Loading [MathJax]/extensions/tex2jax.js

0

1
1

文字

分享

0
1
1

Mg Cu Li Zn,那就讓化學元素週期表告訴你什麼叫做「銅鋰鋅」!——《完全圖解 元素與週期表》

PanSci_96
・2019/12/10 ・3186字 ・閱讀時間約 6 分鐘 ・SR值 547 ・八年級

-----廣告,請繼續往下閱讀-----

一「銅」改變人類歷史

  • 銅 Cu (Copper)
  • 元素名稱由來:拉丁語為古代銅的生產地「賽普勒斯島」(Cuprum)。
  • 發現時的小插曲:自古以來即為人所熟知的元素之一。
  • 主要的化合物:硫酸銅(CuSO4)、氫氧化銅(Cu(OH)2)、氧化銅(CuO)、氯化銅(CuCl2)
  • 主要的同位素:63Cu(69.15%)、65Cu(30.85%)
銅塊。圖/人人出版提供

銅是在古早以前就融入人類生活的元素之一。考古學家在伊拉克北部發現大約在西元前 8800 年左右,推測應該是由自然銅製成的小銅珠。

銅即使延展得很薄也不易遭破壞,具有良好的延展性。此外,在導熱性和電導率方面都是僅次於銀,名列第二高,因此常被用來製作調理鍋和電線等。

銅與其他金屬混合所成的合金種類非常多,像是青銅、黃銅等都是。黃銅是純銅(俗稱紫銅)與鋅的合金,常是打造佛具、管樂器的材料。此外,鋁與銅的合金耐腐蝕性強,被用來製作裝飾品。

日常生活中常見的銅製品

目前流通的 1、5、10、20、50 圓幣共 5 種面額的硬幣材質中,都含有銅。圖/人人出版提供

銅與我們每天所使用的硬幣息息相關,在目前流通的 1、5、10、20、50 圓幣共 5 種面額的硬幣材質中,都含有銅。其中 1 圓硬幣是銅(92%)、鎳(6%)、鋁(2%)的合金。

-----廣告,請繼續往下閱讀-----

而 5、10 圓銅幣皆為銅鎳合金,含鎳 25%。而 20 圓銅幣的材質是外環銅質(含鎳 2% 及鋁 6%)、內餅銅質(含鎳 25%),新版的 50 圓幣銅幣則是含鎳 2% 及鋁 6%。

銅製料理鍋。圖/人人出版提供

因為銅的導熱性很好,因此是製作調理鍋、煮水壺、平底鍋的材料。以銅製的平底鍋為例,不是僅接觸火焰的部位會熱,整個鍋底都會均勻受熱,因此具有食物較不易燒焦的優點。

改變人類生活的「青銅器」

青銅器(銅鐸)。圖/人人出版提供

據研究,銅的出現改變了以石器為主要工具之古代人類的生活。銅中混入錫所成的「青銅」,與銅單質相較,硬度明顯提高。青銅在較低溫的情況下也能熔化,因此就算以當時人的技術,也能將熔化的青銅液倒入鑄模中,製成各式各樣形狀的物品。

依地區和時代的不同,使用青銅製作的物品可謂琳朗滿目,食器、貨幣、飾品、樂器等等皆是。照片是從日本出土的「銅鐸」,大約 2000 年前彌生時期製作的青銅器。考古學家推測可能是使用於祭祀的禮器,但是並不十分了解其真正用途。

-----廣告,請繼續往下閱讀-----

同樣是金屬,為什麼銅的顏色跟別種金屬不一樣?

同樣是金屬,金、銀、銅的顏色卻完全不同。銅的顏色是泛紅的「赤金色」,為什麼銅會呈現出這樣的顏色呢?

