0

0
0

文字

分享

0
0
0

龐大的星系團MACS 1206與重力透鏡

臺北天文館_96
・2011/10/19 ・599字 ・閱讀時間約 1 分鐘 ・SR值 578 ・九年級

位在室女座方向,距離約45億光年遠,星系們彼此間的重力拉扯,造就了右方這個壯觀的場面。哈柏太空望遠鏡(Hubble Space Telescope)跨越時空,帶大家回到45億年前的MACS J1206.2-0847(簡稱為MACS 1206)星系團場景。

影像中央是個超吸睛的巨型橢圓星系,由大都已數十億歲的老恆星組成,因此呈現橘紅色,周圍環繞著不太濃厚的銀暈。目光向外一一點,會看到許多扁盤狀的螺旋星系。在影像中間偏上及中間偏左處,可見兩個藍白色的螺旋星系,幾乎正面朝向地球,兩者都可見有壯觀的旋臂環繞中央的銀核。

事實上,在這幅影像的不同的方向、不同距離,所見到的星系大都不離橢圓星系和螺旋星系這兩種。每個星系都約由1千億顆恆星,偏藍的星系中有比較活躍的恆星形成過程,年輕熾熱的恆星造成它們偏藍的色調。相對地,偏紅的星系,特別是像影像中央的橢圓星系,基本上以處在比較穩定、近期少有恆星形成的狀態。

雖然MACS 1206星系團很壯觀,不過除此之外還有讓天文學家更感興趣的景象。在星系團中央周圍有一些幾乎對稱的弧狀結構環繞,這是遙遠星系受到這個龐大星系團的重力透鏡效應的結果。這種效應可讓天文學家研究原本遠到無法見到的星系性質,對天文學家而言相當重要。此外,MACS 1206星系團含有大量不可見的暗物質,其總質量超過發光的可見部分。

-----廣告,請繼續往下閱讀-----

資料來源:Ambitious Hubble Survey Obtaining New Dark Matter Census

轉載自台北天文館之網路天文館網站

文章難易度
臺北天文館_96
482 篇文章 ・ 38 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

5
1

文字

分享

0
5
1
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
194 篇文章 ・ 297 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

7
0

文字

分享

0
7
0
韋伯太空望遠鏡運作滿週年,它看到了什麼?
PanSci_96
・2023/09/02 ・3306字 ・閱讀時間約 6 分鐘

古老星系中發現有機分子?我們離第三類接觸還有多遠?

韋伯正式展開拍攝任務已經屆滿週年,最近也傳回來許多過去難以拍攝到的照片。六月初,天文學家在《自然》期刊上發表了這張照片,在藍色核心外,環繞著一圈橘黃色的光環。

這是一個星系規模的甜甜圈?這是一個傳送門?還是外星文明的戴森環?

——都不是!其實,這是一個含有有機物多環芳香烴的古老星系,其名為 SPT0418-47。因為名字很長,以下我們就簡稱為 SPT0418 吧!

-----廣告,請繼續往下閱讀-----

這個觀測結果有什麼特殊意義?這代表我們發現外星生命了嗎?

SPT0418 是怎麼被拍到的?扭曲時空的重力透鏡!

一年前,在韋伯望遠鏡傳回第一組令人震撼的照片時,我們製作了兩期節目來介紹韋伯望遠鏡,和它在天文觀測史上跨時代的重要意義。在那之後,也有不少泛糰敲碗,希望我們可以再繼續介紹韋伯望遠鏡的後續發展。

這次在週年前夕公開的這張 SPT0418 照片,是一張標標準準因為重力透鏡而形成的美麗照片。「重力透鏡 Gravitational Lensing」這個概念,相信有在關注天文物理的泛糰們,應該都有聽過。愛因斯坦的廣義相對論告訴我們,星系與星系團的龐大質量會扭曲它們周圍的時空,就像一面星系尺度的超級放大鏡一樣,可以在光線通過時改變它們的走向,從而扭曲背景星系的影像。而如果背景星系與前方的前景星系剛好前後對齊的話,重力透鏡效應還能將背景星系扭曲成美麗的環型,這個環型被稱為「愛因斯坦環 Einstein Ring」。

