0

0
0

文字

分享

0
0
0

福島核事故之後的核電:仍然存活的核電計劃

SciDev
・2011/10/15 ・4964字 ・閱讀時間約 10 分鐘 ・SR值 560 ・八年級

-----廣告,請繼續往下閱讀-----

科學與發展網絡遍布全世界的記者告訴我們,哪些國家在福島核事故之後仍然準備發展核能。

追求能源自給自足、不斷提高的能源價格,與對政治權勢的渴望——意味著在福島核事故之後,抱持核能雄心的發展中國家幾乎沒有一個放棄。

約旦規劃中的核電廠是應對水和能源嚴重短缺的一部份戰略

約旦打算用核電淡化海水,從亞喀巴灣輸送到南方 Flickr/eutrophication&hypoxia

約旦原子能委員會(JAEC)希望2035年之前,60%的能源來自核能。目前,約旦花在向阿拉伯鄰國買能源的金額相當於其國內生產總值的五分之一。

-----廣告,請繼續往下閱讀-----

該國也是全世界最缺的國家之一。約旦打算使用核能淡化來自亞喀巴灣的海水,輸送到南方,然後輸送到安曼、伊爾比德以及Zarqa的人口中心。

在福島核事故之後,約旦開始重新評估它的計劃於2013年開始建造的核反應堆的安全措施。該國還考慮實施更多的安全措施並且繼續進行地質和環境調查。

「政府不會因為福島核事故而收回在約旦建造核反應堆的決定,」JAEC的副主席Abdel-Halim Wreikat說。「我們的核電站是第三代壓水式,它比福島的沸水式安全。」

Wreikat認為,「目前約旦選擇核能,比選擇太陽能和風能等可再生能源更好,因為後者的成本仍然很高。」

-----廣告,請繼續往下閱讀-----

但是一些約旦科學家不同意這種看法。「用太陽能發電的成本每年都在下降,而核電的成本每年都在增加」,約旦大學能源中心主任Ahmed Al-Salaymeh說。他呼籲對核能選項進行更多的經濟可行性研究。

而哈希姆大學地球與環境科學系教授Ahmad Al-Malabeh補充說:「約旦不但太陽能和風能資源豐富,油頁岩也多,從中我們可以開採出石油,從2016到2017年起可以滿足約旦的能源需求……這可能讓我們有更多的時間去擁有更具經濟可行性的可再生能源。」

在福島核事故之後,政府對它在開普敦的兩座核反應堆進行了一次安全評議 Bjorn Rudner/ESKOM

財政原因,而非福島核事故,可能推遲南非僅僅在日本災後5天通過的核計劃。

南非仍然決心執行在2030年前建設6個新核反應堆的規劃。

-----廣告,請繼續往下閱讀-----

南非能源部「核安全、責任與緊急情況管理」主任Katse Maphoto說,在福島核事故之後,政府對位於開普敦的兩座核反應堆進行了安全審核。

但是政府在福島核事故發生之後的5天就通過了2010-2030年整合資源規劃(IRP)。南非核能集團(NECSA)的媒體負責人 Elliot Mulane說,這個決定的時機表明「政府對核技術的信心」。NECSA是根據推廣核研究的1999年核能法建立的一個公立公司。

而且能源部長Dipuo Peters在今年稍早(5月26日)宣佈預算的時候,重申了推動核能的承諾。她說:「我們仍然認為核電是我們的戰略必須的一部分,這個戰略就是通過多種組合,包括基於化石燃料、可再生和能源效率技術,從而減少我們的溫室氣體排放。

南非威特沃特斯蘭德大學放射性與衛生物理學研究室主任James Larkin認為南非可能採用相對便宜的韓國第三代反應堆。

-----廣告,請繼續往下閱讀-----

Larkin說核能是唯一能替代煤炭產生足夠電力的能源。

「我們有其他什麼替代方法?可再生能源幾乎什麼也做不了,」他說。

他認為核能有能力供應電力基本負荷的85%,而太陽能只能供應17%到25%。但是儘管政府有信心,Larkin說資金短缺可能延遲該國的核計劃。

「政府說要,但是沒有說它要如何找錢來付。建造核電站的規劃可能會延遲15年。」

-----廣告,請繼續往下閱讀-----
越南希望它的首個核電站——寧順核電站將在2020年完工 Tuoitrenews

越南的核能目標仍然雄心勃勃,儘管科學家警告海嘯的風險。

越南計劃在20年內用核電提供電網10%的電力,是東南亞最雄心勃勃的核能規劃。該國的首個核電站,寧順核電站,是由一家俄羅斯國有能源公司幫助建造的,將在2020年完工。

越南地球物理研究所地震與海嘯預警中心主任Le Huy Minh警告說,越南的沿海可能受到南中國海附近海嘯的影響。

據越南國家媒體報導,寧順核電站可能位於越南沿海某斷裂帶80到100公里外,可能受到海嘯的威脅。

-----廣告,請繼續往下閱讀-----

但是官方的越南原子能委員會主任Vuong Huu Tan在今年3月告訴國家媒體說,來自福島核事故的教訓將幫助越南開發安全技術

澳大利亞的能源顧問John Morris是在越南工作的地質學家。他說,只要正確建造核電站,該國核電站的地震風險就不是「一個大問題」。他還說,日本的核電站比越南的核電站「遠遠更容易遭受地震襲擊」。

菲律賓De La Salle大學的能源專家Kevin Punzalan說,越南不太可能遇到鄰國印度尼西亞和菲律賓那樣的反核抗議,在印尼和菲律賓,民間團體組織更有影響力。

Punzalan告訴本網站說,來自越南科學界的警告可能迫使該國執政的共產黨為核反應堆選擇另外的地點,或者修改反應堆的設計,但是這可能不會導致這個一黨國家核能戰略產生極端變化。

-----廣告,請繼續往下閱讀-----
菲律賓總統貝尼格諾•阿基諾三世說被封存的Bataan核反應堆將永遠不會用於它的最初用途 Flickr/nznationalparty

菲律賓修復未開張過的核電站方案,能在福島核事故後倖存嗎?