一般而言,金屬的結構是金屬原子規律排列的晶體。排列如此井然有序的金屬原子呈將最外層電子予以釋放的離子狀態。被釋放的電子因可以在金屬離子間自由活動,因此稱為「自由電子」。

自由電子會將幾乎所有的光都反射出去。但是根據金屬種類的不同,也有某特定波長的光不會反射,而會被吸收的情形發生。銅的自由電子會吸收波長 500 奈米(1 奈米為 10 億分之 1 米)左右的光,換言之就是會吸收由藍到綠的光。結果,銅反射的光,紅色的比率升高,看起來就呈「赤金色」了。

金屬藏在手機「鋰」

  • 鋰 Li (Lithium)
  • 元素名稱由來:希臘語「石頭」(Lithos)之意。
  • 發現時的小插曲:是在分析「透鋰長石」(petalite)這種礦物時發現的。
  • 主要的化合物:LiOH、Li2O、Li2CO3
  • 主要的同位素:6Li(7.59%)、7Li(92.41%)
鋰蘊藏在礦石和礦泉中,元素名稱源自希臘語的「石頭」(lithos),它同時也是金屬中質量最輕的。圖/人人出版提供

鋰跟氫、氦一樣都是在宇宙誕生之初就已經被製造出來的元素。鋰蘊藏在礦石和礦泉中,元素名稱源自希臘語的「石頭」(lithos),它同時也是金屬中質量最輕的。

一提到鋰,大家腦海中立即浮起的可能就是「鋰離子電池」。鋰離子電池因為重量輕且容量大、充電效率高,因此筆記型電腦、手機等都使用鋰離子電池做為行動電源。另外,雙極性疾患(bipolar disorder,俗稱躁鬱症)的治療藥「碳酸鋰」(鋰鹽)也是鋰的用途之一。

-----廣告,請繼續往下閱讀-----

生活中常見的鋰

鋰被用來作為鋰離子電池、躁鬱症的治療藥、在太空船等密閉空間的二氧化碳吸收劑、潤滑膏、製造合成橡膠原料「異戊二烯」(isoprene)之際的催化劑、強化玻璃、琺瑯、合金等的原料。

油電混合車等環保車款所使用的鋰離子電池。圖/人人出版提供

鋰離子電池因為重量輕、容量大、充電效率高,所以被用來做為筆電和手機的電源。上面照片是油電混合車等環保車款所使用的鋰離子電池,由於油電混合車、電動汽車等的普及,在 2006 年到 2007 年曾經一度面臨鋰離子電池供不應求的局面。根據預測,全球製造鋰離子電池所需的鋰,未來將會有大幅增加的趨勢。

雙極性疾患治療藥中的鋰離子具有干擾「IMPA2」的功能,可抑制神經元內部的化學反應。圖/人人出版提供

接收到訊號的神經元(也稱神經細胞,neuron)會從細胞膜釋放出名為 IP3 的物質到細胞質內,該物質就會與內質網(endoplasmic reticulum)結合,然後釋放出鈣離子。

雙極性疾患(躁鬱症)病人之神經元內部的鈣離子濃度高,而雙極性疾患治療藥中的鋰離子具有干擾「IMPA2」(在 IP3 重新返回細胞膜過程中發揮作用之酵素)的功能,因此可抑制神經元內部的化學反應。

鋰的寶庫「亞他加馬鹽沼」

亞他加馬鹽沼。圖/人人出版提供

智利的亞他加馬鹽沼位在標高 2300 公尺的高地,這裡過去曾經是海洋,由於安第斯山的造山運動而隆起,海洋乾涸,於是便有大量的鋰蘊藏於此。這裡一整年只有數天降雨的乾燥氣候,對於鋰的開採生產大有助益。

-----廣告,請繼續往下閱讀-----

身體中不可缺少的「鋅」

  • 鋅 Zn( Zinc)
  • 元素名稱由來:波斯語的「石頭」(sing),德語的「叉子尖」(Zink)。
  • 發現時的小插曲:據傳最早開始製造出單質的鋅金屬是在 13 世紀左右的印度。1746 年,馬格拉夫從菱鋅礦(smithsonite)精煉出金屬鋅,並在書中留下該方法。
  • 主要的化合物:ZnSO4、Zn(OH)2
  • 主要的同位素:64Zn(48.63%)、66Zn(27.90%),67Zn(4.04%)、68Zn(18.45%)、70Zn(0.61%)