背景星系從黑洞後面經過時的重力透鏡效應模擬影像。圖/Wikimedia

乍聽之下,重力透鏡會扭曲背景星系影像,好像會干擾觀察,是個缺點。但實際上重力透鏡在扭曲影像的同時,也會聚焦背景星系發出的光,從而讓背景星系變得更加明亮而容易觀測,讓天文學家可以看到更遠或更暗的天體。因此雖然扭曲的影像會增加分析上的麻煩,但天文學家其實非常喜歡觀測這些受重力透鏡效應影響的天體們。甚至會專門安排觀測計畫,拍攝這些受重力透鏡效應影響的區域。這次的主角 SPT0418,正是韋伯太空望遠鏡針對重力透鏡效應開展的「TEMPLATES 」觀測計畫的其中一個觀察對象。

-----廣告,請繼續往下閱讀-----

SPT0418 是一個位於時鐘座(Horologium)方向,距離地球約 123 億光年遠的古老星系。最早在南極望遠鏡(SPT)的觀測資料中被發現,並在後續以阿塔卡瑪大型毫米及次毫米波陣列 ALMA 進行的觀測中,確認了它是一個富含大量塵埃,而且正在以每年約 350 個太陽質量的超高速率生成恆星的星系。

在我們與 SPT0418 之間,還存在著一個前景星系。正是這個前景星系的質量扭曲了周圍的時空,像一片巨大的放大鏡一樣將背後的 SPT0418 扭成了漂亮的愛因斯坦環。

當觀察者、前景星系和背景星系在同一直線上時,就可以透過重力透鏡效應觀測到愛因斯坦環。圖/PanSci YouTube

在這張經過調色的照片中,中間的藍色部分就是前景星系,旁邊的橘色環則是因為重力透鏡而扭曲的 SPT0418 。得益於這個重力透鏡,SPT0418 的影像被增亮了三十倍以上,非常適合讓天文學家一窺早期宇宙中星系的狀態,因此被選為韋伯的觀測目標。

韋伯望遠鏡藉由重力透鏡效應拍攝到的扭曲的古老星系 SPT0418-47。圖/J. Spilker/S. Doyle, NASA, ESA, CSA

那麼,這次的觀測又有什麼重要意義呢?

-----廣告,請繼續往下閱讀-----

多環芳香烴是什麼?看見它代表什麼意義?

這次的拍攝結果不能完全說是意外,因為在這個研究中,韋伯的目標非常明確,就是要尋找古老星系中的多環芳香烴。

在天文學上,多環芳香烴通常指兩個以上的苯環所組成的有機化合物的統稱,人們一般以它的簡稱「PAH」來稱呼它。

發現有機分子,難道這代表有生命存在於古老星系中嗎?其實不能這麼快下定論。

因為 PAH 廣泛存在於各式各樣的星系中,與其他由碳和矽組成的塵埃顆粒,同屬於星際塵埃的一部分。甚至在彗星、小行星、隕石中,都能發現各式各樣的 PAH。目前認為,宇宙中可能有超過 20% 的碳原子,都是以 PAH 的方式存在,只是環數不盡相同。

-----廣告,請繼續往下閱讀-----
圖中右側的黑色暗帶為星際塵埃。圖/NASA, ESA, and the LEGUS team

所以,雖然科學家認為,宇宙中的生命誕生,可能與這些這些遍布其中的有機分子有關。但發現 PAH,不能直接與發現生命劃上等號。

過去數十年的天文觀測結果也顯示,PAH 確實廣泛存在於星系之中,但是天文學家對於這些分子究竟如何形成?又是什麼時候形成的?目前還沒有共識。因此迫切需要更多觀測,例如這次的目標 SPT0418 是個距離我們非常遙遠的古老星系,對於研究宇宙早期星系以及 PAH 的起源就很有幫助。

