相似的元素,它們的原子量如非出現一致(鉑、銥、鋨),便會是等量的增加(鉀、銣、銫);按原子量排列的元素與其價鍵相對應,從某一些程度而言,也與它們化學行為的差異相對應,如鋰、鈹、硼;氫是最輕的元素,理應被當作重量的標準;有些元素的原子量需要被訂正,如碲的原子量不是128,而是在123和126之間。

在這張週期表中,門得列夫共列有67個元素,他預測將會有原子量為45、68、70及180的元素存在,後來,除了原子量180沒有被發現外,其餘的三個元素,鈧(45)、鎵(68)、鍺(70),陸續被發現。在表中,門得列夫還對鉺、釔、銦、釷、碲與金的原子量表示質疑。

門得列夫將週期表論文發表在德國期刊上,這不僅帶動週期表觀念的流傳,也有助於他名聲的傳播。1859年門得列夫到海德堡大學,在本生(Robert Bunsen, 1811~ 1899)門下進修學習。隔年,他恰巧有機會參加卡斯魯爾化學會議。在會上,他學到亞佛加厥定律:在相同的溫度和壓力下,等體積的任何氣體都含有相同數目的分子。這點對於門得列夫在探討元素週期表有很大的啟發。

莫斯利的貢獻

在莫斯利(Henry Moseley, 1887~1915)的實驗前,元素在週期表上的排列是以原子量作為依據,有時候會產生一些混淆,或者無法解釋的地方,如原子量比較輕的鎳(58.693),應該排在鈷(58.933)之前,然而按照它們的化學性質來分析,鈷卻排於鎳之前。在1913 年的時候,莫斯利對照週期表進行實驗,他以陰極射線撞擊不同金屬的靶面,發現到金屬原子所放射出來的X射線頻率平方根與週期表的原子序成比例,此實驗稱之為莫斯利定律。

negative
陰極射線管。 Source:Science Museum London

透過此實驗方法,莫斯利重新檢驗了週期表的元素排列,他實驗證明,鈷和鎳的原子序分別為27和28。另外,莫斯利也按此方法,指出原子序在43、61、72和75的元素是空白的。後來這些被莫斯利所預測的元素,在他去世之後,陸續被發現,前兩者是在大自然中極少量的放射性元素鎝(43)和鉕(61),後兩者則是自然穩定存在的過渡金屬元素鉿(72)和錸(75)。莫斯利的實驗正好證實了波耳原子模型,原子序就是原子中的正電荷數目。後來實驗發現,原子序便是原子核中的質子數。最重要的是,在莫斯利之前,原子序只是元素在週期表中一個位置,莫斯利不僅賦予原子序一個物理意義,並且是可以實驗測量的一項數值。

週期表所隱藏的祕密

為何元素化學性質會與原子重量產生關係,當然門得列夫無法正確來回答這個問題。然而隨著更多的元素被發現,再加上量子力學的發展,週期表的謎題逐漸柳暗花明。

在1897年英國化學家湯姆生(Joseph John Thomson, 1856~1940)透過陰極射線, 第一次發現到電子,打破了科學家長期以來對於原子不可分割的觀念,隨後,美國物理學家密立根(Robert Millikan, 1868~1953)利用精確的油滴實驗,測得原子中負電荷粒子的重量和電荷。1903年拉塞福(Ernest Rutherford, 1871~1937)發現,放射性的產生乃是由於原子的崩壞。隨後,在1911年拉塞福和德國物理學家蓋革(Hans Geiger, 1882~1945)發現,其實電子是圍繞原子核來運動。

rutherford
拉塞福的實驗室。 Source:Science Museum London

在1913年波耳(Niels Bohr, 1885~1962)更發現,電子以不連續能量方式圍繞原子運動,其被稱之為軌道。當電子從一個軌道移動到另外一個軌道的時候,就會釋放出輻射。一年之後,拉塞福證實,在原子中存在一個帶有正電荷的粒子,稱之為質子。1932 年查兌克(James Chadwick, 1891~1970)實驗發現,在原子核中,除了帶正電荷的質子外,還有一個不帶電荷的中子,這讓科學家對於原子的結構知識更完整,也讓週期表的建立有更完整的基礎。