鋅由於顏色和形狀似鉛,故也稱亞鉛,古稱倭鉛。

使用鋅銅合金「黃銅」製成的銅管樂器。圖/人人出版

薄鐵板鍍鋅可提高耐腐蝕性,是蓋屋頂的材料,現在仍廣為使用。此外,銅中添加鋅所製成的合金稱為「黃銅」,強度夠又容易加工,因此,也被用來製作樂器。此外,大多數鈕扣電池的陰極會使用鋅,而硫化鋅常被用來作為布朗管(陰極射線管)的螢光劑。

不鏽鋼基材鍍鋅的屋頂建材。圖/人人出版

過去的人認為鋅跟鉛一樣都是具有毒性的金屬,但其實鋅是人體所必需的礦物質,可將體內的有害物質轉變為無害,且能幫助有害金屬的排出,在生物生存上扮演著舉足輕重的角色。另外,鋅也存在於感知味道的味蕾,體內缺鋅時,會導致味覺障礙。

生物體內也含有鋅,例如:我們舌頭上感知味道的味蕾就含有鋅。再者,很多人都知道牡蠣體內含有大量的鋅。圖/人人出版

鋅與肌肽(carnosine)的化合物被用來作為治療胃潰瘍的藥物。最近,研究者又發現鋅有新的生理作用,亦即具有可降低血糖值,改善糖尿病和代謝症候群(metabolic syndrome)的效果。

-----廣告,請繼續往下閱讀-----

 

——本文選自《完全圖解 元素與週期表:解讀美麗的週期表與全部118種元素!》,2019 年 9 月,人人出版

 

-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1262 篇文章 ・ 2408 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

2
0

文字

分享

0
2
0
從門得列夫到 118 種元素:元素週期表是怎麼出現的?
F 編_96
・2025/01/04 ・2302字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live Science

「氫鋰鈉鉀銣銫砝、铍鎂鈣鍶鋇镭…」相信很多人離開高中很多年,都還朗朗上口。

列著 118 種已知化學元素的「元素週期表」(Periodic Table),雖然唸起來像咒文,但有了它之後便能夠快速查詢原子序(proton number)、價電子(valence electrons)數量,以及元素可能的化學性質,成為各領域科學家與工程師設計實驗、預測物質反應必不可少的工具。

有趣的是,元素週期表並非一蹴可及。縱觀歷史,化學家們歷經數世紀的摸索、爭論與資料整理,才在 19 世紀後半葉逐漸確立。

我們現在看到的元素週期表,是在 19 世紀後半才逐漸確定。 圖/unsplash

週期表之父:門得列夫的突破

19 世紀中葉,已知的化學元素約有 63 種,許多化學家嘗試找出元素間的共同點,卻苦無系統性整理。當時能區分「金屬」與「非金屬」,或利用價電子概念將一些元素歸類,但要涵蓋大多數元素仍顯不足。俄國化學家門得列夫在撰寫《化學原理》教科書時,因接觸各元素的資料而產生新思路。他索性把已知元素各種性質寫在紙卡上,再一一比對它們的原子量(類似當今的原子量或原子序概念)與化學性質。

-----廣告,請繼續往下閱讀-----

確切的靈光乍現時刻,如今已無從完全重現,但我們知道門得列夫最後觀察到:「如果按照原子量(或後來的原子序)由小到大排列,某些化學性質就會呈週期性重複。」進一步來看,元素的價電子數量通常也會對應到表格的「欄位」或「族群」。於是,在 1869 年,他將研究結果發表,提出了第一版週期表的雛形,更大膽預言了尚未被發現的元素「eka-aluminium」(後來證實即鎵 gallium)及其他四種元素的性質。