觀察 PAH 的困難及韋伯望遠鏡的重大突破

然而,要觀察 PAH 卻不太容易。原因是這些 PAH 發出的光,波長主要都集中在幾微米到十幾微米的近紅外與中紅外線波段。這個波段的光線受到大氣層的吸收非常嚴重,幾乎無法從地面觀測,因此過去我們很難取得相關數據。想要尋找 PAH 的蹤跡,勢必得使用紅外線太空望遠鏡才行。

這時,就是韋伯大展身手的時候了。比起同樣專注於紅外光譜的前輩史匹哲太空望遠鏡,韋伯的鏡片直徑大了超過七倍,集光面積更是大了將近六十倍,這不僅讓韋伯能夠拍攝遠比史匹哲更清晰的影像,更可以在更短的時間內拍攝到更暗的目標。

-----廣告,請繼續往下閱讀-----

得益於韋伯強大的觀測能力,在這個研究中它僅僅對著 SPT0418 曝光了不到一個小時的時間,就在 3.3 微米的波段找到了清晰的 PAH 發射譜線,確認了PAH的存在的同時,也打破了觀測到最遠的 PAH 訊號的紀錄。

此外天文學家也發現,韋伯所拍攝到的 SPT0418 與前幾年使用 ALMA 觀測到的影像並不全然相同。

由於觀測波段不同,不同的望遠鏡拍攝同一天體的亮部分布會產生差異。圖/PanSci Youtube

由於韋伯拍攝的是 PAH 發出的近紅外光,而 ALMA 拍攝到的則是毫米尺寸的大顆粒塵埃所發出的遠紅外線,因此這可能代表 SPT0418 這個星系的不同部分,有著不同的塵埃組成。為甚麼會這樣呢?天文學家目前也沒有肯定的答案,需要更多的觀測來進一步釐清。

任務還在繼續!TEMPLATES 計畫持續追蹤 PAH 足跡

韋伯對 SPT0418 拍攝的照片,不僅打破了人類探測過離太陽系最遠的 PAH 訊號紀錄,更展示了在重力透鏡加韋伯的攜手合作下,能大幅拓展人類觀測遙遠星系的能力。除了 SPT0418 之外,天文學家還預計觀測另外三個被重力透鏡放大的星系,尋找並研究其中 PAH 的足跡,以解開星系與星際塵埃的演化之謎。

-----廣告,請繼續往下閱讀-----
韋伯望遠鏡的「TEMPLATES 」計畫預計觀測四個被重力透鏡效應放大的天體。圖/JWST ERS Program TEMPLATES

雖然還有許多未解之謎,但韋伯傳回來的每張相片,都能讓我們能更了解這個宇宙一點點。最後想問問大家,韋伯望遠鏡正式展開拍攝工作屆滿一年,你最喜歡,或最希望我們繼續來講解的照片是哪一張呢?

  1. 土星、天王星和海王星的行星環高清照
  2. 大爆炸後 3.2 億年就誕生的的古老星系
  3. 即將蛻變為超新星的恆星照
  4. 更多你覺得美麗的照片,分享給我們吧

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

PanSci_96
1214 篇文章 ・ 2086 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
3

文字

分享

0
3
3
你想知道的黑洞 QA 大集結:為什麼拍到銀河系中心的黑洞很重要?如何能看到黑洞?
研之有物│中央研究院_96
・2022/08/13 ・6097字 ・閱讀時間約 12 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/簡克志
  • 美術設計/蔡宛潔

有限的資源,不可能的任務

2022 年 5 月 12 日是個大日子,這天人類終於獲得了第二顆黑洞的觀測影像!這顆黑洞稱為人馬座 A 星(Sagittarius A*, Sgr A*),它就位於我們銀河系家園的中心。為了成功拍到 Sgr A* ,天文學家必須克服重重困難,包含黑洞周圍的環繞物質變動太快,或是宇宙塵埃與星雲的雜訊干擾等。不過,黑洞和我們日常生活有關嗎?為什麼看見黑洞這麼重要?科學家又是如何找到這顆黑洞呢?中央研究院「研之有物」專訪院內天文及天文物理研究所通信研究員賀曾樸院士,請他解答我們對於黑洞的各種好奇!

