Loading [MathJax]/extensions/tex2jax.js

0

1
1

文字

分享

0
1
1

Mg Cu Li Zn,那就讓化學元素週期表告訴你什麼叫做「銅鋰鋅」!——《完全圖解 元素與週期表》

PanSci_96
・2019/12/10 ・3186字 ・閱讀時間約 6 分鐘 ・SR值 547 ・八年級

-----廣告,請繼續往下閱讀-----

一「銅」改變人類歷史

  • 銅 Cu (Copper)
  • 元素名稱由來:拉丁語為古代銅的生產地「賽普勒斯島」(Cuprum)。
  • 發現時的小插曲:自古以來即為人所熟知的元素之一。
  • 主要的化合物:硫酸銅(CuSO4)、氫氧化銅(Cu(OH)2)、氧化銅(CuO)、氯化銅(CuCl2)
  • 主要的同位素:63Cu(69.15%)、65Cu(30.85%)
銅塊。圖/人人出版提供

銅是在古早以前就融入人類生活的元素之一。考古學家在伊拉克北部發現大約在西元前 8800 年左右,推測應該是由自然銅製成的小銅珠。

銅即使延展得很薄也不易遭破壞,具有良好的延展性。此外,在導熱性和電導率方面都是僅次於銀,名列第二高,因此常被用來製作調理鍋和電線等。

銅與其他金屬混合所成的合金種類非常多,像是青銅、黃銅等都是。黃銅是純銅(俗稱紫銅)與鋅的合金,常是打造佛具、管樂器的材料。此外,鋁與銅的合金耐腐蝕性強,被用來製作裝飾品。

日常生活中常見的銅製品

目前流通的 1、5、10、20、50 圓幣共 5 種面額的硬幣材質中,都含有銅。圖/人人出版提供

銅與我們每天所使用的硬幣息息相關,在目前流通的 1、5、10、20、50 圓幣共 5 種面額的硬幣材質中,都含有銅。其中 1 圓硬幣是銅(92%)、鎳(6%)、鋁(2%)的合金。

-----廣告,請繼續往下閱讀-----

而 5、10 圓銅幣皆為銅鎳合金,含鎳 25%。而 20 圓銅幣的材質是外環銅質(含鎳 2% 及鋁 6%)、內餅銅質(含鎳 25%),新版的 50 圓幣銅幣則是含鎳 2% 及鋁 6%。

銅製料理鍋。圖/人人出版提供

因為銅的導熱性很好,因此是製作調理鍋、煮水壺、平底鍋的材料。以銅製的平底鍋為例,不是僅接觸火焰的部位會熱,整個鍋底都會均勻受熱,因此具有食物較不易燒焦的優點。

改變人類生活的「青銅器」

青銅器(銅鐸)。圖/人人出版提供

據研究,銅的出現改變了以石器為主要工具之古代人類的生活。銅中混入錫所成的「青銅」,與銅單質相較,硬度明顯提高。青銅在較低溫的情況下也能熔化,因此就算以當時人的技術,也能將熔化的青銅液倒入鑄模中,製成各式各樣形狀的物品。

依地區和時代的不同,使用青銅製作的物品可謂琳朗滿目,食器、貨幣、飾品、樂器等等皆是。照片是從日本出土的「銅鐸」,大約 2000 年前彌生時期製作的青銅器。考古學家推測可能是使用於祭祀的禮器,但是並不十分了解其真正用途。

-----廣告,請繼續往下閱讀-----

同樣是金屬,為什麼銅的顏色跟別種金屬不一樣?

同樣是金屬,金、銀、銅的顏色卻完全不同。銅的顏色是泛紅的「赤金色」,為什麼銅會呈現出這樣的顏色呢?