讀懂週期表:原子序、符號與原子量

今日的週期表之所以能快速讓人獲得豐富資訊,關鍵在於三個核心欄位:

  1. 原子序(Atomic Number)
    代表該元素核內所含質子數。如果一原子核有 6 顆質子,就必定是碳(C),無論其他中子或電子數如何。此序號由上而下、由左而右遞增,貫穿整張表格。
  2. 元素符號(Atomic Symbol)
    多為一至兩字母縮寫,如碳(C)、氫(H)、氧(O)。但也有如鎢(W,因「Wolfram」得名)或金(Au,取自拉丁文「Aurum」)等較不直覺的符號。
  3. 原子量(Atomic Mass)
    表示該元素在自然界中各同位素的加權平均值,故通常是帶小數的數字。對合成元素則標示最常見或最穩定同位素的質量,但由於這些元素壽命極短,數值往往會被不斷修正。

舉例來說,硒(Se)在週期表中顯示原子序 34,屬於第 4 週期、第 6A 族,表示它有四層電子軌域,其中最外層(價電子層)有 6 顆電子。有了這些資訊,科學家可快速判斷硒的化學傾向、可形成何種化合物,乃至於在生物或工業應用中可能扮演的角色。

週期表的內部結構:週期、族與軌域

門得列夫最初按照原子量遞增排列元素,現代則依靠原子序(即質子數)來分類。橫向稱為「週期」(Period),從第 1 週期到第 7 週期;縱向稱為「族」(Group),目前總共有 18 組。週期數量在於顯示該元素電子軌域有幾層;而同一族則代表外層價電子數相同,故有相似化學性質。

-----廣告,請繼續往下閱讀-----

例如,第 18 族常被稱作「貴氣體」或「惰性氣體」,如氦(He)、氖(Ne)、氬(Ar)等皆不易與其他元素起反應。另一個顯著群體是位於第一族的鹼金屬(Alkali Metals),如鋰(Li)、鈉(Na)等,因外層只有 1 顆電子,極容易失去該電子而形成帶 +1 價的陽離子,故與水猛烈反應。

此外,在表格中央有一塊「過渡元素」(Transition Metals)區域,包括鐵(Fe)、銅(Cu)、鎳(Ni)、金(Au)、銀(Ag)等。它們具有部分填充的 d 軌域,使得該區域的元素呈現多樣性質,例如具有金屬光澤、可塑性或導電性等,被廣泛應用於工業及工程領域。

同一族的外層價電子數相同,因此大多有著相似化學性質。圖/unsplash

再進化:從 63 種到 118 種

當門得列夫在 1869 年發表週期表時,已知元素只有 63 種,表格中甚至留有空白以預留「未來或存在尚未發現的元素」。他果然預測到了鎵(Ga)以及日後證實的日耳曼ium(Ge)等新元素性質,贏得舉世矚目。隨後,有越來越多元素透過科學發展,尤其是光譜分析與放射性研究而被發現,例如鐳(Ra)和氡(Rn)等。

到 20 世紀後期,隨著粒子加速器的誕生,人類可以合成更重的超鈾元素(Atomic Number > 92)。這些人工合成元素往往極度不穩定,壽命僅能以毫秒或微秒計,但仍證實存在、並填補週期表後段空白。如今,週期表已收錄到第 118 號元素「鿆(Og,Oganesson)」,但科學家預測或許還能繼續向上延伸;只要能合成更重、更穩定的原子核,我們就能拓展週期表的新邊境。

-----廣告,請繼續往下閱讀-----

一般認為,隨原子序遞增,原子核內部的質子數目激增,原子愈趨不穩,往往在極短時間內衰變成較輕元素。然而,一些理論物理學家提出「島狀穩定性」(Island of Stability)的概念:也許在某特定質子與中子數量組合下,能出現意外長壽的「穩定」重元素。