中研院天文所通信研究員賀曾樸院士,曾擔任中研院天文所所長 10 年,至今仍持續推動天文學進展,積極提攜後進。圖/研之有物

仰望銀河系的中心:一個超大質量的緻密天體

天文學家很早就開始有系統地觀察銀河系中心的電波訊號。在 1933 年 Karl Jansky 透過他架設的天線裝置,首次記錄到位於人馬座的銀河系中心有 20 MHz 的未知電波發射源。因此,後續的電波天文學研究,對於銀河系中心一直很感興趣,並且把這個電波源稱為人馬座 A 星(Sagittarius A*, Sgr A*)。

賀院士在訪談中提到,中研院天文所的前籌備處主任(所長)魯國鏞院士,在 1985 年讀博士時,對銀河系中心電波源做了最早的干涉儀測量,當時魯院士推測這個來源可能是個大質量黑洞。

-----廣告,請繼續往下閱讀-----

接著 1992 年開始,兩位天文學家 Andrea Ghez 和 Reinhard Genzel,利用先進干涉儀器觀測銀河系中心周圍的恆星運動長達 20 多年,他們發現這些恆星的橢圓軌道似乎都圍繞著一個共同的焦點(如下圖)。

試問宇宙中有「誰」重力這麼大、空間範圍卻又這麼小呢?超大質量黑洞是最合理的解釋。這也讓 Ghez 和 Genzel 獲得 2020 年諾貝爾物理獎的榮耀,原因是「發現銀河系中心是一個超大質量的緻密天體」;另一位得獎主是 Roger Penrose,原因是「證明廣義相對論能夠可靠地預測黑洞的形成」。

天文學家 Andrea Ghez 和 Reinhard Genzel,利用先進干涉儀器觀測銀河系中心的恆星運動長達 20 多年,他們發現這些恆星的橢圓軌道都圍繞著一個共同的焦點,超大質量黑洞是最合理的解釋。資料來源/UCLA Galactic Center Group

至此,科學家已經得知銀河系中心黑洞可能存在,接下來就需要找到黑洞存在的直接證據:看見黑洞。

事件視界望遠鏡(Event Horizon Telescope, EHT)聯盟於 2017 年創立,串連全世界研究人員一同構建出足以觀測黑洞的電波望遠鏡陣列,同年(2017)完成兩個超大質量黑洞的初步觀測——銀河系中心黑洞 Sgr A* 與 M87 星系中心黑洞,當時有 8 座電波望遠鏡一同貢獻解析力,中研院就參與了 3 座望遠鏡(SMA、JCMT、ALMA)的研發、建造與運作。

-----廣告,請繼續往下閱讀-----

2019 年 4 月 10 日,人類獲得了史上第一張黑洞的照片!首次看見 M87 星系中心的超大質量黑洞,有明確的中心陰影和周圍明亮的環狀結構。

2022 年 5 月 12 日,我們終於揭開銀河系中心黑洞的秘密,獲得人馬座 A 星的直接影像證據,這是我們可觀察到距離最近的黑洞,也是目前唯二能夠觀測到的黑洞!

