Loading [MathJax]/extensions/tex2jax.js

0

1
1

文字

分享

0
1
1

Mg Cu Li Zn,那就讓化學元素週期表告訴你什麼叫做「銅鋰鋅」!——《完全圖解 元素與週期表》

PanSci_96
・2019/12/10 ・3186字 ・閱讀時間約 6 分鐘 ・SR值 547 ・八年級

-----廣告,請繼續往下閱讀-----

一「銅」改變人類歷史

  • 銅 Cu (Copper)
  • 元素名稱由來:拉丁語為古代銅的生產地「賽普勒斯島」(Cuprum)。
  • 發現時的小插曲:自古以來即為人所熟知的元素之一。
  • 主要的化合物:硫酸銅(CuSO4)、氫氧化銅(Cu(OH)2)、氧化銅(CuO)、氯化銅(CuCl2)
  • 主要的同位素:63Cu(69.15%)、65Cu(30.85%)
銅塊。圖/人人出版提供

銅是在古早以前就融入人類生活的元素之一。考古學家在伊拉克北部發現大約在西元前 8800 年左右,推測應該是由自然銅製成的小銅珠。

銅即使延展得很薄也不易遭破壞,具有良好的延展性。此外,在導熱性和電導率方面都是僅次於銀,名列第二高,因此常被用來製作調理鍋和電線等。

銅與其他金屬混合所成的合金種類非常多,像是青銅、黃銅等都是。黃銅是純銅(俗稱紫銅)與鋅的合金,常是打造佛具、管樂器的材料。此外,鋁與銅的合金耐腐蝕性強,被用來製作裝飾品。

日常生活中常見的銅製品

目前流通的 1、5、10、20、50 圓幣共 5 種面額的硬幣材質中,都含有銅。圖/人人出版提供

銅與我們每天所使用的硬幣息息相關,在目前流通的 1、5、10、20、50 圓幣共 5 種面額的硬幣材質中,都含有銅。其中 1 圓硬幣是銅(92%)、鎳(6%)、鋁(2%)的合金。

-----廣告,請繼續往下閱讀-----

而 5、10 圓銅幣皆為銅鎳合金,含鎳 25%。而 20 圓銅幣的材質是外環銅質(含鎳 2% 及鋁 6%)、內餅銅質(含鎳 25%),新版的 50 圓幣銅幣則是含鎳 2% 及鋁 6%。

銅製料理鍋。圖/人人出版提供

因為銅的導熱性很好,因此是製作調理鍋、煮水壺、平底鍋的材料。以銅製的平底鍋為例,不是僅接觸火焰的部位會熱,整個鍋底都會均勻受熱,因此具有食物較不易燒焦的優點。

改變人類生活的「青銅器」

青銅器(銅鐸)。圖/人人出版提供

據研究,銅的出現改變了以石器為主要工具之古代人類的生活。銅中混入錫所成的「青銅」,與銅單質相較,硬度明顯提高。青銅在較低溫的情況下也能熔化,因此就算以當時人的技術,也能將熔化的青銅液倒入鑄模中,製成各式各樣形狀的物品。

依地區和時代的不同,使用青銅製作的物品可謂琳朗滿目,食器、貨幣、飾品、樂器等等皆是。照片是從日本出土的「銅鐸」,大約 2000 年前彌生時期製作的青銅器。考古學家推測可能是使用於祭祀的禮器,但是並不十分了解其真正用途。

-----廣告,請繼續往下閱讀-----

同樣是金屬,為什麼銅的顏色跟別種金屬不一樣?

同樣是金屬,金、銀、銅的顏色卻完全不同。銅的顏色是泛紅的「赤金色」,為什麼銅會呈現出這樣的顏色呢?