是否真能在表格上方再增添「第八週期」甚至更高週期的列,仍有待更多實驗來驗證。但無法否認的是,週期表一直是科學家檢驗自然規律的試驗場,也見證了人類探索未知的無盡熱情。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
22 篇文章 ・ 1 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃

0

3
0

文字

分享

0
3
0
最理想的元素週期表?其實元素週期表有很多種!——《元素週期表:複雜宇宙的簡潔圖表》
日出出版
・2023/06/10 ・2017字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

前面幾章都在談元素週期表,但還有一個重要面向沒有提到。為什麼有這麼多元素週期表出版,而且為什麼現在的教科書、文章、網路,提供這麼多種元素週期表?有沒有「最理想的」元素週期表?追求最理想的元素週期表有意義嗎?如果有,我們在找出一份最佳週期表的過程中取得那些進展?

種類數量可觀的元素週期表

愛德華.馬蘇爾斯(Edward Mazurs)關於週期表歷史的經典著作中,收錄自一八六○年代首張元素週期表繪出以來,大約七百張的元素週期表。

馬蘇爾斯的書本出版已過了四十五年左右;之後,期間至少又有三百張週期表問世,如果再加上網路上發表的就更多了。為什麼會有這麼多元素週期表,這件事情需要好好解釋。當然,這些元素週期表中,許多並沒有新的資訊,有些從科學的觀點來看甚至前後矛盾。但即使刪除這些具有誤導性的表,留下的數量還是非常可觀。

元素週期表的變體:有圓形的還有立體的?

我們在第一章看過元素週期表的三個基本形式:短元素週期表中長元素週期表長元素週期表。這三類基本上都傳達差不多的訊息,但相同原子價(編按:原子的價數,金屬為正價、非金屬為負價)的元素,在這些表中有不同的分族。

此外,有些週期表不像我們一般認識的表格那樣四四方方。這種變體包括圓形橢圓的週期系統,比起長方形的元素週期表,更能強調元素的連續性。不像在長方形的表上,在圓形或橢圓形的系統中,週期的結尾不會中斷,例如氖和鈉、氬和鉀。

-----廣告,請繼續往下閱讀-----

但是,不像時鐘上的週期,元素週期表的週期長度不同,因此圓形元素週期表的設計者需要想辦法容納過渡元素的週期。例如本菲(Benfey)的元素週期表(圖 37),過渡金屬排列的地方從主要的圓形突出來。也有三維的元素週期表,例如來自加拿大蒙特簍的費爾南多.杜福爾(Fernando Dufour)所設計的(圖 38)。

圖 37/本菲(Benfey)的圓形元素週期表。圖/《元素週期表:複雜宇宙的簡潔圖表
圖 38/費爾南多.杜福爾(Fernando Dufour)的三維元素週期表。圖/《元素週期表:複雜宇宙的簡潔圖表

但我認為,這些變體都只是改變週期系統的描繪形式,它們之間並無根本上的差異。稱得上重要變體的,是將一個或多個元素放在和傳統元素週期表中不同的族。討論這點之前,我先談談元素週期表一般的設計。

元素週期表的概念好像很簡單,至少表面上是,因此吸引業餘的科學家大展身手,發展新的版本,也常宣稱新的版本某些地方比過去發表的更好。

當然,過去有過幾次,化學或物理學的業餘愛好者或外行人做出重大貢獻。例如第六章提過的安東.范登.布魯克,他是經濟學家,也是首先想到原子序的人,他在《自然》等期刊發展這個想法。另一個人是法國工程師夏爾.雅內(Charles Janet),他在一九二九年發表「左階式元素週期表」(Left-step periodic table),後來持續受到週期表的專家和業餘愛好者的關注(圖 39)。

