1

2
0

文字

分享

1
2
0

「稀土戰爭」的起點:七種元素因這個村莊而被發現!

活躍星系核_96
・2019/06/05 ・2753字 ・閱讀時間約 5 分鐘 ・SR值 536 ・七年級

-----廣告,請繼續往下閱讀-----

  • 本文授權轉載自領研公眾號
  • 编译/谢汝雨 杨心舟@环球科学

今年是元素週期表誕生 150 周年,已經有 118 種元素在這張表上找到了屬於自己的位置。在第 Ⅲ 族副族裡,有一群特殊的元素,它們又被稱作稀土元素,是當今各種高科技領域是必不可少的金屬元素。而其中 7 種元素都因一座村莊而發現,4 種都以村莊的名字命名。

一座因元素出名的村莊

離斯德哥爾摩不遠的 Resarö 島上,有一個叫做伊特比(Ytterby)的村莊,它是化學史上有舉足輕重的地位。在化學家中,都存在一種對該村莊的誇張描述:

元素週期表可以分為兩部分,一部分叫 Ytterby 元素,另一部分叫其他元素。

儘管伊特比只是一個小村莊,其對元素週期表的貢獻非常大,世界其他地方能發現 2 個元素的都屈指可數,但在伊特比就直接產出並根據 Ytterby 命名了4種,而還有 3 種也是因該地的一塊礦石才得以被發現,也就是說這塊土地讓元素週期表上拓展了 7 種元素。

當然要在一個地方同時發現如此多的元素,和元素的性質有很大關係。伊特比區域發現的這些元素都屬於稀土金屬,稀土金屬有一個很大的特點,就是其是由許多元素混合在一起組成的,當你獲得一塊天然的稀土金屬,基本上就獲得了幾種不同的元素。而伊特比就是這麼一個地方,富含稀土礦藏。根據考古學家推測,在上一個冰川期結束時,冰川消融帶走了該區域大部分表層土壤,因此這些底層的稀土礦藏就暴露出來,很容易被開發。

-----廣告,請繼續往下閱讀-----
伊特比採石場。圖片來源:Wikipedia

最初,伊特比並不是為了採集稀土資源而存在的,其礦場僅僅只是用來尋找一種叫做長石的礦物。長石是用來製作陶瓷的重要原料,馬可波羅於14世紀初期將陶瓷引進至歐洲後,歐洲人開始瘋狂地愛上了這種實用且高效的舶來品。幾百年來這裡的礦工都會從挖出的礦藏中選出長石,其他的就當做廢棄物直接倒掉,直到1787年,Seva炮兵團中尉卡爾.阿克塞爾.阿倫尼烏斯(Carl Axel Arrhenius)注意到了長石採礦場中一塊棄置的黑色礦物碎片,他將其送給了化學家朋友約翰.加多林(Johan Gadolin)進行分析。後來,這塊碎片成了意義非凡的礦石:人們從此開始對稀土元素展開了長久的探索。

一塊改變元素史的礦石

卡爾本身的工作其實和礦石沒太大關係,但事情很奇妙,他在瑞典皇家鑄幣廠工作時認識了研究礦石的化學家Peter Jacob Hjelm,卡爾也耳濡目染地對化學和礦物產生了興趣。因此當他在礦場發現這塊從未見過的黑色礦石後,直覺告訴他這塊礦石並不普通,他將其以發現地伊特比村為名,叫做「ytterbite」石塊(現已知為矽鈹釔礦),並送給了加多林檢驗。

這塊礦石上端黑色部分,就是當年中尉發現的物質ytterbite,中文名矽鈹釔礦。圖片來源:Joshua Howgego

收到樣品的加多林經過認真分析,發現樣品中約有 38% 為某種金屬氧化物,他將該氧化物命名為「yttria」。這一刻開始,稀土金屬中的元素開始逐漸浮現在了元素週期表中。為了直觀地展示村莊名 Ytterby 是如何變成元素名的,我們可以看下最先發現的 4 種稀土元素的名稱,它們分別是yttrium(釔),terbium(鋱),erbium(鉺),ytterbium(鐿),幾乎都是選取了村莊名的部分。

之後加多林多次對礦石進行了分析,他最終確定這塊礦石的氧化物成分為氧化釔(Y2O3),這也是最早被發現的稀土金屬化合物,加多林在 1794 年發表了這項結果。然而,Y2O3還不是元素,直到 1828 年,Friedrich Wöhler 通過鉀還原氯化釔得到了釔元素。元素週期表上 39 號位元的釔元素,終於安頓下來了。