菲律賓正處於25年期的暫緩使用核能期,直到2022年為止。該國政府說它仍然考慮利用核能來長期解決不斷增長的電力需求。而它的科學技術部自從福島核事故之後已經公開宣佈支持追求核能。

然而,菲律賓科技部的官員在私下承認這次事故已經讓他們贏得公眾對核能支持的工作倒退了四、五年。

與此同時,政府正在設法增強實力。例如,該國缺乏技術專家。菲律賓能源部規劃局助理局長Carmencita Bariso說,儘管出現了福島核事故,他的機構仍然在研究核能的可行性、安全性和社會接受度。

Bariso說該研究將包括對Bataan核電站未來走向的建議。這座1985年竣工的核電站是當時東南亞的首座核電站。價值23億美元的西屋輕水反應堆位於菲律賓首都馬尼拉以北60英里,它從未被使用過,儘管它有潛力發出621兆瓦的電。

菲律賓總統貝尼格諾‧阿基諾三世的母親科拉松‧阿基諾總統,因為腐敗和安全問題而在1986年暫停了這座核電站的工作。阿基諾三世說它從未被當作一個核反應堆使用,但是可以私有化並改造成一個傳統發電站。

但是曾經擔任立法者的Mark Cojuangco在2008年提出了一個法案,尋求啟動Bataan反應堆的商業核運行。他的法案在去年國會休會之前沒有通過,他承認福島核事故讓他的工作更難做了。

「利用核能仍然是正確的選擇,」他說。「但是這需要一個社會的決定。一旦福島核事故的報告公佈,我們將啟動激烈的公眾辯論。」

尋求重啟反應堆以及通過改造或永久關閉從而解決這個問題的修正案,都在等待菲律賓參眾兩院的批准。

反對核電的綠色和平組織認為,福島核事故讓啟用Bataan核電站的機會變小了,因為「人們越來越意識到放射性可能對一地產生什麼影響」。該國的許多地方容易遭到地震和其他自然災害的襲擊,批評家說著讓菲律賓不適合建設核電站和處置放射性核廢料。

肯亞的電力需求很大 Flickr/computerwhiz417

 

在肯亞,核能的支持者提出了地熱核電的混合方案。

在福島發生核事故的同一個月(3月31日),來自國際原子能機構的調研人員批准了肯亞首個核電站的申請。這是一個35000兆瓦的核電站,建設成本是9500億肯亞先令(98億美元)。該電站將建在距離奈洛比50公里的阿西平原的200英畝土地上。

這座核電站是肯亞核電工程委員會主持建設的,計劃於2022年運營。該國政府聲稱它將滿足2040年之前肯亞的全部能源需求。

肯亞的電力需求很大。該國首都奈洛比不到一半的居民接入了電網,而農村的電網接入率是2%。肯亞國會能源、通訊和信息委員會主席James Rege的視角比政府的方針更加廣闊,他說來自裂谷計劃的地熱能是最有前景的選項。它的生產成本高,但是仍然是該國的「最佳希望」。核能應該作為「後備」。

「我們把核能視為一種替代能源。化石燃料的成本不斷攀升,普通肯亞人負擔不起,」Rege告訴本網站說。

他說,水電受到正在乾涸的河流的限制。而把該國的耕地轉為生產生物燃料將威脅糧食供應。

肯亞能源部核電發展項目秘書David Otwoma認為,如果不讓肯亞的能源組合包括更多的地熱、核能和煤炭,它就無法實現工業化。Otwoma認為,核能發電的成本可能有朝一日通過共享的區域項目分擔,但是在那之前肯亞需要自主前進。

Rege說,雖然核能替代方案有前途,非常重要的是考慮到福島核事故。

「現在有了數據,必須每次走一步,不能匆忙行事,」他說。

Otwoma說,新的有核電站的肯亞可以從頭發展良好的核安全文化,「但是為了實現這一點,我們需要願意學習所有的經驗教訓並且接受它們,而不是忘掉它們並且認為這些情況不會在我們這裡出現」。

奈及利亞:核能帶來的收益比石油更多嗎? Flickr/ezioman

奈及利亞沒有受到福島核事故的影響,正穩步推進核合作。

非洲和管理機構論壇主席Shamsideen Elegba說,沒有必要因為福島核事故感到恐慌。奈及利亞有保持核活動安全的必要的管理體系。

「尼日利亞核管理機構[NNRA]本身已經成為了監管該國電離輻射、核材料和放射源的可信機構,」最近成為NNRA主管的Elegba說。

「這不僅僅是我們自稱的:2006年國際審計機構來到這裡評估了我們的程序和過程,證實了同樣的結論。」

Elegba堅定地認為福島核事故的責任應該歸於大自然而不是人類錯誤。

「日本是不僅僅是這個產業的領導者之一,而且也是監管的領導者之一。它們有非常嚴格的授權體系。我們必須區分開自然事件(或者一系列的自然事件)與工程基礎設施、管理基礎設施,以及安全監管。」

奈及利亞原子能委員會(NAEC)的主管Erepamo Osaisai說,在福島核事故之後,奈及利亞的核能項目「不會倒退」。

奈及利亞很可能讓俄羅斯國家原子能公司(ROSATOM)建設它的已經規劃的首個核電站。俄國代表團於7月26-28日訪問了奈及利亞,雙邊文件將在12月前正式定稿。

ROSATOM的主管Nikolay Spassy在這次訪問期間說,「和平利用核能是發展的基礎,實現[奈及利亞]到2020年成為20個最發達國家的目標將嚴重取決於開發核電站。」ROSATOM指出,國際原子能機構在此前的非核國家監管了核電站的建設。

但是環境權利行動/奈及利亞地球之友(ERA/FoEN)的主管Nnimmo Bassey說,「我們看不到政府支持這樣一種技術的邏輯,在歐洲和其他技術先進的國家,這種技術過去的支持者如今已放慢腳步。」