圖 39/夏爾.雅內(Charles Janet)的左階式元素週期表。圖/《元素週期表:複雜宇宙的簡潔圖表

「理想」的追求

那麼,追求最理想的元素週期表真的有意義嗎?我認為,這個問題的答案取決於個人對週期系統的哲學態度。一方面,如果一個人相信,元素性質近似重複的現象是自然世界的客觀事實,那麼他採取的態度是實在論。對這樣的人而言,追求最理想的元素週期表非常合理。最能代表化學週期性事實的就是最理想的元素週期表,即便這樣的表還沒制訂出來。

-----廣告,請繼續往下閱讀-----

另一方面,工具論者或反實在論者看待元素週期表,可能會認為元素的週期性是人類強加給自然的性質。若是如此,就不必熱切尋找最理想的元素週期表,畢竟這種東西根本不存在。對約定俗成論者或反實在論者來說,元素究竟如何呈現並不重要,因為他們相信我們處理的,不是元素之間的自然關係,而是人造關係。

——本文摘自《【牛津通識課10】元素週期表:複雜宇宙的簡潔圖表》,2023 年 4 月,日出出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
日出出版
13 篇文章 ・ 7 位粉絲

0

1
1

文字

分享

0
1
1
寫在起司工廠邀請函背面的曠世巨作:元素週期表出現的這一天——《元素週期表:複雜宇宙的簡潔圖表》
日出出版
・2023/06/09 ・1127字 ・閱讀時間約 2 分鐘

-----廣告,請繼續往下閱讀-----

雖然門得列夫一直思考著元素、原子量、分類,但是足足想了十年之久,才終於迎來「我發現了!」這個時刻,就是一八六九年二月十七日這一天,也許可以訂為「我發現了!」紀念日。這一天,他取消了以顧問身分視察起司工廠的行程,決定投入研究他日後最膾炙人口的代表作——元素週期表

真正的發現

首先,他在起司工廠邀請函的背後,把幾個元素的符號列成兩行:

接著,他列出一個稍微更大的陣列,包括十六個元素:

當天晚上,門得列夫就把整個元素週期表都畫了出來,包括六十三個已知元素。此外,這張表還留了幾個空格給當時未知的元素,甚至預測這些未知元素的原子量。

他將這張表複印兩百份,寄給整個歐洲的化學家。同年三月六日,門得列夫的同事在俄羅斯化學學會一場會議上宣布這項發現。一個月內,這個新成立的學會就在期刊上刊登了一篇文章,另一篇更長的則在德國發表。

-----廣告,請繼續往下閱讀-----

多數關於門得列夫的大眾讀物和紀錄片會說他在夢中想到他的元素週期表,或在玩紙牌接龍時把牌當成一個個元素。這兩個故事,尤其後者,現在已經被許多門得列夫的傳記作者視為是杜撰的,例如科學史家麥克.戈爾丁(Michael Gordin)。

原則的堅持

還是回來討論門得列夫的科學方法吧。他和對手洛塔爾.邁耶爾很大的不同是,他不相信所有物質的統一性,也不支持普洛特關於元素具有複合性質的假說。門得列夫也刻意與三元素組的想法保持距離。例如,他提出氟應該和氯、溴、碘放在一起,形成一個至少四個元素的族。

洛塔爾.邁耶爾專注於物理原則,主要關注元素的物理性質,而門得列夫則非常熟悉元素的化學性質。然而,說到分類元素最重要的標準時,門得列夫堅持以原子量排序,不容許有任何例外。當然,許多在門得列夫之前的人,例如尚古多、紐蘭茲、奧德林,以及洛塔爾.邁耶爾都承認原子量的重要性,儘管程度不一。但是門得列夫對原子量與元素的本質有更深層的哲學理解,得以一探尚未被人發現的元素,進入這個未知領域

——本文摘自《【牛津通識課10】元素週期表:複雜宇宙的簡潔圖表》,2023 年 4 月,日出出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

-----廣告,請繼續往下閱讀-----
日出出版
13 篇文章 ・ 7 位粉絲