-----廣告,請繼續往下閱讀-----

從 1787 年這塊礦石被發現,到釔元素聞名於世經歷了兩百年。1987 年高溫超導體誕生,它在極低的溫度(-180℃)下也具有強磁性,這個溫度對於常規超導體來說已經很高了,因此它也被應用於精密的核磁共振的設備中。而這種高溫超導體就用到了釔元素(實際為釔鋇銅氧化物),至此釔的商用價值也被逐漸開發出來。

一連串稀土元素

因為稀土元素同屬於第Ⅲ副族,它們的原子結構很相似,而其中的 15 種鑭系元素的最外層電子軌道完全一樣,區別僅在於次外層電子。這些相似的電子排布會讓這些金屬的化學性質很相似,幾種稀土元素經常紮堆出現,很難進行分離。因此,當年從伊特比村裡發現的矽鈹釔礦中提取的釔並不純粹,還含有其他稀土元素。

來自伊特比村莊的七種稀土元素發現史

1843年的時候,卡爾·古斯塔夫·莫桑德爾(Carl Gustaf Mosander)分析了礦石中的Y2O3成分,他發現礦石並不是只由氧化釔構成的,其還含有氧化鉺(Er2O3)和氧化鋱(Te2O3),他將這些氧化物依次用伊特比村莊命名為 yttria、erbia 和 terbia,相對應的,3 種金屬的名稱就是 yttrium(釔),erbium(鉺),terbium(鋱)。

鉺和鋱都是從矽鈹釔礦中分離出來的,但它們的顏色並不一樣,釔呈現出白色,鉺呈現出粉紅色,鋱則呈現出黃色,因此從顏色上就能很好地區分這三種元素,如果你買到了一些粉色或者玫瑰色的玻璃狀物體,裡面很可能就含有鉺。如今,鉺被用在一些皮膚科或牙科中使用的鉺鐳射機器中,因為其不會穿透人體,可以針對性地治療皮膚和牙齒疾病。而鋱經過硫酸化後,能夠產生黃綠色的螢光,因此被應用于顯示幕發光系統中。

-----廣告,請繼續往下閱讀-----

1878 年,瑞士化學家馬利克納(J.C.G.Marignac)從鉺中分離出一種新元素,他同樣以伊特比為該元素起名為 ytterbium(鐿),鐿元素最出名的是其被應用在了原子鐘中。隨後在 1879 年,瑞典化學家尼爾森(L.F.Nilson)採用馬利克納的方法從鉺中分離鐿,並分別測量兩種元素的原子量。結果尼爾森測的鐿原子量卻比馬利克納測得的輕,他認為這是鐿中混有其他原子量較小的元素造成的。尼爾森繼續分離鐿,發現了鈧,克裡夫從鉺中分離出鈥和銩。至此,從卡爾中尉拿到這塊黑礦石,到元素全部解析出來,歷經了近百年。

伊特比村莊釔路上的一座房子圖片來源:Joshua Howgego

在伊特比發現的七種元素不僅僅是元素週期表上的珍寶,更是構成先進技術的基礎:釔的導電電阻幾乎為零,構成了高溫超導體的一部分;鋱用於風力發電機的儲能;鉺摻雜的光纖放大器能補償通訊系統中的光損耗,稀土金屬在這些高科技領域的優良表現使得其成為了控制世界經濟走向的一大因素。正是由於其稀缺性及不可替代性,稀土元素也成為各國長期博弈的焦點。

而如今,伊特比礦區已經成為了高級住宅區,昂貴的房子矗立在以自然元素命名的街道上,原先的礦入口貼著 ASM International society頒發的紀念牌,這片相繼發現了七種稀土元素,並命名了其中四種元素的沃土已逐漸變換了模樣。

參考來源

  • Д.Н.特立豐諾夫,В.Д. 特立豐諾夫.化學元素發現簡史[M]北京:科學技術文獻出版社,1986:133-139
  • https://www.newscientist.com/article/2194112-the-village-where-more-elements-were-discovered-than-anywhere-else/
  • http://www.slate.com/articles/health_and_science/elements/features/2010/blogging_the_periodic_table/ytterby_the_tiny_swedish_island_that_gave_the_periodic_table_four_different_elements.html
  • https://en.wikipedia.org/wiki/Ytterby
  • https://blogs.unimelb.edu.au/sciencecommunication/2016/10/15/the-ytterby-elements/