一般而言,金屬的結構是金屬原子規律排列的晶體。排列如此井然有序的金屬原子呈將最外層電子予以釋放的離子狀態。被釋放的電子因可以在金屬離子間自由活動,因此稱為「自由電子」。

自由電子會將幾乎所有的光都反射出去。但是根據金屬種類的不同,也有某特定波長的光不會反射,而會被吸收的情形發生。銅的自由電子會吸收波長 500 奈米(1 奈米為 10 億分之 1 米)左右的光,換言之就是會吸收由藍到綠的光。結果,銅反射的光,紅色的比率升高,看起來就呈「赤金色」了。

金屬藏在手機「鋰」

  • 鋰 Li (Lithium)
  • 元素名稱由來:希臘語「石頭」(Lithos)之意。
  • 發現時的小插曲:是在分析「透鋰長石」(petalite)這種礦物時發現的。
  • 主要的化合物:LiOH、Li2O、Li2CO3
  • 主要的同位素:6Li(7.59%)、7Li(92.41%)
鋰蘊藏在礦石和礦泉中,元素名稱源自希臘語的「石頭」(lithos),它同時也是金屬中質量最輕的。圖/人人出版提供

鋰跟氫、氦一樣都是在宇宙誕生之初就已經被製造出來的元素。鋰蘊藏在礦石和礦泉中,元素名稱源自希臘語的「石頭」(lithos),它同時也是金屬中質量最輕的。

一提到鋰,大家腦海中立即浮起的可能就是「鋰離子電池」。鋰離子電池因為重量輕且容量大、充電效率高,因此筆記型電腦、手機等都使用鋰離子電池做為行動電源。另外,雙極性疾患(bipolar disorder,俗稱躁鬱症)的治療藥「碳酸鋰」(鋰鹽)也是鋰的用途之一。

-----廣告,請繼續往下閱讀-----

生活中常見的鋰

鋰被用來作為鋰離子電池、躁鬱症的治療藥、在太空船等密閉空間的二氧化碳吸收劑、潤滑膏、製造合成橡膠原料「異戊二烯」(isoprene)之際的催化劑、強化玻璃、琺瑯、合金等的原料。

油電混合車等環保車款所使用的鋰離子電池。圖/人人出版提供

鋰離子電池因為重量輕、容量大、充電效率高,所以被用來做為筆電和手機的電源。上面照片是油電混合車等環保車款所使用的鋰離子電池,由於油電混合車、電動汽車等的普及,在 2006 年到 2007 年曾經一度面臨鋰離子電池供不應求的局面。根據預測,全球製造鋰離子電池所需的鋰,未來將會有大幅增加的趨勢。

雙極性疾患治療藥中的鋰離子具有干擾「IMPA2」的功能,可抑制神經元內部的化學反應。圖/人人出版提供

接收到訊號的神經元(也稱神經細胞,neuron)會從細胞膜釋放出名為 IP3 的物質到細胞質內,該物質就會與內質網(endoplasmic reticulum)結合,然後釋放出鈣離子。

雙極性疾患(躁鬱症)病人之神經元內部的鈣離子濃度高,而雙極性疾患治療藥中的鋰離子具有干擾「IMPA2」(在 IP3 重新返回細胞膜過程中發揮作用之酵素)的功能,因此可抑制神經元內部的化學反應。

鋰的寶庫「亞他加馬鹽沼」

亞他加馬鹽沼。圖/人人出版提供

智利的亞他加馬鹽沼位在標高 2300 公尺的高地,這裡過去曾經是海洋,由於安第斯山的造山運動而隆起,海洋乾涸,於是便有大量的鋰蘊藏於此。這裡一整年只有數天降雨的乾燥氣候,對於鋰的開採生產大有助益。

-----廣告,請繼續往下閱讀-----

身體中不可缺少的「鋅」

  • 鋅 Zn( Zinc)
  • 元素名稱由來:波斯語的「石頭」(sing),德語的「叉子尖」(Zink)。
  • 發現時的小插曲:據傳最早開始製造出單質的鋅金屬是在 13 世紀左右的印度。1746 年,馬格拉夫從菱鋅礦(smithsonite)精煉出金屬鋅,並在書中留下該方法。
  • 主要的化合物:ZnSO4、Zn(OH)2
  • 主要的同位素:64Zn(48.63%)、66Zn(27.90%),67Zn(4.04%)、68Zn(18.45%)、70Zn(0.61%)