1923年波耳是第一位提出,元素週期表可以用原子的結構來解釋。隔年,英國理論物理學家斯通納(Edmund Clifton Stoner, 1899~1968)使用了德國理論物理學家索末菲(Arnold Sommerfeld, 1868~1951)的第三個量子數來解釋電子殼層。在1914~1915年期間,索末菲開始使用第二量子數(l:角量子數)及第三量子數(m:磁量子數),然而不論是波耳或者是斯通納都無法正確的來描述原子光譜在磁場中的變化,即所謂塞曼效應(Zeeman effect)。波耳很清楚這個缺點,所以寫信給他的好朋友包立(Wolfgang Pauli, 1900~1958),請求協助如何讓這個量子理論更完善。包立意識到,塞曼效應能夠影響的,應該只是原子最外殼層的電子而已,所以只需要修訂斯通納的原子殼中的次殼層結構便可,因此在1925年,他提出了第四個量子數,即所謂的自旋量子數,及包立不相容原理來描述。

1
最左方為波耳,右二為愛因斯坦。 Source: Smithsonian Institution
2
包立(中)。 Source: Science Museum London
3
查兌克。Source: wikipedia

除了包立不相容原理外,有關電子在殼層的排列,在1927年由德國物理學家罕德(Friedrich Hund, 1896~1997)所提出的罕德定則:當有多重軌道時,電子必須先以相同的自旋方式完成半填滿之後,才能以成對的方式填入軌域。除此之外,尚有1936年被提出的構築理論,不論是一個或者更多原子的軌道電子是以最少的能量來填入,在這情況下,原子、分子或者離子都會處於最穩定的電子組態。

所以原子的結構中,除了原子核外,每一個元素所擁有的電子,則是按照以上的方法而構成,而不同軌域所能夠填滿的電子數目則不同(s軌域可填2個電子;p軌域為6個;d 軌域為10個;f 軌域為14個)。因此,電子組態是解釋元素週期表最好的依據,換句話說,按電子組態所形成的週期表才最值得採信。

被時代所淘汰的週期表

除了發表在《化學期刊》的週期表外,門得列夫在1868~1872年之間至少還發表了7張以上的週期表。而1940年開始,4f電子軌域的鑭系元素(原子序57的鑭到71的鎦),及在5f電子軌域的錒系元素(原子序89的錒到103的鐒)陸續被發現,所以我們現今所使用的週期表,大約也是在1950年前後逐漸開始形成,當時有無數的週期表被提出。

在形狀為長方形的週期表,可以被分類成不同長度的週期表,除了氫與氦外,有含有8個元素的短週期,含有18個元素的中週期,含有32個元素的長週期。所以,週期表按它們的長度,可分類為短表、中表及長表。除了按表的長度來分類外,有些週期像同心圓,有些週期表圖看來像螺絲,有些像蝸牛,有些像雙鈕線。雙鈕形及橢圓柱螺旋形是按原子量所排列之週期表;盤繞螺旋形及八平面空間同心圓則是按電子組態來排列。

a
雙鈕形,1898年由克魯克斯(William Crookes)所提出。(Mazurs, Types of Graphic Representation of the Periodic System of Chemical Elements)
b
橢圓柱螺旋形,1911年由史塔克柏格(E. von Stackelberg)所提出。(Mazurs, Types of Graphic Representation of the Periodic System of Chemical Elements)
c
盤繞螺旋形,1929 年由賈內(Charles Jane)所提出。(Mazurs, Types of Graphic Representation of the Periodic System of Chemical Elements)
d
八平面空間同心圓,1943 年由韓佐(G. Haenzel)所提出。(Mazurs, Types of Graphic Representation of the Periodic System of Chemical Elements)