一般而言,金屬的結構是金屬原子規律排列的晶體。排列如此井然有序的金屬原子呈將最外層電子予以釋放的離子狀態。被釋放的電子因可以在金屬離子間自由活動,因此稱為「自由電子」。

自由電子會將幾乎所有的光都反射出去。但是根據金屬種類的不同,也有某特定波長的光不會反射,而會被吸收的情形發生。銅的自由電子會吸收波長 500 奈米(1 奈米為 10 億分之 1 米)左右的光,換言之就是會吸收由藍到綠的光。結果,銅反射的光,紅色的比率升高,看起來就呈「赤金色」了。

金屬藏在手機「鋰」

  • 鋰 Li (Lithium)
  • 元素名稱由來:希臘語「石頭」(Lithos)之意。
  • 發現時的小插曲:是在分析「透鋰長石」(petalite)這種礦物時發現的。
  • 主要的化合物:LiOH、Li2O、Li2CO3
  • 主要的同位素:6Li(7.59%)、7Li(92.41%)
鋰蘊藏在礦石和礦泉中,元素名稱源自希臘語的「石頭」(lithos),它同時也是金屬中質量最輕的。圖/人人出版提供

鋰跟氫、氦一樣都是在宇宙誕生之初就已經被製造出來的元素。鋰蘊藏在礦石和礦泉中,元素名稱源自希臘語的「石頭」(lithos),它同時也是金屬中質量最輕的。

一提到鋰,大家腦海中立即浮起的可能就是「鋰離子電池」。鋰離子電池因為重量輕且容量大、充電效率高,因此筆記型電腦、手機等都使用鋰離子電池做為行動電源。另外,雙極性疾患(bipolar disorder,俗稱躁鬱症)的治療藥「碳酸鋰」(鋰鹽)也是鋰的用途之一。

-----廣告,請繼續往下閱讀-----

生活中常見的鋰

鋰被用來作為鋰離子電池、躁鬱症的治療藥、在太空船等密閉空間的二氧化碳吸收劑、潤滑膏、製造合成橡膠原料「異戊二烯」(isoprene)之際的催化劑、強化玻璃、琺瑯、合金等的原料。

油電混合車等環保車款所使用的鋰離子電池。圖/人人出版提供

鋰離子電池因為重量輕、容量大、充電效率高,所以被用來做為筆電和手機的電源。上面照片是油電混合車等環保車款所使用的鋰離子電池,由於油電混合車、電動汽車等的普及,在 2006 年到 2007 年曾經一度面臨鋰離子電池供不應求的局面。根據預測,全球製造鋰離子電池所需的鋰,未來將會有大幅增加的趨勢。

雙極性疾患治療藥中的鋰離子具有干擾「IMPA2」的功能,可抑制神經元內部的化學反應。圖/人人出版提供

接收到訊號的神經元(也稱神經細胞,neuron)會從細胞膜釋放出名為 IP3 的物質到細胞質內,該物質就會與內質網(endoplasmic reticulum)結合,然後釋放出鈣離子。

雙極性疾患(躁鬱症)病人之神經元內部的鈣離子濃度高,而雙極性疾患治療藥中的鋰離子具有干擾「IMPA2」(在 IP3 重新返回細胞膜過程中發揮作用之酵素)的功能,因此可抑制神經元內部的化學反應。

鋰的寶庫「亞他加馬鹽沼」

亞他加馬鹽沼。圖/人人出版提供

智利的亞他加馬鹽沼位在標高 2300 公尺的高地,這裡過去曾經是海洋,由於安第斯山的造山運動而隆起,海洋乾涸,於是便有大量的鋰蘊藏於此。這裡一整年只有數天降雨的乾燥氣候,對於鋰的開採生產大有助益。

-----廣告,請繼續往下閱讀-----

身體中不可缺少的「鋅」

  • 鋅 Zn( Zinc)
  • 元素名稱由來:波斯語的「石頭」(sing),德語的「叉子尖」(Zink)。
  • 發現時的小插曲:據傳最早開始製造出單質的鋅金屬是在 13 世紀左右的印度。1746 年,馬格拉夫從菱鋅礦(smithsonite)精煉出金屬鋅,並在書中留下該方法。
  • 主要的化合物:ZnSO4、Zn(OH)2
  • 主要的同位素:64Zn(48.63%)、66Zn(27.90%),67Zn(4.04%)、68Zn(18.45%)、70Zn(0.61%)