「奈及利亞如今需要投資安全的替代能源,那些不會損害環境和人民的。我們不能接受核選項。」

埃及是中東和北非地區首個擁有核計劃的國家 Flickr/WanderingtheWorld

對電力和政治影響力的渴望讓埃及認定福島核事故——或者革命——不會讓它的核計劃出軌。

埃及是中東和北非地區首個擁有核項目的國家,在1961年啟動了一個科研反應堆。在2007年,埃及「解凍」了一個在車諾比核事故之後停滯的核項目。在2011年早些時候埃及的反抗活動以及福島核事故之後,政府推遲了建設它的首座核電站的國際投標。

埃及核電站管理機構的主席Yassin Ibrahim告訴本網站說:「我們採取了額外的措施避免任何緊急狀態,但是由於這次反抗活動,招標延遲了,直到我們在2011年底的總統和議會選舉後擁有了政治穩定性。」

Ibrahim否認核項目會被取消。他說:「埃及核電站的設計指標考慮到了抗地震和海嘯,包括那些比該地區過去4000年裡曾發生的地震更大級別的地震。」

「反應堆的類型是一種第三代壓水堆,自從60年代早期運營以來,它們還沒有對環境產生任何副作用。」

埃及核電站管理機構的核事務與核能顧問Ibrahim El-Osery指出,埃及有限的石油和天然氣資源將在20年中用完。

「然後我們將不得不進口電力,而我們不能依賴於可再生能源,因為它尚不經濟——埃及在2010年的可再生能源僅僅提供了它的需求的2%。」

但是Assiut大學的礦物學教授Nadia Sharara說,擁有核技術還有其他的動機。

「擁有核電站首先是一個政治決定,特別是在我們的地區。任何獲得了核技術的國家都在國際社會擁有了政治權重,」她說。「埃及有潛力擁有這種能源,因為埃及的核材料管理機構估計埃及有15000噸未開採的鈾。」

她還指出,這也是為了跟上技術。她警告說:「如果埃及因為福島核事故而凍結它的計劃,在未來至少50年中它將在許多科研領域落後。」

本文由如下作者撰寫:Hanan AlKiswany (約旦), Lizette Damons (南非), Mike Ives (越南), Theresa V. Ilano and Joel Adriano (菲律賓), Ochieng’ Ogodo (肯尼亞), Emeka Johnkingsley (尼日利亞), Ma. Nehal Lasheen (埃及)

本文是福島事故之後的核電專題聚焦的一部分。

轉載自SciDev[2011-09-28]

文章難易度
SciDev
41 篇文章 ・ 1 位粉絲
科學與發展網絡(SciDev.net),提供有關科學、技術以及發展中國家的新聞、觀點和信息。

1

0
0

文字

分享

1
0
0
日本福島的核廢水該流向大海嗎?——《科學月刊》
科學月刊_96
・2023/10/29 ・5063字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/張郁婕
    • 日本大阪大學人間科學研究科、清大工科系畢
    • 現為國際新聞編譯
  • Take Home Message
    • 自 2011 年福島第一核電廠發生事故後,為了冷卻反應爐和防範地下水受汙染而每天產生核廢水,目前儲水空間即將不足。
    • 雖然經處理過後的核廢水含有放射性物質,不過濃度低於排放標準,日本政府將核廢水排放到海洋的做法獲得國際原子能總署背書。
    • 日本漁業業者相當不滿、認為有其他解決方案,臺灣政府僅表達「遺憾與反對」,並無進一步作為。

福島第一核電廠自 2011 年發生事故後,時隔 12 年再次躍上多國新聞版面。但這次不是因為災後核電廠除役與復興、訴訟或是 Netflix 上架的日劇《核災日月》,而是存放在福島第一核電廠廠區內的「核廢水」即將排放大海。福島第一核電廠的「核廢水」從何而來?又為什麼要在這個時間點排入大海?

時隔 12 年再次躍上多國新聞版面。但這次不是因為災後核電廠除役與復興、訴訟或是 Netflix 上架的日劇《核災日月》,而是存放在福島第一核電廠廠區內的「核廢水」即將排放大海。圖/IMDb

回到地震發生時的核電廠

時間回到 2011 年 3 月 11 日。當時東日本大地震與隨後而來的海嘯摧毀了福島第一核電廠的電力系統,導致核電廠在停機之後無法持續注入冷卻水,直到反應爐冷卻。因此發生 1、3、4 號機組氫氣爆炸、1~3 號機組爐心熔毀,以及 1 ~ 4 號機組輻射外洩的事件 註1。這次事故更被歸類為國際核能事件最高級別(第 7 級)的最嚴重意外事故。

在事故發生後,首當要務就是持續冷卻反應爐,直到反應爐的溫度降低。冷卻反應爐需要水,所以當時曾引進海水作為冷卻水。這些在福島第一核電廠事故當下出現在廠房內、遭到放射性核種汙染的水,就是日後的「核廢水」。加上當地曾遭到海嘯襲擊,因此這些受到輻射汙染的核廢水也含有鹽分。

但廠區內受到輻射汙染的水並不是只有事故發生當下出現在廠房內的水,事故發生後只要雨水剛好落在福島第一核電廠廠房上,或是地下水流經福島第一核電廠房底下,都會受到放射性核種汙染。

-----廣告,請繼續往下閱讀-----

保護地下水也會產生核廢水

作為營運福島第一核電廠的東京電力公司,在事故發生後的首要任務就是防止更多乾淨的水遭到輻射汙染,同時也要防止受到輻射汙染的水流出廠房外。所以他們在福島第一核電廠 1~4 號機組外加裝擋水牆,希望隔絕乾淨的地下水流經廠房底下,但這些擋水牆實際上無法有效防止地下水從四面八方流經福島第一核電廠正下方。

再考慮到水的流向,寧可讓乾淨的水流進廠房底下受到輻射汙染、也不能讓受到輻射汙染的水外流,所以東京電力公司必須一直抽取廠房內部受到輻射汙染的水,讓廠房內的地下水位略低於廠房外的水位;但在抽水時又不能使廠房內的水位低太多,否則將會一口氣湧入更大量的地下水、產生更多受到輻射汙染的水。

時至今日,東京電力公司仍每天汲取流經 1~4 號機組的雨水與地下水,使得福島第一核電廠即使到現在,每天都還是會產生核廢水。經過 12 年來的各種嘗試,近年新增的廢水總量已有減少的趨勢,去(2022)年每日平均產生約 90 公噸的核廢水,已是事故發生以來最低的數值。

攝於 2011 年 3 月 16 日從左到右分別為 4、3、2、1 號機。圖/wikipedia

如何處理核廢水?