最終的成果

元素的性質與原子重量會出現週期關係,這聽來很神奇。在十九世紀時,化學家無法正確來解釋這個現象,一個是質量的東西,而另外一個卻是數量的東西。然而化學家實驗發現,這兩者之間出現週期性的變化,而且可以製作成一張表格。在那個時候,他們不知道為何會出現如此的關係,但是他們相信,可以在表格上,找到元素性質及原子量更多例子,也許最終有一天,當更多或者完整的週期表出現後,化學家便可以找到的答案。在建立更精確的週期表的過程中,它神奇的預測過新的元素,也幫忙校正一些原子的重量。

也許,門得列夫在1869年提出元素週期表,並非是一個「科學成就」,而是另外一個嶄新的問題:為何元素的性質與原子量出現週期關係?是的,電子組態便是答案。當我們知道,電子組態可以來解釋元素的各項性質時,我們似乎對元素性質的瞭解豁然開朗。然而另外一方面,過去週期表給我們那種神祕的美感,頓時消失,因為電子組態看來也是一個數量而已,它們是分布在不同軌域的電子數,而原子量就是原子核的中子和質子所組成,在原子中,有多少電子,就有多少質子,最後,我們看到就是數量和數量的關係,而不再是我們所認為的質量和數量所產生的關係,不再令人有一種神祕傳奇的魅力。

參考文獻:

  1. Mazurs, E. G., Graphic Representations of the Periodic System during One Hundred Years, University of Alabama Press, 1974.
  2. Meyer, L., Mendelejeff, D., Das Naturliche System der Chemischen Elemente – Ostwald’s Klassiker der Exakten Wissenschaften Nr. 68, Leipzig: Verlag von Wilhelm Engelmann, 1895.
  3. Van Spronsen, J. W., The Periodic System of Chemical Elements: A History of the First Hundred Years, Amsterdam: Elsevier, 1969.

201510本文選自《科學月刊》2015年10月號

延伸閱讀:
時代下的悲劇天才—莫斯利與原子序
人類所創造的物質—超鈾元素

什麼?!你還不知道《科學月刊》,我們46歲囉!
入不惑之年還是可以
當個科青

文章難易度
科學月刊_96
232 篇文章 ・ 2398 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

2

25
6

文字

分享

2
25
6
末日般的「鑀」情:科學家終於解開了氫彈試爆裡的週期表謎團
linjunJR_96
・2021/03/12 ・1708字 ・閱讀時間約 3 分鐘 ・SR值 507 ・六年級

氫彈試爆遠圖。圖/Pixabay

1952 年 11 月 1 日,美軍在太平洋中央的一座小島上,進行第一次大規模氫彈試爆,猛烈的核融合反應留下了許多難得一見的超重元素。加州的柏克萊實驗室就是在這次的爆炸殘骸中發現了第 99 號元素「鑀」(Einsteinium)。70 年後的今天,同樣來自柏克萊的實驗室團隊首次成功量測到鑀元素,發表在 Nature 期刊。

鑀元素位於元素週期表的邊疆,儘管科學家曾確實觀測到它,直至今日人們對鑀的理解仍然只有一絲絲(連屑屑都沒有),這是因為鑀原子超不穩定,沒多久就會衰變成原子序較小的其他元素,於是鑀元素不能像鈾礦那般由自然物質裡萃取,鑀的人工合成製程也十分困難。標準的合成作法是使用大量中子轟炸鋦原子,再雙手合十,耐心等待一連串核融合反應發生。

1960 年代的首次合成嘗試中,只成功產出 10-8 克(10 奈克)的鑀原子。儘管往後產量有緩慢進步,但在這種亂槍打鳥的過程中,許多不同的核反應都會參一腳,所以收集到的原子產物往往參雜許多其他元素,加上鑀易輻射衰變的特性,以至於一直沒有實驗團隊能得到足夠量的鑀元素以進行其化學性質的測量。