銀河系中心的黑洞影像,又稱為人馬座 A 星(Sgr A*)。資料來源/EHT

質量高達太陽的 4 百萬倍?銀河系「小」巨獸,人馬座 A 星

人馬座 A 星(Sgr A*)就像一隻「小」巨獸,說它巨,是因為 Sgr A* 的陰影直徑為太陽的 43 倍,質量高達太陽的 4 百萬倍,這是住在地球的我們難以想像的。不過和 M87 黑洞一比,Sgr A* 又顯得很「小」,因為 M87 黑洞陰影直徑為 Sgr A* 的 2,000 倍,質量是 Sgr A* 的 2,000 倍!(如下圖)。

人馬座 A 星(Sgr A*)和 M87 黑洞的大小比較,M87 黑洞直徑是 Sgr A* 的 2,000 倍,質量也是 Sgr A* 的 2,000 倍。資料來源/中研院天文所

奇妙的是,如果從地球上觀測人馬座 A 星和 M87 黑洞,兩個黑洞看起來會差不多大!Why?這是因為人馬座 A 星距離地球的距離,又比 M87 黑洞近了約 2,000 倍。從地球上看這兩個黑洞,剛好在天空形成一樣大的張角[註 1]

-----廣告,請繼續往下閱讀-----

從圖片可以看到,人馬座 A 星和 M87 黑洞的結構很類似,周圍都有發光的環狀結構(吸積盤)、中心陰影也都很明顯。不過,要如何在地球上看見黑洞呢?

首先,不能用光學望遠鏡,必須使用電波望遠鏡看黑洞。電波和可見光的主要差別是波長,可見光的波長平均 0.5 微米左右,EHT 的電波望遠鏡觀測波長則約 1 毫米,兩者大約相差 2,000 倍。

賀院士強調,為了接收到遙遠星系的訊號,必須選擇不受塵埃影響的波長,電波的波長比灰塵要大得多,因此可以穿透塵埃,收到來自銀河系中心的訊號。反之,可見光很容易就會被塵埃擋住。

為了接收到遙遠星系的訊號,必須選擇不受塵埃影響的波長,電波的波長比灰塵要大得多,因此可以穿透塵埃,收到來自銀河系中心的訊號。資料來源/EHT、中研院天文所

不過,就算是銀河系中心,還是離我們很遠,要如何看得清楚?

-----廣告,請繼續往下閱讀-----

賀院士說,波長和電波望遠鏡的「視力」(角解析度)有關,波長愈小、角解析度越好。因此波長也不能太大,否則會導致最終影像解析度不足,並影響天線精確度。

在技術和建置成本考量下, EHT 選擇次毫米波波長(0.5 毫米~1 毫米),1 毫米是目前最適合的觀測波長,可輸出黑洞影像解析度 3*3 像素。

咦?圖片解析度只有 3*3 像素?其實電波望遠鏡的「視力」(角解析度)已經非常高!這次觀測到人馬座 A 星的陰影直徑張角約 50 微角秒,是天空張角一度的一億分之一,相當於從地球看月球上一塊甜甜圈的大小。未來,EHT 觀測波長將使用 0.5 毫米(660 GHz)來獲得更高解析度,預計可達 15*15 像素。

未來在格陵蘭望遠鏡(GLT)和高頻觀測的技術支援下,黑洞照片解析度可望提升到 15×15 像素,圖片中為 M87 黑洞。資料來源/研之有物

除了波長之外,電波望遠鏡口徑也是影響角解析度的因子,口徑越大、角解析度越好。但是我們不可能做出和地球一樣大的望遠鏡,為了讓地表有限的電波望遠鏡模擬出巨大望遠鏡的效果,必須使用特長基線干涉(Very-long-baseline interferometry, VLBI)技術,讓不可能化為可能。

-----廣告,請繼續往下閱讀-----

VLBI 技術採用口徑合成(Aperture synthesis)的方式,當地球自轉時,地表上的望遠鏡可以在不同時間逐漸涵蓋訊號接收範圍,目的是讓世界各地的 EHT 望遠鏡陣列產生等同於地球直徑般的巨大望遠鏡效果,請參考以下影片。

事件視界望遠鏡協作方式。資料來源/中研院天文所、EHT

這意味著我們要從有限的視野去看黑洞,因此科學家使用原子鐘、同步器來確保每個望遠鏡的訊號同步,每個望遠鏡內有超導體接收器來準確接收訊號,因為電波訊號溫度相當低(僅 3K)。最關鍵的是,研究人員要非常瞭解可能產生的偏誤,例如地球自轉、大氣層影響、星際散射等,逐步修正數據。