本文授權轉載自領研公眾號,原文標題:一座改变化学史的村庄:7种元素从这里诞生,它是“稀土战争”的最初起点

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
0

文字

分享

0
2
0
從門得列夫到 118 種元素:元素週期表是怎麼出現的?
F 編_96
・2025/01/04 ・2302字 ・閱讀時間約 4 分鐘

F 編按:本文編譯自 Live Science

「氫鋰鈉鉀銣銫砝、铍鎂鈣鍶鋇镭…」相信很多人離開高中很多年,都還朗朗上口。

列著 118 種已知化學元素的「元素週期表」(Periodic Table),雖然唸起來像咒文,但有了它之後便能夠快速查詢原子序(proton number)、價電子(valence electrons)數量,以及元素可能的化學性質,成為各領域科學家與工程師設計實驗、預測物質反應必不可少的工具。

有趣的是,元素週期表並非一蹴可及。縱觀歷史,化學家們歷經數世紀的摸索、爭論與資料整理,才在 19 世紀後半葉逐漸確立。

我們現在看到的元素週期表,是在 19 世紀後半才逐漸確定。 圖/unsplash

週期表之父:門得列夫的突破

19 世紀中葉,已知的化學元素約有 63 種,許多化學家嘗試找出元素間的共同點,卻苦無系統性整理。當時能區分「金屬」與「非金屬」,或利用價電子概念將一些元素歸類,但要涵蓋大多數元素仍顯不足。俄國化學家門得列夫在撰寫《化學原理》教科書時,因接觸各元素的資料而產生新思路。他索性把已知元素各種性質寫在紙卡上,再一一比對它們的原子量(類似當今的原子量或原子序概念)與化學性質。

-----廣告,請繼續往下閱讀-----

確切的靈光乍現時刻,如今已無從完全重現,但我們知道門得列夫最後觀察到:「如果按照原子量(或後來的原子序)由小到大排列,某些化學性質就會呈週期性重複。」進一步來看,元素的價電子數量通常也會對應到表格的「欄位」或「族群」。於是,在 1869 年,他將研究結果發表,提出了第一版週期表的雛形,更大膽預言了尚未被發現的元素「eka-aluminium」(後來證實即鎵 gallium)及其他四種元素的性質。

讀懂週期表:原子序、符號與原子量

今日的週期表之所以能快速讓人獲得豐富資訊,關鍵在於三個核心欄位:

  1. 原子序(Atomic Number)
    代表該元素核內所含質子數。如果一原子核有 6 顆質子,就必定是碳(C),無論其他中子或電子數如何。此序號由上而下、由左而右遞增,貫穿整張表格。
  2. 元素符號(Atomic Symbol)
    多為一至兩字母縮寫,如碳(C)、氫(H)、氧(O)。但也有如鎢(W,因「Wolfram」得名)或金(Au,取自拉丁文「Aurum」)等較不直覺的符號。
  3. 原子量(Atomic Mass)
    表示該元素在自然界中各同位素的加權平均值,故通常是帶小數的數字。對合成元素則標示最常見或最穩定同位素的質量,但由於這些元素壽命極短,數值往往會被不斷修正。

舉例來說,硒(Se)在週期表中顯示原子序 34,屬於第 4 週期、第 6A 族,表示它有四層電子軌域,其中最外層(價電子層)有 6 顆電子。有了這些資訊,科學家可快速判斷硒的化學傾向、可形成何種化合物,乃至於在生物或工業應用中可能扮演的角色。

週期表的內部結構:週期、族與軌域

門得列夫最初按照原子量遞增排列元素,現代則依靠原子序(即質子數)來分類。橫向稱為「週期」(Period),從第 1 週期到第 7 週期;縱向稱為「族」(Group),目前總共有 18 組。週期數量在於顯示該元素電子軌域有幾層;而同一族則代表外層價電子數相同,故有相似化學性質。

-----廣告,請繼續往下閱讀-----

例如,第 18 族常被稱作「貴氣體」或「惰性氣體」,如氦(He)、氖(Ne)、氬(Ar)等皆不易與其他元素起反應。另一個顯著群體是位於第一族的鹼金屬(Alkali Metals),如鋰(Li)、鈉(Na)等,因外層只有 1 顆電子,極容易失去該電子而形成帶 +1 價的陽離子,故與水猛烈反應。

此外,在表格中央有一塊「過渡元素」(Transition Metals)區域,包括鐵(Fe)、銅(Cu)、鎳(Ni)、金(Au)、銀(Ag)等。它們具有部分填充的 d 軌域,使得該區域的元素呈現多樣性質,例如具有金屬光澤、可塑性或導電性等,被廣泛應用於工業及工程領域。