寫黑板的愛因斯坦。圖/Pixabay

鑀元素聽來也許陌生,然而它的英文名字「Einsteinium」可是來自家喻戶曉的愛因斯坦本人(Albert Einstein),字源揭露了鑀的重要地位。鑀元素屬於週期表最後一列的錒系元素,這列沒人會背的元素其實一點兒也不無關緊要,在駕馭了它們的放射性質後,錒系元素有能耐成為左右文明的重大角色。除了最常聽到的鈾之外,釷(Thorium)和鉲(Californium)等元素都有廣泛的工業及醫學應用;鈽(Plutonium)是核武器和核能源的必須要素,因此成為冷戰時期眾人爭奪的資源,也曾在電影「天能」裡面客串出場。

週期表中每一直行(稱為族)及每一橫列(稱為週期)的元素的化學性質都存在特定規律;例如第一行的鹼金屬族,越往下脾氣就越暴躁;第二列越往右原子就越小顆等等。每一個新元素的發現,對鄰近的元素親戚而言,都是再重要不過的資訊。研究鑀元素能使我們理解整排錒系元素的模式規律,對各種放射性元素和同位素的個性特質也能有更完整的圖像。

所以囉,打從元素週期表的概念被建立以來,往週期表的邊疆探索,就是核子物理和化學的重大目標,這目標也不停為科學帶來技術和觀念上的突破。今年 2 月,柏克萊實驗室的 Rebecca Abergel 所帶領的團隊發表了最新的實驗結果,為鑀元素的化學性質探測寫下里程碑。

因為蒐集足量的純鑀金屬太困難了,實驗團隊乾脆丟棄傳統的 X 光晶體學方法,反而選用有機分子夾住鑀元素,再透過吸收光譜等方法探測鑀原子的鍵結長度和其物理化學性質。Rebecca Abergel 表示:「鍵結的長度也許聽起來沒多有趣,但它其實是重要的初步資訊,它能使我們了解這個元素和其他原子連結的型態,並預測它可能和其他原子產生何種反應。」

要完成這項測量並不容易,除了要合成夠多的鑀原子,打造出合適的測量樣本,還得趕在鑀元素衰變前進行所有實驗。儘管團隊選用的鑀-254 有兩百多天的半衰期,先前的研究計畫卻被疫情無情打斷。隔離期間不能進行實驗,製備好的鑀樣本也就慢慢地在實驗室中衰變死掉。當實驗重啟時,絕大部分的樣本都已無法使用。所幸隔離前完成的結果夠完整,團隊才能整理並發表階段性的研究結果。

「鑀」是通往週期表未知區域的重大關鍵。圖/Pixabay

先前提到可以用中子束轟炸較輕的元素來合成鑀原子;同樣的,若能聚集到足量的純鑀,就能以中子束轟炸純鑀,合成出更重的原子。巨大的鑀原子握有通往週期表未知邊緣的秘密,若能將其完全馴服,就能往週期表的更遠處推進,解開更多超重元素的謎團。現在我們的科學家有了「鑀」,科學於焉展開。

參考資料

  1. Lawrence Berkeley National Laboratory. (2021, February 6). Discoveries at the edge of the periodic table: First ever measurements of einsteinium: Experiments scientists on this highly radioactive element reveal some unexpected properties. ScienceDaily.
  2. Mysterious Element ‘Einsteinium’ Measured by Scientists For The First Time
所有討論 2
linjunJR_96
33 篇文章 ・ 569 位粉絲
清大理工男。不喜歡算數學。喜歡電影、龐克、和翻譯小說。不知道該把科普當興趣還是專長,但總之先做再說。

1

5
4

文字

分享

1
5
4
兩百年前的原子量是怎麼誕生的?
姚荏富_96
・2021/03/08 ・2200字 ・閱讀時間約 4 分鐘 ・SR值 547 ・八年級

國民法官生存指南:用足夠的智識面對法庭裡的一切。

說到原子量大家可能想到的就是什麼氧是 16、碳是 12……之類的元素與數字的關係,但你知道為什麼氧是 16 碳應該是 12 嗎?又或者原子量到底要用來幹嘛的呢?我想大部分的人在課堂中並不會得到比較具體的答案,所以筆者想在這裡和大家聊聊原子量到底是什麼。