受到輻射汙染的水在被排放之前需要經過幾道淨化流程。首先是利用「銫吸附裝置」除去水中一部分的銫(caesium, Cs)和鍶(strontium, Sr),再經過淡水化裝置除去水中的鹽分,否則海水中的鹽分會侵蝕、損害廠房設備。接下來這些水有兩種命運:循環再利用或是成為核廢水。

-----廣告,請繼續往下閱讀-----

循環再利用

循環再利用是指受到輻射汙染的水經上述淨化處理後,可以回到福島第一核電廠 1~3 號機組,作為反應爐的冷卻水及輻射防護屏障。即便如此,這些受到輻射汙染的總水量遠多於福島第一核電廠 1~3 號機組的需求,所以絕大多數的水被汲取上岸後,都得存放在福島第一核電廠廠房內一桶又一桶的巨大水槽內,成為沒有其他用途的核廢水。

ALPS 處理水

為了降低核廢水的放射性核種濃度,這些存放在巨型水槽內的核廢水會經過專為福島第一核電廠事故設計的多核種除去設備(advanced liquid processing system, ALPS),而經過 ALPS 淨化處理的核廢水又稱「ALPS 處理水」。

-----廣告,請繼續往下閱讀-----

「多核種除去設備」,顧名思義利用物理或化學方法,大幅降低 62 種人造放射性核種的濃度 註2,但唯獨不能處理氫的同位素——氚(tritium, 3H)。這不是因為多核種除去設備成效不彰,而是即便開發其他設備也很難將氚從水中分離。

由於水分子包含氫原子,而氚和氫是同位素,它們的物理性質和化學性質幾乎一樣,難以使用物理或化學方法將它們分離,因此無法利用 ALPS 或其他方式濾掉氚。

福島第一核電廠內水循環示意圖。圖/科學月刊 資料來源/東京電力公司

快滿出來的核廢水

事實上,福島第一核電廠以外的一般核電廠所排放的廢水當中就含有氚,不過在一般情況下並不會特別放大檢視核電廠廢水當中的氚濃度。

此外,自然界中本來就含有氚,我們日常在使用或是飲用的水中也含有非常微量的氚。例如臺灣對飲用水中氚的容許濃度標準為每公升 740 貝克(Bq),並沒有要求零檢出,也就是數值低到儀器驗不出來的程度。

-----廣告,請繼續往下閱讀-----

但福島第一核電廠的核廢水並不一樣,因為這些是流經福島第一核電廠、遭到人造放射性核種汙染過的水。即使是已處理過的 ALPS 處理水,除了氚之外還是包含低量、因反應爐爐心熔毀而外洩的人造核種,並不能直接排到自然界中。

所以這些水自福島第一核電廠事故以來,被汲取上岸後就一直存放於福島第一核電廠廠區內。

然而福島第一核電廠廠區空間有限,按照它每天產生核廢水的速度來推算,今(2023)年 4 月最新的估計是最快在明(2024)年 2 月以後儲水空間就會不足。該如何為這些存放在廠區內的核廢水找尋新的出路,就成了近年難題。

這個問題在 2013 年討論之初,曾列舉了排放到大海、注入地層、埋到地底下、電解成氫氣後排放到大氣中、轉換成水蒸氣排放到大氣中五種方法。經多年評估、討論後,日本政府在去年決定選用國內、外最常見的核電廠含氚廢水的排放方法,在確保廢水中的放射性核種的濃度符合標準 註3、沒有超標的情況下,就能將核廢水稀釋後排放到海洋。

-----廣告,請繼續往下閱讀-----
ALPS。圖/wikimedia

民眾為什麼反對?

早在日本政府確定選擇「排入大海」這個方案前,就有許多反對聲浪。最主要的原因就如前面所說,福島第一核電廠核廢水和一般核電廠的廢水差異在於含有爐心熔毀釋放的人造放射性核種,氚只是這些放射性核種當中的其中一種。

即便福島第一核電廠核廢水在 ALPS 淨化處理後,除了氚以外的放射性核種濃度大幅降低,且符合科學上的排放標準,但和「沒有發生事故」的核電廠廢水相比,內容物組成還是有所不同。

不過國際原子能總署(International Atomic Energy Agency, IAEA)在今年 7 月公布的報告書表示,目前日本提出的方案符合國際安全標準,ALPS 處理水的輻射量也極低,幾乎可以無視輻射對人體或環境的影響,國際水域也幾乎不會因此受到影響。與此同時,IAEA 也會與第三方機構持續監測、分析 ALPS 處理水排放的狀況。

但上述都是關於核廢水放射性物質濃度是否符合目前科學認定的安全標準討論,撇開在科學上是否經得起檢驗、一翻兩瞪眼的檢測問題,民眾願不願意接納這些「科學上的論點」,有時還會有情感方面的考量。

-----廣告,請繼續往下閱讀-----

對於福島漁業來說,政府好不容易才在 2021 年解除試驗性捕魚,當地漁業才正準備要復甦。更何況日本政府先前曾承諾在未取得漁業相關業者的理解之前,不會將福島第一核電廠的核廢水排入大海,但現在的態度卻是要趕在福島第一核電廠放不下更多核廢水之前,陸續將核廢水排入大海,讓當地漁業業者相當不滿。

受核放射線影響,阿武隈川被禁漁10年。圖/wikimedia

此外,也有一派反對聲浪認為日本政府僅因經濟效益考量,而選定「排入海洋」的解決方案,考慮不夠周全、詳盡。雖然規模不同、在日本也未曾將含氚的廢水先蒸發成水蒸氣後排放,若採用這種做法或許就能大幅降低對海洋生物的危害。

也有民間團體提議,如果認為核廢水太占體積,將 ALPS 處理水混合類似水泥的材質進行固化處理,就能堆疊起來繼續存放於福島第一核電廠廠區內,而不會汙染到廠區外的環境。但上述這些做法仍有實務上的困難之處,例如廢水蒸發會影響到陸域環境、固化處理後仍會繼續消耗存放空間等。

在臺灣的我們會被影響嗎?