同一族的外層價電子數相同,因此大多有著相似化學性質。圖/unsplash

再進化:從 63 種到 118 種

當門得列夫在 1869 年發表週期表時,已知元素只有 63 種,表格中甚至留有空白以預留「未來或存在尚未發現的元素」。他果然預測到了鎵(Ga)以及日後證實的日耳曼ium(Ge)等新元素性質,贏得舉世矚目。隨後,有越來越多元素透過科學發展,尤其是光譜分析與放射性研究而被發現,例如鐳(Ra)和氡(Rn)等。

到 20 世紀後期,隨著粒子加速器的誕生,人類可以合成更重的超鈾元素(Atomic Number > 92)。這些人工合成元素往往極度不穩定,壽命僅能以毫秒或微秒計,但仍證實存在、並填補週期表後段空白。如今,週期表已收錄到第 118 號元素「鿆(Og,Oganesson)」,但科學家預測或許還能繼續向上延伸;只要能合成更重、更穩定的原子核,我們就能拓展週期表的新邊境。

-----廣告,請繼續往下閱讀-----

一般認為,隨原子序遞增,原子核內部的質子數目激增,原子愈趨不穩,往往在極短時間內衰變成較輕元素。然而,一些理論物理學家提出「島狀穩定性」(Island of Stability)的概念:也許在某特定質子與中子數量組合下,能出現意外長壽的「穩定」重元素。

是否真能在表格上方再增添「第八週期」甚至更高週期的列,仍有待更多實驗來驗證。但無法否認的是,週期表一直是科學家檢驗自然規律的試驗場,也見證了人類探索未知的無盡熱情。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
20 篇文章 ・ 1 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃

0

7
0

文字

分享

0
7
0
賣火柴小女孩販售的「火柴」其實有毒?你所不知道的「磷」——《原子有話要說》
azothbooks_96
・2023/05/22 ・957字 ・閱讀時間約 1 分鐘

-----廣告,請繼續往下閱讀-----

被誤認的「賢者之石」

與人體細胞、骨骼、生命活動密切相關的腺苷二磷酸(adenosine diphosphate,ADP)中的磷,是很重要的元素。磷的發現過程其實有點讓人不忍想像,古時候鍊金術師待人類尿液久置後腐臭,再加熱蒸餾提煉出磷,一開始磷被認為是為提煉黃金時所需的「賢者之石」。

圖/原子有話要說!元素週期表

我們在日常生活中使用到磷的是火柴,可是現今看到的火柴頂端的火藥裡並沒有磷,而是把磷移到火柴盒的摩擦面了。原理是摩擦火柴棒,讓火柴盒產生火花,藉此點燃火柴棒頂端的火藥,進而產生火光。

磷有很多同伴,組成成分明明只有磷,但外觀和特性卻截然不同,有紫磷、白磷、黑磷、赤磷、紅磷,或是白磷表面覆蓋紅磷的黃磷等。火柴盒上使用的是紅磷,而在西部電影中等常出現,隨時隨地都可以點燃的火柴則是黃磷。

-----廣告,請繼續往下閱讀-----
圖/原子有話要說!元素週期表

小女孩賣的火柴裡也有磷

安徒生童話「賣火柴的小女孩」誕生於十九世紀中葉,當時火柴剛問世不久,跟現代的火柴截然不同。小女孩賣的火柴是黃磷火柴,火柴棒較長,造價也高,通常是論根賣的。黃磷或白磷是一種具有劇毒的化學品,由於工廠屢屢傳出磷中毒的事件,現在已經禁止使用。

【常溫狀態】固體 【原子量】30.973762

【熔點】44.15˚C 【沸點】280.5˚C

【密度】1.82 g/cm3

【發現】1669 年,德國煉金術師布蘭德(Henning Brand )

【語源】希臘文 phosphoros,意思是帶來光明的。

——本文摘自《原子有話要說!元素週期表》,2023 年 4 月,漫遊者文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
azothbooks_96
55 篇文章 ・ 21 位粉絲
漫遊也許有原因,卻沒有目的。 漫遊者的原因就是自由。文學、人文、藝術、商業、學習、生活雜學,以及問題解決的實用學,這些都是「漫遊者」的範疇,「漫遊者」希望在其中找到未來的閱讀形式,尋找新的面貌,為出版文化找尋新風景。