原子量其實就是「一顆原子的質量」,今天如果想要測量一個物質的質量,通常是把物質放到天秤上來測量,但若要把「一顆原子」放到天秤上測量質量,並不是不可能啦,但這就要用到 2018 年的諾貝爾物理學獎的「光聶」技術,才有可能做到(當然,還有要用什麼砝碼來跟「一顆原子」平衡,什麼樣的天秤才足夠靈敏之類的問題)。

要把「一顆原子」放到天秤上測量質量,其實並不是不可能,但這就要用到 2018 年的諾貝爾物理學獎的「光聶」技術,才有可能做到。圖/Wikipedia

有趣的是,早在 18 世紀末期,原子量就出現了!還有具體的數字以及對照表(雖然說跟現在比起來有不少的誤差),兩百多年前可沒什麼「光聶」可以用,想必當時的科學家肯定不是用天秤量出「一顆原子」的質量,那這些原子量是怎麼出現的呢?

當年「元素」是物質的「最純形態」

在 18 世紀後期,科學家們將組成物質的「最純型態」叫做「元素」,而組成物質的「最小單位」叫做「原子」,在十八世紀以前雖然有「原子」這種講法,但當時「原子」與我們現在所學的概念並不相同,在更早以前的人認為所有的物質拆到最小都會是同樣的原子小球,會有不同元素的差異是因為原子排列方式的不同所造成。但其實「每種元素都有屬於自己的原子」,像是氫就有氫原子、氧就有氧原子,你是什麼元素就會決定你是什麼原子。

而這些概念的確立就要討論到 18 世紀末期科學家陸續發現的「定比定律」以及「倍比定律」兩大定律。

定比定律是同一種化合物他裡面的成分質量比都會是固定的,以水為例,水中含有氫與氧,但不管是你的合成水或是野外裝到的水,他的質量比都會是 1:8,這就好像上帝的食譜一樣,每個化合物都會有自己的元素配方和指定的質量比例。

而倍比定律呢?則是成份元素如果種類相同的話,每種物質他們的相同的元素也會出現簡單的整數比關係,舉例來說甲烷和乙烯,兩個都是由碳與氫組成的化合物,這時候分析裡面碳與氫的質量組成比例,就會發現當我碳固定質量時,甲烷和乙烯的的氫質量比就會呈現 2:1。

瞭解這兩個原理之後,科學家發現了相同化合物裡面的元素質量,和不同化合物的元素質量之間,都有著微妙的比例關係,但他們有一個問題遲遲無法解決,那就是不同元素的「一份」應該分別是多重。這時英國科學家道爾吞在 1803 年開了第一槍,他將化合物分為最簡單的二元 (AB)、三元 (A2B or AB2) 以及四元 (AB3 or A3B),並簡單粗暴的認定如果 A、B 兩種元素組合後只能有一種化合物的話,那這種化合物就會是一比一組成的二元化合物。現在看來這個判斷稍嫌武斷,但如果道爾吞沒有這樣定義的話原子量的概念就不會這麼早出來。

如果道爾吞沒有將化合物定義為最簡單的二元 (AB)、三元 (A2B or AB2) 以及四元 (AB3 or A3B),原子量的概念就不會這麼早出來。圖/Wikipedia

道爾吞依據前面的兩個定律與他提出的組成原則,將化合物中通常質量比數字都是最小的氫定為原子量 1(雖然現在我們的氫也是 1 但與這時的氫原子量概念並不完全相同),並以此為基準做了大量的原子量計算,像是根據氨的重量分析,其中氫和氮的重量組成 20:80,那依照上面氫原子量是一的情況下,氮的原子量就是 4(現在看是錯的喇因為當時他認為氨是 NH 但事實上氨是 NH3),又或者是根據水的重量分析,其中氫與氧的重量組成是 15:85,所以氧的原子量是 5.66,又在用氧的原子量去分析碳酸氣(二氧化碳),得出碳的原子量就是 4.5,以上述的原子量推定方式來看就可以知道原子量並不是一個絕對的數字,而是一個相對質量的概念,所以原子量又可以稱之為相對原子質量。