特別是銀河系中心黑洞 Sgr A*,除了要排除眾多塵埃和星雲的干擾之外,由於 Sgr A* 距離地球較近,尺寸又小,所以周圍物質繞一圈的時間比 M87 黑洞快很多,地球自轉速度跟不上。因此,當我們在地表使用 VLBI 技術去觀測 Sgr A* 時,就好像在拍一隻不斷快速追著尾巴跑的狗狗,增加了影像分析的困難。

目前天文學家已經有一套成熟的除錯方法,將混亂的原始資料校正梳理成我們看到的黑洞影像。2017 年收到初步觀測數據之後,研究團隊需要排除眾多干擾和錯誤訊號,因此直到 2022 年才能正式公開影像。本次取得的銀河系中心黑洞影像,無疑將人類對黑洞的認知更往前推進。

-----廣告,請繼續往下閱讀-----

有關黑洞的 QA 集結!

接下來,「研之有物」編輯團隊為讀者收集了一些有趣的問題,一起來看賀院士如何回答吧!

為什麼拍到黑洞很重要?科學家為何高度關注?

黑洞是宇宙中重力最強的地方,在事件視界之內,光和資訊都無法逃脫,我們如果可以拍到想像中「看不到」的黑洞將會非常有趣。

2022 年的人馬座 A 星和 2019 年的 M87 黑洞都屬於超大質量黑洞,也就是質量有太陽的幾十萬到幾十億倍以上。這類黑洞存在各個星系中心,我們目前還不知道這類黑洞如何形成,因此需要更多黑洞影像的直接證據做確認,例如溫度多高、密度多少等。

從理論上來看,黑洞的觀測證據也有助於我們驗證愛因斯坦的相對論是否正確。

-----廣告,請繼續往下閱讀-----

為什麼目前只拍到兩個黑洞?其他黑洞呢?

因為宇宙中很多小型的黑洞還無法觀測到,以目前 EHT 的角解析度來說,我們可以拍到最大的黑洞是 M87 黑洞,最近的黑洞是人馬座 A 星。在未來 10 年內,當提高角解析度時,將能夠捕捉到其他星系中的超大質量黑洞照片。

為什麼每個星系中心都會有一個超大質量黑洞呢?

天文學家還不知道這種超大質量黑洞如何形成,以及為什麼會位於星系的中心。目前只知道,超大質量黑洞位於每個星系重力位能井的中心。然而,超大質量黑洞有可能在宇宙誕生初期就已經形成,成為星系生成的「種子」。

天文學家如何定位銀河系的中心?

因為在一個星系中,所有恆星都會圍繞著星系的中心旋轉,就像我們太陽系的行星也會繞著太陽旋轉一樣。因此,我們可以從旋轉運動去找到銀河系最中心的位置。獲得諾貝爾物理獎的 Genzel 和 Ghez,他們就是去觀測銀河系中心附近快速旋轉的恆星,精準確認位於軌道焦點的超大質量緻密天體(也就是黑洞)之位置。

為什麼銀河系中心的黑洞會有三個特別亮的區域?為何 M87 黑洞周圍沒有這三個亮區呢?

人馬座 A 星周圍環狀結構的三個亮點,可能與周圍物質快速旋轉的擾動有關。這些亮點存在的時間尺度約在數分鐘至數小時,我們的觀測解析度可以捕捉到這些變化。而 M87 黑洞的環狀結構,也有可能存在這些亮點,但是 M87 黑洞構造的時間變化尺度更長,我們目前的觀測解析度還無法看到。

為什麼觀測銀河系中心黑洞和 M87 黑洞時,黑洞的旋轉軸都是對著地球呢?