鋅由於顏色和形狀似鉛,故也稱亞鉛,古稱倭鉛。

使用鋅銅合金「黃銅」製成的銅管樂器。圖/人人出版

薄鐵板鍍鋅可提高耐腐蝕性,是蓋屋頂的材料,現在仍廣為使用。此外,銅中添加鋅所製成的合金稱為「黃銅」,強度夠又容易加工,因此,也被用來製作樂器。此外,大多數鈕扣電池的陰極會使用鋅,而硫化鋅常被用來作為布朗管(陰極射線管)的螢光劑。

不鏽鋼基材鍍鋅的屋頂建材。圖/人人出版

過去的人認為鋅跟鉛一樣都是具有毒性的金屬,但其實鋅是人體所必需的礦物質,可將體內的有害物質轉變為無害,且能幫助有害金屬的排出,在生物生存上扮演著舉足輕重的角色。另外,鋅也存在於感知味道的味蕾,體內缺鋅時,會導致味覺障礙。

生物體內也含有鋅,例如:我們舌頭上感知味道的味蕾就含有鋅。再者,很多人都知道牡蠣體內含有大量的鋅。圖/人人出版

鋅與肌肽(carnosine)的化合物被用來作為治療胃潰瘍的藥物。最近,研究者又發現鋅有新的生理作用,亦即具有可降低血糖值,改善糖尿病和代謝症候群(metabolic syndrome)的效果。

-----廣告,請繼續往下閱讀-----

 

——本文選自《完全圖解 元素與週期表:解讀美麗的週期表與全部118種元素!》,2019 年 9 月,人人出版

 

-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
0

文字

分享

0
2
0
從門得列夫到 118 種元素:元素週期表是怎麼出現的?
F 編_96
・2025/01/04 ・2302字 ・閱讀時間約 4 分鐘

F 編按:本文編譯自 Live Science

「氫鋰鈉鉀銣銫砝、铍鎂鈣鍶鋇镭…」相信很多人離開高中很多年,都還朗朗上口。

列著 118 種已知化學元素的「元素週期表」(Periodic Table),雖然唸起來像咒文,但有了它之後便能夠快速查詢原子序(proton number)、價電子(valence electrons)數量,以及元素可能的化學性質,成為各領域科學家與工程師設計實驗、預測物質反應必不可少的工具。

有趣的是,元素週期表並非一蹴可及。縱觀歷史,化學家們歷經數世紀的摸索、爭論與資料整理,才在 19 世紀後半葉逐漸確立。

我們現在看到的元素週期表,是在 19 世紀後半才逐漸確定。 圖/unsplash

週期表之父:門得列夫的突破

19 世紀中葉,已知的化學元素約有 63 種,許多化學家嘗試找出元素間的共同點,卻苦無系統性整理。當時能區分「金屬」與「非金屬」,或利用價電子概念將一些元素歸類,但要涵蓋大多數元素仍顯不足。俄國化學家門得列夫在撰寫《化學原理》教科書時,因接觸各元素的資料而產生新思路。他索性把已知元素各種性質寫在紙卡上,再一一比對它們的原子量(類似當今的原子量或原子序概念)與化學性質。

-----廣告,請繼續往下閱讀-----

確切的靈光乍現時刻,如今已無從完全重現,但我們知道門得列夫最後觀察到:「如果按照原子量(或後來的原子序)由小到大排列,某些化學性質就會呈週期性重複。」進一步來看,元素的價電子數量通常也會對應到表格的「欄位」或「族群」。於是,在 1869 年,他將研究結果發表,提出了第一版週期表的雛形,更大膽預言了尚未被發現的元素「eka-aluminium」(後來證實即鎵 gallium)及其他四種元素的性質。

讀懂週期表:原子序、符號與原子量

今日的週期表之所以能快速讓人獲得豐富資訊,關鍵在於三個核心欄位:

  1. 原子序(Atomic Number)
    代表該元素核內所含質子數。如果一原子核有 6 顆質子,就必定是碳(C),無論其他中子或電子數如何。此序號由上而下、由左而右遞增,貫穿整張表格。
  2. 元素符號(Atomic Symbol)
    多為一至兩字母縮寫,如碳(C)、氫(H)、氧(O)。但也有如鎢(W,因「Wolfram」得名)或金(Au,取自拉丁文「Aurum」)等較不直覺的符號。
  3. 原子量(Atomic Mass)
    表示該元素在自然界中各同位素的加權平均值,故通常是帶小數的數字。對合成元素則標示最常見或最穩定同位素的質量,但由於這些元素壽命極短,數值往往會被不斷修正。

舉例來說,硒(Se)在週期表中顯示原子序 34,屬於第 4 週期、第 6A 族,表示它有四層電子軌域,其中最外層(價電子層)有 6 顆電子。有了這些資訊,科學家可快速判斷硒的化學傾向、可形成何種化合物,乃至於在生物或工業應用中可能扮演的角色。

週期表的內部結構:週期、族與軌域

門得列夫最初按照原子量遞增排列元素,現代則依靠原子序(即質子數)來分類。橫向稱為「週期」(Period),從第 1 週期到第 7 週期;縱向稱為「族」(Group),目前總共有 18 組。週期數量在於顯示該元素電子軌域有幾層;而同一族則代表外層價電子數相同,故有相似化學性質。

-----廣告,請繼續往下閱讀-----

例如,第 18 族常被稱作「貴氣體」或「惰性氣體」,如氦(He)、氖(Ne)、氬(Ar)等皆不易與其他元素起反應。另一個顯著群體是位於第一族的鹼金屬(Alkali Metals),如鋰(Li)、鈉(Na)等,因外層只有 1 顆電子,極容易失去該電子而形成帶 +1 價的陽離子,故與水猛烈反應。

此外,在表格中央有一塊「過渡元素」(Transition Metals)區域,包括鐵(Fe)、銅(Cu)、鎳(Ni)、金(Au)、銀(Ag)等。它們具有部分填充的 d 軌域,使得該區域的元素呈現多樣性質,例如具有金屬光澤、可塑性或導電性等,被廣泛應用於工業及工程領域。

同一族的外層價電子數相同,因此大多有著相似化學性質。圖/unsplash

再進化:從 63 種到 118 種

當門得列夫在 1869 年發表週期表時,已知元素只有 63 種,表格中甚至留有空白以預留「未來或存在尚未發現的元素」。他果然預測到了鎵(Ga)以及日後證實的日耳曼ium(Ge)等新元素性質,贏得舉世矚目。隨後,有越來越多元素透過科學發展,尤其是光譜分析與放射性研究而被發現,例如鐳(Ra)和氡(Rn)等。

到 20 世紀後期,隨著粒子加速器的誕生,人類可以合成更重的超鈾元素(Atomic Number > 92)。這些人工合成元素往往極度不穩定,壽命僅能以毫秒或微秒計,但仍證實存在、並填補週期表後段空白。如今,週期表已收錄到第 118 號元素「鿆(Og,Oganesson)」,但科學家預測或許還能繼續向上延伸;只要能合成更重、更穩定的原子核,我們就能拓展週期表的新邊境。

-----廣告,請繼續往下閱讀-----

一般認為,隨原子序遞增,原子核內部的質子數目激增,原子愈趨不穩,往往在極短時間內衰變成較輕元素。然而,一些理論物理學家提出「島狀穩定性」(Island of Stability)的概念:也許在某特定質子與中子數量組合下,能出現意外長壽的「穩定」重元素。

是否真能在表格上方再增添「第八週期」甚至更高週期的列,仍有待更多實驗來驗證。但無法否認的是,週期表一直是科學家檢驗自然規律的試驗場,也見證了人類探索未知的無盡熱情。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
20 篇文章 ・ 1 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃

0

3
0

文字

分享

0
3
0
最理想的元素週期表?其實元素週期表有很多種!——《元素週期表:複雜宇宙的簡潔圖表》
日出出版
・2023/06/10 ・2017字 ・閱讀時間約 4 分鐘

前面幾章都在談元素週期表,但還有一個重要面向沒有提到。為什麼有這麼多元素週期表出版,而且為什麼現在的教科書、文章、網路,提供這麼多種元素週期表?有沒有「最理想的」元素週期表?追求最理想的元素週期表有意義嗎?如果有,我們在找出一份最佳週期表的過程中取得那些進展?

種類數量可觀的元素週期表

愛德華.馬蘇爾斯(Edward Mazurs)關於週期表歷史的經典著作中,收錄自一八六○年代首張元素週期表繪出以來,大約七百張的元素週期表。

馬蘇爾斯的書本出版已過了四十五年左右;之後,期間至少又有三百張週期表問世,如果再加上網路上發表的就更多了。為什麼會有這麼多元素週期表,這件事情需要好好解釋。當然,這些元素週期表中,許多並沒有新的資訊,有些從科學的觀點來看甚至前後矛盾。但即使刪除這些具有誤導性的表,留下的數量還是非常可觀。

元素週期表的變體:有圓形的還有立體的?

我們在第一章看過元素週期表的三個基本形式:短元素週期表中長元素週期表長元素週期表。這三類基本上都傳達差不多的訊息,但相同原子價(編按:原子的價數,金屬為正價、非金屬為負價)的元素,在這些表中有不同的分族。

此外,有些週期表不像我們一般認識的表格那樣四四方方。這種變體包括圓形橢圓的週期系統,比起長方形的元素週期表,更能強調元素的連續性。不像在長方形的表上,在圓形或橢圓形的系統中,週期的結尾不會中斷,例如氖和鈉、氬和鉀。

-----廣告,請繼續往下閱讀-----

但是,不像時鐘上的週期,元素週期表的週期長度不同,因此圓形元素週期表的設計者需要想辦法容納過渡元素的週期。例如本菲(Benfey)的元素週期表(圖 37),過渡金屬排列的地方從主要的圓形突出來。也有三維的元素週期表,例如來自加拿大蒙特簍的費爾南多.杜福爾(Fernando Dufour)所設計的(圖 38)。

圖 37/本菲(Benfey)的圓形元素週期表。圖/《元素週期表:複雜宇宙的簡潔圖表
圖 38/費爾南多.杜福爾(Fernando Dufour)的三維元素週期表。圖/《元素週期表:複雜宇宙的簡潔圖表

但我認為,這些變體都只是改變週期系統的描繪形式,它們之間並無根本上的差異。稱得上重要變體的,是將一個或多個元素放在和傳統元素週期表中不同的族。討論這點之前,我先談談元素週期表一般的設計。

元素週期表的概念好像很簡單,至少表面上是,因此吸引業餘的科學家大展身手,發展新的版本,也常宣稱新的版本某些地方比過去發表的更好。

當然,過去有過幾次,化學或物理學的業餘愛好者或外行人做出重大貢獻。例如第六章提過的安東.范登.布魯克,他是經濟學家,也是首先想到原子序的人,他在《自然》等期刊發展這個想法。另一個人是法國工程師夏爾.雅內(Charles Janet),他在一九二九年發表「左階式元素週期表」(Left-step periodic table),後來持續受到週期表的專家和業餘愛好者的關注(圖 39)。

圖 39/夏爾.雅內(Charles Janet)的左階式元素週期表。圖/《元素週期表:複雜宇宙的簡潔圖表

「理想」的追求

那麼,追求最理想的元素週期表真的有意義嗎?我認為,這個問題的答案取決於個人對週期系統的哲學態度。一方面,如果一個人相信,元素性質近似重複的現象是自然世界的客觀事實,那麼他採取的態度是實在論。對這樣的人而言,追求最理想的元素週期表非常合理。最能代表化學週期性事實的就是最理想的元素週期表,即便這樣的表還沒制訂出來。

-----廣告,請繼續往下閱讀-----

另一方面,工具論者或反實在論者看待元素週期表,可能會認為元素的週期性是人類強加給自然的性質。若是如此,就不必熱切尋找最理想的元素週期表,畢竟這種東西根本不存在。對約定俗成論者或反實在論者來說,元素究竟如何呈現並不重要,因為他們相信我們處理的,不是元素之間的自然關係,而是人造關係。

——本文摘自《【牛津通識課10】元素週期表:複雜宇宙的簡潔圖表》,2023 年 4 月,日出出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
日出出版
13 篇文章 ・ 7 位粉絲