不過你可能會覺得 18、19 世紀的原子量跟我們現在學的數字根本就不一樣,但這又是另一個故事了,我們暫且打住。不過原子量的測定邏輯,基本上還是從道爾吞製作的第一張原子量表延續到現在,其概念就是「既然我們無法抓一顆原子來測定他的質量,我們還可以找出物質化合的質量比例,來找出不同元素的原子之間他們的相對質量」而這就是原子量的基本概念。

相關科學史事件

  •  1789年 愛爾蘭化學家希金斯發表《燃素與反燃素理論的比較》,除了支持拉瓦節的觀點外,他也推測原子只能按一定比例進行化合
  • 1792~1802年 李希特(J.B Richter)提出定比定律
  • 1799年 法國藥劑師普羅斯用人工與天然的鹽基碳酸銅去做測定,確定定比定律
  • 1800年 戴維在《化學和哲學研究》分析了N2O、NO、NO2的重量組成(倍比定律的起始)
  • 1801年 貝托萊在《親和力之定律的研究》中反對定比定律
  • 1803年 道爾吞在論文中假定原子按簡單比例化合
  • 1804年 道爾吞分析甲烷和乙烯之比例,提出倍比定律
  • 1808年 道爾吞出版《化學哲學新體系》

參考資料

  1. 化學通史 – 凡異出版
  2. 化學史傳 – 商務印書館

所有討論 1
姚荏富_96
3 篇文章 ・ 6 位粉絲
成大化學畢,文字/影像工作者,LIS初代科學史圖書館,著有《科學史上最有梗的20堂化學課》。興趣廣泛,涉足科普寫作、影像製作、投資理財、社會觀察、社群經營......技能樹持續擴張中,目標是將學會的知識或技能用有趣簡單的方式分享給大家。

0

5
2

文字

分享

0
5
2
元素週期表居然可以變 3D?讓俄羅斯國際工程院院長說給你聽!
Curious曉白_96
・2020/02/18 ・3577字 ・閱讀時間約 7 分鐘 ・SR值 545 ・八年級

  • 採訪/雷雅淇、簡茹因
  • 文/簡茹因

氫鋰鈉鉀銣銫鍅,鈹鎂鈣鍶鋇鐳……國高中課本上出現過的元素週期表,是學生們曾倒背如流的東西。這份表最早是由俄羅斯科學家門德列夫 (Mendeleev) 於 1869 年所發表,依據質子、中子、電子作為排序,讓不同的原子能夠「對號入座」,形成排列整齊的表格。往後的數百年,科學家們也陸續發現新元素,不斷地填滿元素週期表最初留下的空格。

2017 年末,聯合國大會更宣佈 2019 年為「國際化學元素週期表年」,彰顯俄羅斯科學家門德列夫對於化學元素特性分類的偉大貢獻。

早期門德列夫所開創的化學元素週期表,開啟了後續科學家發掘新元素的時代。圖/wikipedia

但隨著新元素的發現,週期表開始出現一些爭議,促使科學家們陸續進行改良,接下來,就一起來聽俄羅斯國際工程院院長古塞夫 (Boris V. Gusev) 院長娓娓道來什麼是「三維元素週期表」吧!

穿梭於工程材料界、科學界及教育界的辣個男人

古塞夫 院長曾經從新聞報導中看見水壩潰堤、爆裂導致百人喪命的駭人景象,從那時起,他便決心投入建築材料界,希望用更穩固的建材打造安全無虞,又能帶來便利的建築。熟知建築材料學及建築材料技術的他,率先研究礦類強度及永久性問題,其成果在混凝土構成、防腐隔熱材料、經濟無塵室方面廣為人知。

古塞夫院長身兼俄羅斯工程院(前蘇聯工程院)及國際工程院的兩院院長。在早期,前蘇聯工程院曾經與多國合作研究。而古塞夫院長為了延續先前多國合作的榮景,致力於跨國合作,現在國際工程院於全球(包括台灣)有 15 個分會。

院長同時也是學校創辦人及唐獎諮詢委員,曾培育 85 名外國博士及副博士,這些人才出版了 500 多篇學術文章, 25 本專書及教科書,取得超過 100 種發明專利,實在是一位對科學界、教育界及工程界都極有貢獻的大人物啊!

古塞夫院長(圖中講者)多次來台灣演講,也持續與多國進行科技發展合作,對於科學界、教育界及工程界都有莫大貢獻。

週期表就得有週期!修但幾勒,怎麼怪怪的?

雖然門德列夫所制定的週期表看起來很完備,當時遺留的元素空位,也陸續被科學家們找到的元素所證實、補全,但歷經了數十年,科學家們仍發現週期表中有些備受爭議的問題:

1. 看不出原子序的連續性
按照列表中行與行(週期與週期)間的元素,很難看出有連續性(就像原本完整的一句話被斷成好幾個斷句一般 QQ)

2. 越變越寬的週期表
化學元素週期表中縱列為族,橫列為週期。英國科學家紐蘭茲 (John Newlands ) 於 1864 年發表的論文中表示,若按照原子量大小來排列元素,每第八個元素的性質會與第一個相似,因此每八個元素作為一個週期。

但每一個週期的長度並不一樣,例如第一行週期只有氫 (H) 及氦 (He) 兩個元素,第四、第五週期就變寬許多,以容納更多元素(也就是過渡金屬),此處一行(週期)就有 18 個元素(說好的 8 個咧~),與其他行週期的規律性不一樣。另一方面,隨著新元素的發現,週期表有越長越寬的趨勢。

3. 元素多到週期表裝不下
承續第 2 點爭議,隨著礦物開採及合成化學興起,科學家們又陸續發現稀土元素(鑭系元素 (lanthanides) 、錒系元素 (actinides)),原本他們想塞入第六週期,但第六週期已經客滿啦!於是西元 1913 年,稀土元素被週期表獨立出來,但這樣被獨立出來的元素,看起來根本就與既有規律完全斷開連結啦!(延伸閱讀:「稀土戰爭」的起點:七種元素因這個村莊而被發現!

隨著新元素的發現,化學週期表原有的秩序也開始出現爭議。圖\GIPHY

雖然隨著科技進展,越來越多元素被發現,但原本門德列夫的週期表也因後續發現的元素越填越「走精」,原本的規律都不規律了呀~

跳脫原始框架,把週期表變立體吧!

不過,宇宙是由各種元素所構成,既然我們生活在多維立體的世界,那週期表是不是也可以跳脫平面呢?

國際純化學和應用化學聯合會 (International Union of Pure and Applied Chemistry, IUPAC) 便著手研究週期表的三維特性,三維元素週期表就像將教科書上的表格變成了立體書,讓它活生生地蹦出來在我們面前,不僅承續了原始週期表的原子特性,同時也開創不同元素間新型態的交互作用。

舉個比喻來說,元素週期表像是一個圓口鋁罐,就平面二維的角度來看,像是一個圓角矩形(也就是原本方方正正的週期表),但就三維立體的角度,可以發現,原來這個罐子不只有一個平面,它是由許多個平面所構成的,而平面和平面之間存在的連結,是以往二維平面呈現不出來的。

鋁罐橫看成圓角矩形,側看又是不同面,而三維元素週期表也一樣由很多平面所構成。圖/GIPHY

而經過了「立體化」的三維元素週期表,實際上的形狀是一個向外延展的錐形螺旋體。

立體的週期表使元素的排列規則更具邏輯性。

立體週期表讓元素分區住,多了還可以擴建!