福島第一核電廠核廢水排放在即,臺灣行政院原子能委員會(原能會)近年多次重申福島第一核電廠的廢水是核電廠事故後的廢水,不能和一般核電廠排放的含氚廢水混為一談。

-----廣告,請繼續往下閱讀-----

也許值得慶幸的是,臺灣和日本的直線距離雖然很近,但洋流方向卻未必如此。福島第一核電廠的核廢水排放後,會因為太平洋的環流系統流向,先往東朝美國加州附近水域擴散,再順時針繞來臺灣。

根據原能會的試算,最快要四年後才會流至臺灣附近海域,屆時放射性物質的濃度已低於儀器偵測極限,濃度低到難以被偵測,不會對臺灣附近海域造成輻射安全上的危害。

但中央研究院環境變遷研究中心研究員吳朝榮以過去觀測的海洋數值模擬,福島第一核電廠的核廢水排放後最快一年內就能抵達臺灣附近海域。

目前原能會已和漁業署、氣象局等跨部會合作監測福島第一核電廠核廢水的擴散狀況並進行漁獲、水產的輻射檢測,相關資訊都公開在「放射性物質海域擴散海洋資訊平台」隨時供民眾查閱。

在臺灣的我們暫時不需要過於擔心福島第一核電廠的核廢水會影響臺灣水域,核廢水排放海洋對環境的衝擊也會遠小於福島第一核電廠事故發生之初的狀態。臺灣方面針對日本食品的輻射檢驗標準仍高於歐、美國家,在現行邊境輻射檢驗標準下毋須過於擔心。

註解

  1. 當時 4 號機組處於定期檢修期間,反應爐內並沒有燃料棒,爆炸原因為與 3 號機組共用管線。當 3 號機組爐心熔毀後,放射性物質和氫氣隨著共用管線流入 4 號機組而發生氫氣爆炸。2 號機組雖然免於廠房爆炸,但 2 號機組內部也發生爐心熔毀,當時為了釋放 2 號機組內部壓力避免發生氫氣爆炸,曾將 2 號機組內部含有放射性物質的氣體釋出,造成輻射外洩。
  2. 放射性核種指的是會自然釋放輻射的放射性元素,依據這些放射性元素的形成方式,又可分為存在於自然界中的「天然核種」與「人造核種」。核電廠發電過程產生的放射性元素,都屬於人造核種。
  3. 目前日本針對福島第一核電廠「核廢水」濃度規範是:
    a.針對所有放射性核種整體的有效輻射劑量須低於每年 1 毫西弗(mSv/year)。
    b.除了氚以外的其他放射性核種實際濃度佔該核種告示濃度的比值總和(稱為「告示限度比」或「告示濃度比總和」)必須<1。

參考資料

  • 行政院原子能委員會,2023 年 6 月 13 日。原能會成立跨部會合作平台,做好日本福島含氚廢水排放因應準備,行政院原子能委員會
  • 台灣科技媒體中心,2023 年 6 月 13 日。「日本將排放含氚核廢水」專家意見,台灣科技媒體中心
  • 〈本文選自《科學月刊》2023 年 9 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。
所有討論 1
科學月刊_96
249 篇文章 ・ 3481 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

1

3
1

文字

分享

1
3
1
福島核污水是什麼?我們還能安心吃海鮮嗎?核污水全解析!
PanSci_96
・2023/10/01 ・4897字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

福島核污水正式排放入海了!食鹽要屯多少?海鮮還能吃嗎?哥吉拉要誕生了嗎?

核廢水是怎麼來的?

2011 年 3 月 11 日,一場海嘯衝擊了在福島海邊的第一核電廠,破壞了核電廠中做為緊急電源設備的發電機,在備用電池電力耗盡後,冷卻系統完全失效。然而反應爐內的連鎖反應還在持續,最後溫度不斷竄高,高溫水蒸氣與燃料護套中的鋯合金,發生鋯水反應並產生大量易燃的氫氣,最終與空氣中的氧氣作用導致爆炸。

在事故發生前後,日本政府灌入大量海水來為反應爐進行冷卻,而這些直接接觸熔融燃料棒的污水,就被稱為核污水,日文則稱為「汚染水」。至於當時的決策細節與失誤,大家可以看今年上映的日劇《核災日月》複習一下。而既然事件已經發生了,我們就重點討論核污水。

《核災日月》圖/IMDb

現在儲存在福島的核污水不只有冷卻水,其實還有受污染的降雨與地下水。事故發生後,東京電力公司在第一核電廠加裝擋水牆,阻擋因為降雨流經 1、2、3 號機組的污染水流入海洋。並且設置凍土牆隔絕地下水,同時挖水井抽出污染的地下水,讓廠區內的地下水水位下降,因此地下水只會從外部滲入,內部的污染水則不會滲到外面。不論是降雨還是抽出的地下水,都屬於污染水,平均每天都會增加 92 立方公尺的污染水。直至本集影片上架,當地已經存有 134 萬噸的汚染水,而且還會持續增加,你可以自己打開 Google Map,鳥瞰這密密麻麻的眾多大型儲槽,別忘了,核反應爐本體才是日本更迫切的問題,要是污水不先處理,要是下一個天災來襲,麻煩又會疊加。因此日本政府在 2016 年就展開討論,準備要處理掉這些污水。

-----廣告,請繼續往下閱讀-----
福島第一核電廠。圖/Google Map

為何決定排放入海?

為何核污水的最終處置決定是排放入海呢?其實 2016 年提出的方案有五種:稀釋入海、蒸發至大氣、電解水釋放氫氣、深層地質注水、以及水泥固化並地下處置。很快,電解水因為還需要相關技術研發而被否決,這個我們在氫能那集講過。深層地質注水和水泥固化並地下處置,則有選址與法規問題,無法立即實現。這部分則等同於核電使用國都面臨的核廢料處置問題,我們之前花過好幾集介紹過,歡迎前往複習。

最後僅剩稀釋入海和蒸發至大氣兩種方法,最後日本認為海洋的擴散行為更容易追蹤,最重要的是成本僅有蒸發的十分之一,因此選用了這個方法。至於有些人說,既然東電跟日本政府都保證安全,何不做成瓶裝水拿去賣?之類的建議在這我們不多討論,就請大家用理智來看待。

核廢水如何被處理?