鋅由於顏色和形狀似鉛,故也稱亞鉛,古稱倭鉛。

使用鋅銅合金「黃銅」製成的銅管樂器。圖/人人出版

薄鐵板鍍鋅可提高耐腐蝕性,是蓋屋頂的材料,現在仍廣為使用。此外,銅中添加鋅所製成的合金稱為「黃銅」,強度夠又容易加工,因此,也被用來製作樂器。此外,大多數鈕扣電池的陰極會使用鋅,而硫化鋅常被用來作為布朗管(陰極射線管)的螢光劑。

不鏽鋼基材鍍鋅的屋頂建材。圖/人人出版

過去的人認為鋅跟鉛一樣都是具有毒性的金屬,但其實鋅是人體所必需的礦物質,可將體內的有害物質轉變為無害,且能幫助有害金屬的排出,在生物生存上扮演著舉足輕重的角色。另外,鋅也存在於感知味道的味蕾,體內缺鋅時,會導致味覺障礙。

生物體內也含有鋅,例如:我們舌頭上感知味道的味蕾就含有鋅。再者,很多人都知道牡蠣體內含有大量的鋅。圖/人人出版

鋅與肌肽(carnosine)的化合物被用來作為治療胃潰瘍的藥物。最近,研究者又發現鋅有新的生理作用,亦即具有可降低血糖值,改善糖尿病和代謝症候群(metabolic syndrome)的效果。

-----廣告,請繼續往下閱讀-----

 

——本文選自《完全圖解 元素與週期表:解讀美麗的週期表與全部118種元素!》,2019 年 9 月,人人出版

 

-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

0
0

文字

分享

0
0
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
0

文字

分享

0
2
0
從門得列夫到 118 種元素:元素週期表是怎麼出現的?
F 編_96
・2025/01/04 ・2302字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live Science

「氫鋰鈉鉀銣銫砝、铍鎂鈣鍶鋇镭…」相信很多人離開高中很多年,都還朗朗上口。

列著 118 種已知化學元素的「元素週期表」(Periodic Table),雖然唸起來像咒文,但有了它之後便能夠快速查詢原子序(proton number)、價電子(valence electrons)數量,以及元素可能的化學性質,成為各領域科學家與工程師設計實驗、預測物質反應必不可少的工具。

有趣的是,元素週期表並非一蹴可及。縱觀歷史,化學家們歷經數世紀的摸索、爭論與資料整理,才在 19 世紀後半葉逐漸確立。

我們現在看到的元素週期表,是在 19 世紀後半才逐漸確定。 圖/unsplash

週期表之父:門得列夫的突破

19 世紀中葉,已知的化學元素約有 63 種,許多化學家嘗試找出元素間的共同點,卻苦無系統性整理。當時能區分「金屬」與「非金屬」,或利用價電子概念將一些元素歸類,但要涵蓋大多數元素仍顯不足。俄國化學家門得列夫在撰寫《化學原理》教科書時,因接觸各元素的資料而產生新思路。他索性把已知元素各種性質寫在紙卡上,再一一比對它們的原子量(類似當今的原子量或原子序概念)與化學性質。

-----廣告,請繼續往下閱讀-----

確切的靈光乍現時刻,如今已無從完全重現,但我們知道門得列夫最後觀察到:「如果按照原子量(或後來的原子序)由小到大排列,某些化學性質就會呈週期性重複。」進一步來看,元素的價電子數量通常也會對應到表格的「欄位」或「族群」。於是,在 1869 年,他將研究結果發表,提出了第一版週期表的雛形,更大膽預言了尚未被發現的元素「eka-aluminium」(後來證實即鎵 gallium)及其他四種元素的性質。

讀懂週期表:原子序、符號與原子量

今日的週期表之所以能快速讓人獲得豐富資訊,關鍵在於三個核心欄位:

  1. 原子序(Atomic Number)
    代表該元素核內所含質子數。如果一原子核有 6 顆質子,就必定是碳(C),無論其他中子或電子數如何。此序號由上而下、由左而右遞增,貫穿整張表格。
  2. 元素符號(Atomic Symbol)
    多為一至兩字母縮寫,如碳(C)、氫(H)、氧(O)。但也有如鎢(W,因「Wolfram」得名)或金(Au,取自拉丁文「Aurum」)等較不直覺的符號。
  3. 原子量(Atomic Mass)
    表示該元素在自然界中各同位素的加權平均值,故通常是帶小數的數字。對合成元素則標示最常見或最穩定同位素的質量,但由於這些元素壽命極短,數值往往會被不斷修正。

舉例來說,硒(Se)在週期表中顯示原子序 34,屬於第 4 週期、第 6A 族,表示它有四層電子軌域,其中最外層(價電子層)有 6 顆電子。有了這些資訊,科學家可快速判斷硒的化學傾向、可形成何種化合物,乃至於在生物或工業應用中可能扮演的角色。

週期表的內部結構:週期、族與軌域

門得列夫最初按照原子量遞增排列元素,現代則依靠原子序(即質子數)來分類。橫向稱為「週期」(Period),從第 1 週期到第 7 週期;縱向稱為「族」(Group),目前總共有 18 組。週期數量在於顯示該元素電子軌域有幾層;而同一族則代表外層價電子數相同,故有相似化學性質。

-----廣告,請繼續往下閱讀-----

例如,第 18 族常被稱作「貴氣體」或「惰性氣體」,如氦(He)、氖(Ne)、氬(Ar)等皆不易與其他元素起反應。另一個顯著群體是位於第一族的鹼金屬(Alkali Metals),如鋰(Li)、鈉(Na)等,因外層只有 1 顆電子,極容易失去該電子而形成帶 +1 價的陽離子,故與水猛烈反應。

此外,在表格中央有一塊「過渡元素」(Transition Metals)區域,包括鐵(Fe)、銅(Cu)、鎳(Ni)、金(Au)、銀(Ag)等。它們具有部分填充的 d 軌域,使得該區域的元素呈現多樣性質,例如具有金屬光澤、可塑性或導電性等,被廣泛應用於工業及工程領域。

同一族的外層價電子數相同,因此大多有著相似化學性質。圖/unsplash

再進化:從 63 種到 118 種

當門得列夫在 1869 年發表週期表時,已知元素只有 63 種,表格中甚至留有空白以預留「未來或存在尚未發現的元素」。他果然預測到了鎵(Ga)以及日後證實的日耳曼ium(Ge)等新元素性質,贏得舉世矚目。隨後,有越來越多元素透過科學發展,尤其是光譜分析與放射性研究而被發現,例如鐳(Ra)和氡(Rn)等。

到 20 世紀後期,隨著粒子加速器的誕生,人類可以合成更重的超鈾元素(Atomic Number > 92)。這些人工合成元素往往極度不穩定,壽命僅能以毫秒或微秒計,但仍證實存在、並填補週期表後段空白。如今,週期表已收錄到第 118 號元素「鿆(Og,Oganesson)」,但科學家預測或許還能繼續向上延伸;只要能合成更重、更穩定的原子核,我們就能拓展週期表的新邊境。

-----廣告,請繼續往下閱讀-----

一般認為,隨原子序遞增,原子核內部的質子數目激增,原子愈趨不穩,往往在極短時間內衰變成較輕元素。然而,一些理論物理學家提出「島狀穩定性」(Island of Stability)的概念:也許在某特定質子與中子數量組合下,能出現意外長壽的「穩定」重元素。

是否真能在表格上方再增添「第八週期」甚至更高週期的列,仍有待更多實驗來驗證。但無法否認的是,週期表一直是科學家檢驗自然規律的試驗場,也見證了人類探索未知的無盡熱情。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
20 篇文章 ・ 1 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃

0

3
0

文字

分享

0
3
0
最理想的元素週期表?其實元素週期表有很多種!——《元素週期表:複雜宇宙的簡潔圖表》
日出出版
・2023/06/10 ・2017字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

前面幾章都在談元素週期表,但還有一個重要面向沒有提到。為什麼有這麼多元素週期表出版,而且為什麼現在的教科書、文章、網路,提供這麼多種元素週期表?有沒有「最理想的」元素週期表?追求最理想的元素週期表有意義嗎?如果有,我們在找出一份最佳週期表的過程中取得那些進展?

種類數量可觀的元素週期表

愛德華.馬蘇爾斯(Edward Mazurs)關於週期表歷史的經典著作中,收錄自一八六○年代首張元素週期表繪出以來,大約七百張的元素週期表。

馬蘇爾斯的書本出版已過了四十五年左右;之後,期間至少又有三百張週期表問世,如果再加上網路上發表的就更多了。為什麼會有這麼多元素週期表,這件事情需要好好解釋。當然,這些元素週期表中,許多並沒有新的資訊,有些從科學的觀點來看甚至前後矛盾。但即使刪除這些具有誤導性的表,留下的數量還是非常可觀。

元素週期表的變體:有圓形的還有立體的?

我們在第一章看過元素週期表的三個基本形式:短元素週期表中長元素週期表長元素週期表。這三類基本上都傳達差不多的訊息,但相同原子價(編按:原子的價數,金屬為正價、非金屬為負價)的元素,在這些表中有不同的分族。

此外,有些週期表不像我們一般認識的表格那樣四四方方。這種變體包括圓形橢圓的週期系統,比起長方形的元素週期表,更能強調元素的連續性。不像在長方形的表上,在圓形或橢圓形的系統中,週期的結尾不會中斷,例如氖和鈉、氬和鉀。

-----廣告,請繼續往下閱讀-----

但是,不像時鐘上的週期,元素週期表的週期長度不同,因此圓形元素週期表的設計者需要想辦法容納過渡元素的週期。例如本菲(Benfey)的元素週期表(圖 37),過渡金屬排列的地方從主要的圓形突出來。也有三維的元素週期表,例如來自加拿大蒙特簍的費爾南多.杜福爾(Fernando Dufour)所設計的(圖 38)。

圖 37/本菲(Benfey)的圓形元素週期表。圖/《元素週期表:複雜宇宙的簡潔圖表
圖 38/費爾南多.杜福爾(Fernando Dufour)的三維元素週期表。圖/《元素週期表:複雜宇宙的簡潔圖表

但我認為,這些變體都只是改變週期系統的描繪形式,它們之間並無根本上的差異。稱得上重要變體的,是將一個或多個元素放在和傳統元素週期表中不同的族。討論這點之前,我先談談元素週期表一般的設計。

元素週期表的概念好像很簡單,至少表面上是,因此吸引業餘的科學家大展身手,發展新的版本,也常宣稱新的版本某些地方比過去發表的更好。

當然,過去有過幾次,化學或物理學的業餘愛好者或外行人做出重大貢獻。例如第六章提過的安東.范登.布魯克,他是經濟學家,也是首先想到原子序的人,他在《自然》等期刊發展這個想法。另一個人是法國工程師夏爾.雅內(Charles Janet),他在一九二九年發表「左階式元素週期表」(Left-step periodic table),後來持續受到週期表的專家和業餘愛好者的關注(圖 39)。

圖 39/夏爾.雅內(Charles Janet)的左階式元素週期表。圖/《元素週期表:複雜宇宙的簡潔圖表

「理想」的追求

那麼,追求最理想的元素週期表真的有意義嗎?我認為,這個問題的答案取決於個人對週期系統的哲學態度。一方面,如果一個人相信,元素性質近似重複的現象是自然世界的客觀事實,那麼他採取的態度是實在論。對這樣的人而言,追求最理想的元素週期表非常合理。最能代表化學週期性事實的就是最理想的元素週期表,即便這樣的表還沒制訂出來。

-----廣告,請繼續往下閱讀-----

另一方面,工具論者或反實在論者看待元素週期表,可能會認為元素的週期性是人類強加給自然的性質。若是如此,就不必熱切尋找最理想的元素週期表,畢竟這種東西根本不存在。對約定俗成論者或反實在論者來說,元素究竟如何呈現並不重要,因為他們相信我們處理的,不是元素之間的自然關係,而是人造關係。

——本文摘自《【牛津通識課10】元素週期表:複雜宇宙的簡潔圖表》,2023 年 4 月,日出出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
日出出版
13 篇文章 ・ 7 位粉絲