此外,三維元素週期表的元素們還會分區住,分別分成 A、B、C、D、E 區,而 A 區則是這個錐形螺旋體的最頂端,它住著原子量最少,排列最單純的元素──氫和氦,B 區住八元素為一週期的房客們(從鋰到氬),C 區住過渡金屬元素(鐵、銅、鎳、釕、銠、鈀),D 區則是住鑭系元素、錒系元素。

自從發現原子電子軌域的規則,新元素所擁有的軌域數越來越多,種類也越來越多,而三維週期表未來可以隨著發現的元素增加,興建更多區域讓它們有家可歸。

讓元素分區住,依據電子軌域的大小分成 A、B、C、D、E 區。

2D 變 3D,找新住民更容易?

古塞夫院長與我們分享到,他正與其他科學家們研究、預測一種新元素(Guspepeem,命名依據 Gusev, Speranskij, Peng, Emri 所共同發現),其原子序為 138,將是第 E 區的居民。它擁有非常多電子軌域,但這個元素非常不穩定,出現約 1/1000 秒就會消失。

既然這個新元素這麼不穩定,眨眼的時間就消失了,要如何使用它呢?新元素對於未來的科技業或建築工程業的發展又會有哪些影響?

古塞夫院長認為,新元素未來不僅僅可用於建築工程,所有材料都有發展的可能性,雖然新元素的穩定性低,存在週期短,但他認為新元素最有可能發展成新型的能源,在短時間內運用它所釋放出來的能量。此外,三維元素週期表更可以用來創造及預測新元素。

新元素的發現能夠使人類在科技發展上帶來更多的便利性及商業契機,但相對地也造成環境遭受汙染及破壞,該用什麼樣的措施才能兼顧科技永續發展及環境保護呢?

古塞夫院長表示,新元素的存在時間短,較不會像塑膠因需要長時間分解而造成環境汙染。因此他認為新元素造成的汙染風險不大。並且可利用法規限制新元素的使用分級及制定相關政策。

新元素的發現可望成為新型能源。圖 \GIPHY

新元素受到質疑怎麼辦?當建議而非壓力

歷年來,科學研究的發展過程中,一項創新的理論(例如當初道耳頓的原子說、門德列夫的元素週期表)由於未有一項標準能夠證實理論的正確性,常備受科學界質疑。

雖然現今科學研究已然站在巨人的肩膀上,但面對未知,新的理論仍會受到各方質疑,如此一來,新元素的預測與發現,該如何判定其正確性?當自身的研究遭受質疑的時候,該用什麼樣的態度面對?

對此,古塞夫院長泰然回答:「從事科學研究領域時,遭受質疑是必經之路,但重點在於你如何看待質疑,對我來說,質疑並非壓力,而是建議,我樂意接受這些挑戰,並專心在解決問題上,因為有這些質疑,才能讓我在從事研究的過程中準備得更完善。」

新元素的發現,讓我們在現代能夠使用液晶電視、觸控屏幕等等眾多科技產品,使生活更便利。三維化學元素週期表整合了以往的週期表性質,讓元素們歸納得更完整,或許在不久的將來,國高中的元素週期表,不再只是一張表格,而是一個圓錐體了呢~(笑

和藹的古塞夫院長與泛科學記者們合影。

參考資料

  1. 2019 國際元素週期表年 (IYPT):追尋元素週期表的歷史軌跡
  2. 俄工程院長古塞夫讚唐獎掌握世界趨勢
  3. GUSEV Boris Vladimirovich
  4. The hidden structure of the periodic system
  5. 科學人雜誌:週期表兩三事

___________
你是國中生或家有國中生或正在教國中生?
科學生跟著課程進度每週更新科學文章並搭配測驗。來科學生陪你一起唸科學!

Curious曉白_96
12 篇文章 ・ 5 位粉絲
對於科學新知充滿好奇心,對於一切新知都想通曉明白,期許自己有一天能成為有所貢獻於社會的曉曉科學家!