根據日本政府的規劃,在這些污染水排放入海前,會先進行淨化處理成為處理水。首先,污染水會經過「銫吸附裝置」,除去銫(Cs)和鍶(Sr)。接著再經過淡水化裝置除去水中的鹽分後,成為「鍶處理水」。這種鍶處理水,可以作為 1, 2, 3, 4 號機組的冷卻水再次循環利用。

最後,大部分的鍶處理水,會被送到「ALPS多核種除去設備」,將 63 種放射性核種中的 62 種放射性核種去除。「ALPS多核種除去設備」唯一不能去除的放射性核種,就是氚(H-3)。但其實啊還有一個碳-14 無法被過濾,但濃度低到可以忽視。經過「ALPS多核種除去設備」處理過後的「鍶處理水」,就稱為「含氚處理水」。

-----廣告,請繼續往下閱讀-----
根據日本政府的規劃,在這些污染水排放入海前,會先進行淨化處理成為處理水。圖/PanSci YouTube

含氚處理水中的氚,指的是氫的同位素的一種,在自然界中就存在。半衰期為 12.43 年,衰變時會進行 β 衰變,放出一顆電子並成為氦-3。β 衰變對人體的穿透距離僅限於皮膚,不會對內臟器官產生傷害。
如要能危害人體,需要長期大量攝取由氚構成的重水。關於攝取過多重水對動植物的影響,我們網站上有文章詳細說明過。

簡單來說,綜合自然界中跟福島即將排放的氚,以及我們的生活型態來看,遠遠達不到可能產生危害的程度。知道劑量決定毒性,就像我們每天都吃下不少「有害」物質,例如殘留農藥、油炸致癌物、過多的精製糖等等,但攝取的多寡,對你的健康影響差異很大。那麼重點來了,福島排放的處理水,真的有合乎標準嗎?

處理水符合標準嗎?

這個問題,我們在今年六月的核廢料主題中有提到,國際原子能總署 (IAEA) 在五月底公布了第一階段的調查結果,針對「日本的核種監控能力」進行第三方驗證。結果認為,日本的檢測標準跟分析方法沒問題,調查結果是可信任的。報告中除了氚以外,其他放射性核種的活度也都遠低於排放限值。例如鍶-90 為每公升 0.4 貝克、銫-137 為每公升 0.5 貝克,以臺灣的「食品」標準,銫-137 為每公升 100 貝克以下,雖然鍶-90 還沒有定下標準,但是依國際食品法典委員會的標準,也是在每公升 100 貝克以下。目前的排放值都遠小於標準。

國際原子能總署(IAEA)公布第一階段的調查結果。圖/PanSci YouTube

除了各單一核種的活度以外,所有水中核種加起來的「告示濃度限度比」也低於日本國家標準的每年 1 毫西弗(mSv/year), 1 毫西弗大約是多少呢?大約是一般民眾一年會接收到的輻射劑量。

-----廣告,請繼續往下閱讀-----

至於無法被 ALPS 處理的氚,因為海洋中的水中就廣泛存在,日本將透過海水稀釋後排放入海。目前世界衛生組織對於飲用水的氚含量標準訂為每公升 1 萬貝克,台灣的標準嚴格了許多,是每公升 740 貝克。東電公司的處理水是每公升 14 萬貝克,在排放前會稀釋 740 倍,以每公升 190 貝克的氚濃度排放,低於台灣的飲用水標準。

那麼食鹽呢?我們需要搶購嗎?這就更不用擔心,因為食鹽中不含水,自然也不含氚。或是更進一步可以參考東海大學應用物理系的粉專,他們計算,根據國家標準,食鹽含水量若為 3% 以下,需要每天吃超過 400 公斤的食鹽才會攝取氚超標。真的,別吃那麼鹹啊。

每天吃超過 400 公斤的食鹽才會攝取氚超標。圖/pixabay

那麼,我們就真的兩手一攤,為這件事劃下結論,核輻射只是庸人自擾嗎?

我們該如何看待排放的處理水?

當然不是,就像許多人擔心的,就算科學上告訴你沒問題,但前提是,這些數據得是沒問題的。而且不用說周邊國家,連日本自家民眾也多次抗議處理水的排放。

-----廣告,請繼續往下閱讀-----

目前在 IAEA 架設的網站上,可以看到整個排水計畫的各種即時監測資料。其中就包括出水口的輻射數值監測。

為了驗證處理水不會對海洋生物產生影響,東京電力甚至從去年 9 月開始,就開始進行海洋生物飼養實驗,並且全程公開直播放在他們的YouTube頻道上。不過這頻道訂閱人數跟觀看次數都有點低迷,有興趣的話不妨訂閱,開啟小鈴鐺。

那麼我們能下定論了嗎?在科學上,我們確實能說,在符合規範下,這些排放入海的處理水是沒問題的,食鹽、海鮮也都能照吃,把注重食安與健康的努力分配到其他危害更大、風險更高的事情上,對處理水保持健康而非病態的質疑,對個人來說應該效益更高。

臺灣從去年到今年 6 月,曾 3 次組團赴日考察,並於 8/24 公佈報告書,包含跟日方的問答內容,還有福島核廢水排放設施的照片。海委會表示,專家觀察團評估日方排放相關作業的安全性,跟國際原子能總署評估的結果一致。然而是否選擇相信日本以及 IAEA 給出的數據,如今看來成了國際政治問題。

-----廣告,請繼續往下閱讀-----

另外,在 IAEA 的小組成員中,包含周邊國家:中國、美國、韓國、越南、澳洲、加拿大、法國、俄羅斯、英國、阿根廷、馬紹爾群島,並不包含台灣。如果台灣也能以任何形式加入團隊,或得以取得樣水複測,讓我們知道,日本以及 IAEA 給出的數值是可信的,想必都能更進一步降低民眾的擔憂。

最後,也問問大家,對於這次的處理水排放事件,你會擔心我們的海鮮或食鹽受到影響嗎?

  1. 不擔心,跟人類對海洋的其他污染相比,根本小巫見大巫。
  2. 擔心,等我親眼見到泛科學到現場實測我才相信。機票我出!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

所有討論 1
PanSci_96
1219 篇文章 ・ 2184 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
2

文字

分享

0
3
2
八爪博士 4ni!?《蜘蛛人》裡的人造太陽或將問世?(上)
科學大抖宅_96
・2022/04/14 ・4737字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

說明:此篇文章原本乃為泛科學 Youtube 影片所寫,經簡化之後,拍攝成〈缺電、輻射、核廢料有解嗎?「核融合發電」有可能嗎?〉和〈最受期待的核融合發電在哪裡?能源數據誰在膨風?〉兩部作品。又,本文並不針對核融合的技術性問題多做解釋,而是想用最少的字數,讓讀者瞭解核融合發展的全貌與大致進程。同時,此文主題也跟「世界是否應該採用核能發電」、「臺灣是否該使用核能發電」、「台灣是否該重啟核四」無關;這是三個完全不同的問題,核融合發電跟現有的核能發電技術也有所不同,無法一概而論。


在漫威電影裡,許多情節設定都跟真實世界的科學有所關連。就前陣子上映的《蜘蛛人:無家日》來說,在公開預告片中可見到知名反派八爪博士的回歸;他不但是研究核能的科學家,在《蜘蛛人2》還打造出了核反應爐。

《蜘蛛人2》公開預告片中的核反應爐。截圖自 YouTube

八爪博士的核反應爐,跟太陽可說有 87 分像;姑且不論畫面呈現得正不正確,這部機器特別的地方就在於,它是核融合反應爐,而非目前核能發電所用的核分裂反應爐。然而,這兩者差在哪裡?都已經有核能發電技術了,為什麼還要研發核融合發電?不僅如此,核融合研究甚至一度引發學術界的爭議醜聞,甚至被拿來拍成 IMDb 超低分的電影。

傳統核能發電的發展趨勢

不久前(2021 年底),臺灣舉辦了是否重啟核四的公投。在選舉期間,我們或許聽過不少關於核能發電的利弊分析與討論。在溫室效應越來越受到關注、以及強調 2050 年要淨零碳排放的現代,核能發電極低的碳排放,是不容忽視的優點;但另一方面,核廢料問題,和核子事故風險,也是反核人士眼中無法接受的缺點。

不管如何,近數十年來,全球核能發電量雖然在日本福島核災後一度減少,但整體而言,仍大致呈現緩慢增長的趨勢。不過,核能在全球的發電佔比,則是於 1996 年達到 17.5% 的高峰後,開始緩慢下降。

-----廣告,請繼續往下閱讀-----
全球核能發電佔比於 1996 年達到最高峰。圖/《2021 世界核能產業現況報告》(The World Nuclear Industry Status Report 2021, WNISR 2021)

另一方面,若比較從 1954 年到 2020 年,「開始運轉的核電廠」和「停止運作的核電廠」兩者的數目。可以發現,在 1990 年之前,開始運轉的核電廠,遠比停止運作的核電廠要多得多。但從 1990 年開始,兩者就呈現差不多的趨勢。

從 1954 年到 2020 年,開始運轉的核電廠數目(靛青色)和核電廠停止運作的數目(紫紅色)的比較。圖/World Nuclear Performance Report 2021 COP26 Edition

基於上述統計資料,大抵可以說,因為總總複雜的原因,不管是對是錯,在上世紀 90 年代以後,核電廠慢慢地不像以前那麼受到歡迎。而近年來對溫室效應的關注,以及仍是現在進行式的俄烏戰爭,會對核能發展帶來什麼影響,有待我們持續關注。

為什麼要研究核融合發電?

就在核能前景尚未完全明朗的同時,我們卻也能在許多新聞媒體上看到,除了新式核分裂發電技術的研發之外,還有「Google 和比爾蓋茲投資核融合反應爐」、「世界最大核融合反應爐進入組裝階段」、「中國核融合再創新世界紀錄」、「核融合新創 Helion 獲 22 億美元資金」、「貝佐斯投資核融合新創」等,關於核融合發電的消息;美國政府和其他許多國家也都投入資源在核融合研究。

同樣是核能發電,核融合發電和傳統的核分裂發電,有什麼不一樣?為什麼許多國家與知名人士都對核融合發電寄予厚望?八爪博士又為什麼打擊蜘蛛人的正事不幹,要去研究核融合?(搞錯重點了好ㄇ)

-----廣告,請繼續往下閱讀-----

核反應的類型

簡單來說,核反應可分成兩大類,一是原子核分裂成其他較輕原子核,稱為核分裂(nuclear fission);另一則是,兩個以上的原子核結合成新的原子核,稱為核融合(nuclear fusion)。因為核反應往往伴隨能量的吸收或釋放,核能電廠於是利用這一點,擷取核分裂過程中釋出的能量,作為發電之用。

核分裂(左)和核融合(右)的對比。圖/美國核能辦公室

至於太陽,主要由氫構成。龐大的重力將氫向內擠壓,於太陽核心產生極端的高溫和高壓,並促使氫進行核融合反應成為氦,連帶產生能量。目前的核融合研究,目的就是在地球上複製這個過程,以獲取釋出的能量。只不過,地球上並不存在如太陽核心般的高溫和高壓,所以必須人為地製造出適合的環境,核融合發電才有可能實現。也因此,有人會把核融合技術形容成人造太陽,而《蜘蛛人 2》電影裡,八爪博士製造出的核融合裝置,就長得一副太陽的樣子。

核融合發電的優點與困難

相較於傳統的核能電廠,核融合發電擁有許多優點。首先,在許多人擔心的安全性問題上,核融合發電不可能出現像是爐心熔毀或熱失控等狀況。因為核融合發電所需的「燃料」(雖然核反應不算是燃燒)需要人為持續提供,而且核融合反應的環境也需要精密控制,所以一旦系統出現狀況,就會使得整個發電程序停止運作——換言之,不可能「爆走」。

核融合發電在安全性上的優點,也是它最大的缺點——因為核融合反應實在太容易動不動就停止了,科學家們想方設法,目前也沒辦法做到讓反應爐持續不間斷地運作;換言之,它不具有商業發電的價值。也是因為這樣,我們在新聞裡常會看到,某國科學家成功突破紀錄,讓核融合反應持續了幾秒鐘或幾分鐘。而如何讓核融合反應爐能夠持續運作,就成為相關研究最重要的課題之一。

-----廣告,請繼續往下閱讀-----

除了安全性問題之外,核能發電產生的核廢料也常為人所詬病。不可否認,目前的核能發電方式,會產生具輻射性的核廢料,半衰期從數百年到百萬年不等,而台灣一直未能設立核廢料的最終處置場,全世界至今也沒有任何一座高階核廢料處置設施正式運轉。預計最快要到 2024 年,在芬蘭才會有全球第一座的高階核廢料永久處置場正式啟用。然而,臺灣的地質條件跟芬蘭完全不同,能否找到適合的最終處置場,仍是個問號。

圖/wikipedia

那麼在核融合發電,也會面臨核廢料的難題嗎?答案既是,也不是。核融合發電也會產生核廢料,但其屬於低階核廢料,基本上就是工作人員使用過後的防護衣和清潔用品,以及反應爐的腔壁等。這些核廢料的半衰期大體而言都不長;因情況而異,約數十年到數百年,其輻射水平即可回覆到接近一般環境的背景值。所以,做為結論,核融合發電還是會產生核廢料,但相較於現有的核能發電,其危險程度以及對環境的影響要小上很多。

最後,核融合發電還有另一個優勢:燃料。現在的核能發電,主要使用鈾 -235 做為燃料;雖然全球的鈾礦礦藏相對豐富,根據世界核能協會(World Nuclear Association)的估計,足夠人類再使用 90 年,但並非取之不竭。相對地,核融合發電常用的燃料是氫的同位素——氘和氚;而氫在地球上極為豐富,要製備氘和氚也並不困難。換句話說,人類完全不需要擔心核融合的燃料不夠這種事情。除此之外,在核融合過程中,還會運用到鋰,它可幫助生成反應所需的氚,而幸好鋰的存量在地球上也是非常豐富,若把陸地上和海洋中的鋰都考慮進來,同樣不需要擔心鋰會用光。[1]

核融合發電的分類

在核融合發電中,為了讓相異原子核能夠進行融合,一般會將其加熱到一億度上下的高溫。一種作法是,利用雷射直接或間接加熱裝了燃料的膠囊,以誘發膠囊內部燃料的核融合反應,稱為慣性局限融合(Inertial confinement fusion)。

-----廣告,請繼續往下閱讀-----
美國國家點火設施(National Ignition Facility)的核融合研究,就屬於慣性局限融合。圖/Wikipedia

另一種常見的作法則是,將燃料加熱,使其成為電漿狀態。很顯然地,一億度的電漿,是沒有任何容器可以盛裝的;所以科學家會利用強大的磁場,拘束住電漿,讓核融合反應能夠穩定持續地發生,稱為磁局限融合(magnetic confinement fusion)。八爪博士製造的機器,就比較接近這樣的作法。但跟電影不同的是,現實裡的研究人員是不可能直接站在高溫電漿旁邊的。八爪博士的設計,跟現實不但有差距,而且也顯然更危險。

英國的磁局限融合裝置Mega Ampere Spherical Tokamak。圖片中的發光物質即為高溫電漿。圖/wikipedia

上述核融合發電方式,全部都需要人為地產生高溫,讓核融合得以發生——但這並不表示核融合只能在高溫環境中產生。實際上,早在 1950 年代,科學家就發現,確實有核融合反應在低溫環境即可發生,現在稱為緲子催化融合(muon-catalyzed fusion)。緲子是一種性質跟電子非常類似,但質量比電子大得多、且非常容易衰變的基本粒子。若在氘和氚組成的氫分子中,用緲子取代電子,那麼該氫分子內部的氘和氚,甚至在室溫就可能產生核融合反應。

緲子催化反應示意圖。圖/Stanford

只不過,緲子的備製不僅需要花費大量能量,其迅速衰變的性質,也讓我們很難拿來作為核融合發電之用,再考慮到其他的技術性問題,使得目前的核融合研究,都是朝著高溫的方向進行。

然而,1989 年,有兩位科學家聲稱,成功在室溫環境下,以他們發現的新方法實現了核融合反應。這樣的消息迅速獲得媒體注意,並被大肆報導,人們對實現低溫核融合又開始寄予期望。很可惜地,其他科學家嘗試複製兩人的實驗成果,卻都無法成功;另一方面,科學社群也發現了兩人實驗上的瑕疵。於是,沸騰一時的「冷融合」話題就這麼煙消雲散。現在,雖然仍有少部分人從事相關研究,但都未能成氣候。

-----廣告,請繼續往下閱讀-----
1989年5月,冷融合議題登上時代雜誌封面。圖/TIME

儘管如此,或許因為冷融合很有話題性,這個議題並未在媒體上消失;2011 年美國好萊塢甚至以冷融合為主題,拍了一部 IMDb 超低分的電影,英文片名就是冷融合(cold fusion),臺灣翻譯成《關鍵核爆》,劇情甚至把幽浮(UFO)都扯進來了。

延伸閱讀:八爪博士4ni!?《蜘蛛人》裡的人造太陽或將問世?(下)

參考資料


[1] 其實,鈾也存在海洋中。若考慮到海水中的鈾,那麼基本上人類也不用擔心鈾礦不足。只不過,鈾在海水中濃度極低,約 10 億分之 3,不論在運用的技術還是成本上,挑戰都很高。

科學大抖宅_96
36 篇文章 ・ 1736 位粉絲
在此先聲明,這是本名。小時動漫宅,長大科學宅,故稱大抖宅。物理系博士後研究員,大學兼任助理教授。人文社會議題鍵盤鄉民。人生格言:「我要成為阿宅王!」科普工作相關邀約請至 https://otakuphysics.blogspot.com/