黑洞的旋轉軸是由黑洞在形成過程中所累積的總角動量來決定。因此,黑洞轉軸可以是任意方向,取決於這顆黑洞過去的歷史。不過,因為黑洞旋轉軸剛好和我們的視線垂直的機率很低,因此我們很可能總是看到黑洞旋轉軸以某種角度指向地球。

黑洞影像是人去上色的,為什麼選溫潤的紅橘色而不是藍色呢?

因為幾乎所有的天文數據都是用可見光以外的波長去取得,所以儀器收集到的光其實人眼並不可見。在 EHT 計畫中,我們看到的是次毫米波長的光(波長約 1mm),天文學家使用具有代表性的顏色為圖像「上色」。

使用紅橘色來表示黑洞環狀結構,是為了傳達一個概念:環的溫度非常高,黑洞周圍的吸積物質溫度比太陽熱得多。雖然在天文學上藍色天體溫度更高,但我們採用一般大眾熟知的「紅 = 熱」的概念。

黑洞的「背面」看起來會如何?會和目前照片類似嗎?

從宇宙的另一端,我們也會看到環狀結構,因為黑洞中心強大的重力場,會讓光線像穿過「透鏡」一般產生彎曲,這就是「重力透鏡效應」。

然而,從背面觀測還是有不太一樣的地方。以 M87 黑洞為例,從地球看過去,黑洞環比較亮的底部區域,是由都卜勒加速(Doppler boosting)造成,環的亮部正在向觀察者移動。

反之,如果從 M87 黑洞的「背面」看過去,環的底部區域將遠離觀察者,頂部區域會向觀察者移動,因此黑洞「背面」的觀察者將看到環的頂部區域特別亮。

黑洞會吸收能量和排放能量嗎?吸收的量是否等同排放的量?

無論是愛因斯坦的理論預測和觀測結果都指出,在黑洞陰影內的所有輻射,都將向黑洞中心彎曲,黑洞陰影的邊界約為事件視界的 2.5 倍大。

所謂事件視界,就是所有光和物質都被黑洞吸進去的邊界,光和物質的能量會被黑洞吸收。在事件視界和陰影邊界的中間地帶,光和物質則被黑洞「捕捉」在一個緊密的軌道上。在陰影之外,光和物質才得以逃脫。

因此實際上,黑洞只會吸收輻射,不會放出輻射[註 2]。我們看到的輻射(光環),以及看不到的輻射(被黑洞吸入事件視界),這些輻射都來自黑洞周圍的吸積物質。

黑洞和人類的生活有什麼關係呢?(比如太陽、月亮就影響地球人類的生活:潮汐、晝夜等)

黑洞都離地球相當遠,作為恆星終結狀態的小黑洞亦然。因此黑洞透過輻射或重力對地球的影響,與太陽相比之下幾乎可以省略不計。然而,也正是人馬座 A 星的超大質量,讓銀河系盤面上的恆星都繞著銀河系旋轉,公轉一圈約需 2 億年。因此,我們在地球天空看到的恆星和星系也是在這個時間尺度內不斷變化。

另外,在純理論考量之下,如果人類可以利用物質落入黑洞周圍吸積盤所釋放的能量,將會比核能發電更有效率。這是因為釋放的能量接近於物質的質量當量,而來自核分裂或核融合的核能僅釋放出質量當量的很小一部分。雖然現在聽起來有點科幻,但是當年瑪麗居禮(Marie Curie)首度發現放射性材料之後,人類其實很快就能夠製造出核反應爐。

註解

  • 註 1:因此,雖然 Sgr A* 黑洞比 M87 黑洞距離地球還要近,但是因為直徑也更小,故兩者最終圖片解析度都是 3*3 像素。
  • 註 2:理論上,黑洞會釋放相當微弱的「霍金輻射」(Hawking radiation),但過程會非常非常緩慢。目前天文學家尚未觀測到霍金輻射。

延伸閱讀

研之有物│中央研究院_96
290 篇文章 ・ 3284 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook