2

1
0

文字

分享

2
1
0

點燃戰火的元兇-氣候

陸子鈞
・2011/10/12 ・955字 ・閱讀時間約 1 分鐘 ・SR值 507 ・六年級

當17世紀,歐洲的三十年戰爭正如火如荼展開時,士兵們經歷了幾年歐洲最冷的時期。在遠東的一邊,來自下雪的北方的勢力,掃蕩了中國東北,並來到萬里長城前。沒過多久,瘟疫肆虐歐洲。為什麼這麼多麻煩?新的研究提出有力的證據顯示,大多人類的動亂-從戰爭到流行病到經濟衰退,可以追溯到氣候的波動。

技術的發展,讓科學家能比以往能了解更久遠的古代氣候。香港大學的地理學家章典(David Zhang),對於氣候冷暖如何影響人類文明特別感興趣。他和研究團隊收集社會經濟學、生態學和人口統計學資料。這些資料來自15~18世紀,工業化之前的歐洲,包括14種變數,像是人類身高、金價、樹的年輪寬及氣溫。接著利用「格蘭杰」(Granger)因果分析統計法(編註:感謝Peregrine提供,請參考Granger causality),分析變數之間是否存有因果關係。最後,他們將時間分割成四種較小的片段,每段長從40年到150年,以確定事件的確是由溫度差異所引起,而非只是有強烈的關係。

氣候改變在統計上明顯能引起社會動亂、戰爭、遷徙、流行病、饑荒及豐年。此外,氣候引起饑荒、經濟衰退和其他災難,比其他14個變數還頻繁。章典說,榖物欠收,會使得金價升高,並引起通貨膨脹。同樣地,饑荒會加重流行病疫情。而人民在受苦時,他們會埋怨政府及當權者,最後引起戰爭。

不過,黑夜後總會有黎明。研究團隊也發現,自1560年代開始,長達一百年的冷期,使榖物的生長季變短。在此期間,人類的平均身高短了接近一吋,而且疾病大流行和動亂頻傳。但在1650年間,全球開始變暖,英格蘭的查理二世在1660年接受加冕,歐洲也進入了啟蒙時期。

標記出每個年代的氣溫,也讓研究團隊可以在糧食價格上,找出決定歷史的「閾值」,還可以「預測」會在歷史上其他的哪個時間點發生;而這些「預測」也的確有發生。章典說:「顯然氣候帶來的影響不只是戰爭、人口,而是整個社會。」

政治學家Halvard Buhaug認為章典的研究,在很好的資料上做了很棒的分析,令人驚奇。不過他認為,可惜的是,章典並沒有討論是否這項發現也能用於推測工業時代之後的世界;是否在氣溫急遽升高的今天,也遵循一樣的原則運作。

資料來源:ScienceNow: Got War? Blame the Weather [3 October 2011]

相關文章:PanSci 天露異象,可能有戰事

20111014更正:感謝Peregrine於回應中指出「Granger」誤譯,已於文中訂正。

文章難易度
所有討論 2
陸子鈞
294 篇文章 ・ 4 位粉絲
Z編|台灣大學昆蟲所畢業,興趣廣泛,自認和貓一樣兼具宅氣和無窮的好奇心。喜歡在早上喝咖啡配RSS,克制不了跟別人分享生物故事的衝動,就連吃飯也會忍不住將桌上的食物作生物分類。

0

0
0

文字

分享

0
0
0
只有女生需要?「子宮頸癌疫苗」不論性別都要打!
鳥苷三磷酸 (PanSci Promo)_96
・2023/11/21 ・2525字 ・閱讀時間約 5 分鐘

為什麼男生也要打子宮頸癌疫苗?

你知道嗎?其實子宮頸癌疫苗應該被正名為「人類乳突病毒疫苗(HPV 疫苗)」,因為並不是只有子宮的人才要打!在過去的研究報告中,女性的子宮頸上皮細胞因感染人類乳突病毒(HPV )的高危險型別(會致癌的型別如16、18型)後,受到病毒蛋白的作用而使正常健康的子宮頸細胞會出現癌前病變,之後就有極高可能變為子宮頸癌 1,因此在這樣的認知基礎與方便宣傳下,HPV 疫苗漸漸被以「子宮頸癌疫苗」代稱,但這反而讓大眾形成「只有女性需要施打」的迷思。其實,男性也該依醫囑施打 HPV 疫苗唷!

為什麼男生也會感染 HPV?病毒感染症狀、傳播方式?

人類乳突病毒(Human Papillomavirus ,簡稱 HPV)是一種 DNA 病毒,目前已有兩百多種型別被發現,雖然被稱為「乳突」病毒,但實際上跟乳頭沒關係,千萬不要混淆了。是因為感染 HPV 病毒的病患,會造成感染部位的表皮細胞增生,在臨床病理切片下看起來像是鐘乳石般突起而有這樣的命名 3。大多數 HPV 類型會感染皮膚上皮細胞,並引起常見的皮膚疣,約有 40 種型別會感染黏膜上皮細胞。

除了上述 HPV 16、18 型會引起侵襲性子宮頸癌與其他男女生殖部位癌症外,若感染 HPV 6、11型人類乳突病毒可能會引起尖形濕疣(俗稱菜花)或其他生殖器病變,但由於致癌機率相對小,被分類為低危險型別 2, 7

依照感染部位的不同(黏膜與非黏膜部位),與感染的 HPV 類型而有不同的病徵或病變。 圖/美國疾病管制中心(CDC)

HPV 的傳染途徑主要是經由性行為的接觸傳染,極少數是經由母嬰垂直感染 (子宮內 HPV 可能是經由精液由下生殖道上升感染,或嬰兒出生時產道直接接觸感染)。在性行為過程中,病毒會透過接觸皮膚、黏膜或體液而感染。

有時,若外部生殖器接觸帶有 HPV 的物品,也可能造成 HPV 感染。根據統計資料,不論男女生,每個人一生中約有 5-8 成的機會感染到 HPV。儘管大多數感染 HPV 的情況,是無症狀且可透過身體的免疫系統而自行消退,但若是持續感染的情況,則會發展為肛門生殖器疣、癌前病變以及子宮頸癌、肛門生殖器癌或頭頸部位癌症。因此,如果是伴侶的性經驗較複雜、自身有長期免疫力低落等情況,都可能增加 HPV 的感染風險。

最新研究指出,全球三分之一的男性感染 HPV

過去許多有關 HPV 的研究,皆主要探討「如何預防女性因感染 HPV 而罹患子宮頸癌」,但 2023 年 9 月國際頂尖期刊 Lancet 系列的 Lancet Global Health 中發表的論文帶來了新的視角。

研究團隊回顧 1995 年到至 2022 年間發表的 65 份研究報告中,評估一般男性族群生殖器 HPV 感染的盛行率,發現在 15 歲以上的男性中,每3名就有1名感染至少一種 HPV 類型,每 5 名就有 1 名感染一種或多種高致癌型別的 HPV,導致男性罹患生殖器疣以及口腔癌、陰莖癌和肛門癌等疾病。研究團隊認為不管是在哪個年齡層的男性,又或特別是性行為較活躍的男性,其生殖器官就是「 HPV 病毒重要的儲存庫」4

世界衛生組織(WHO)也針對研究內容表示:「男性生殖器 HPV 感染盛行率的全球研究證實了 HPV 感染的廣泛性。高危險 HPV 類型的感染可導致男性頭頸部位的癌症(如口腔癌、口咽癌)、陰莖癌和肛門癌。我們必須繼續尋找機會預防 HPV 感染,並降低男性和女性 HPV 相關疾病的發生率 5。」

另外,根據台灣2020癌症登記資料中,頭頸癌是台灣男性發生率第3名的癌症,而在頭頸癌中的口咽癌,被發現有 30% 是與 HPV 感染相關 6。從這樣的數據資料來看,若要全面性預防 HPV,更需要兩性一起施打疫苗。

男性也會感染 HPV 病毒。圖/wikimedia

全球跟進,台灣不可置身事外。世界男性的施打情況為何?

全世界已有 126 個國家將 HPV 疫苗納入國家疫苗接種計畫,其中已有 58 個國家提供男女共同施打 HPV 疫苗,其中包括美國、英國、德國、澳洲等國家。以美國為例,從 2019 年統計的 HPV 疫苗覆蓋率來看,男性中約有 69.8% 的人至少接種過 1 劑 HPV 疫苗 7

反觀台灣目前只提供國中「女生」公費接種 HPV 疫苗,雖然已經有地方政府自行編列預算讓轄區內國中「男生」同樣享有公費接種疫苗服務,但以台灣現階段的公衛政策而言,還是將 HPV 疫苗接種的主要目標放在 9 至 14 歲、未開始有性行為的女生上,不只未跟上國際趨勢,兩性健康平權也尚有努力空間。

HPV 疫苗種類及補助

國內目前提供三種為食品藥物管理署核准的 HPV 疫苗,不論施打哪一種疫苗,皆可預防最重要的第 16 型及第 18 型所引起的高致癌風險,保護力約 8 年,分別為下列種類 9, 10

種類保蓓 Cervarix(二價)嘉喜 Gardasil 4(四價)嘉喜 Gardasil 9(九價)
適用對象9-14 歲女性 (2 劑)
15 歲以上女性 (3 劑)
9-13 歲女性 (2劑)
14-45 歲女性 (3劑)
9-26 歲男性 (3劑)
9-14 歲男女性 (2 劑)
15-45 歲男女性 (3 劑)
預防型別16、18 型6、11、16、18 型6、11、16、18、31、33、45、52、58 型
價位每劑疫苗市價約 3000-7000 元
*補助:國民健康署自 107 年 12 月底開始,全面推動國中女生免費接種 HPV 疫苗服務。
表格資料來源:台北市政府衛生局、衛福部健康署

參考資料

  1. https://www.hpa.gov.tw/Pages/List.aspx?nodeid=1799#list0 國民健康署
  2. https://www.commonhealth.com.tw/article/82881 康健網站
  3. https://www.syh.mohw.gov.tw/?aid=626&pid=112&page_name=detail&iid=384 新營醫院
  4. https://www.who.int/news/item/01-09-2023-one-in-three-men-worldwide-are-infected-with-genital-human-papillomavirus WHO文章
  5. https://www.thelancet.com/journals/langlo/article/PIIS2214-109X(23)00305-4/fulltext Lancet Global Health期刊論文
  6. https://www.cna.com.tw/news/ahel/202309280241.aspx 新聞
  7. https://www.cdc.gov/vaccines/pubs/pinkbook/hpv.html 美國CDC
  8. https://www.who.int/news/item/20-12-2022-WHO-updates-recommendations-on-HPV-vaccination-schedule WHO指引
  9. https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=1752&pid=11889 國民健康署
  10. https://health.gov.taipei/cp.aspx?n=239A1E89D0295C00&s=437A8C567509EB04 台北市政府衛生局
文章難易度
鳥苷三磷酸 (PanSci Promo)_96
184 篇文章 ・ 293 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
1

文字

分享

0
2
1
水面艦如何找到潛水艇?潛水艇如何隱藏自己?——潛艦與反潛的捉迷藏
PanSci_96
・2023/11/25 ・5950字 ・閱讀時間約 12 分鐘

潛水艇到底有多重要?

最近關於潛水艇的新聞可不少,首艘國造潛艦「海鯤號」下水典禮、中國 093 潛艇「疑似」失事、前陣子還有烏克蘭使用導彈與無人機成功襲擊俄羅斯基洛級潛艇的新聞,潛水艇的關注度一時間高了不少。

但是你一定好奇,潛水艇對國防來說,真的很重要嗎?還有,現代觀測技術那麼發達,在這些儀器的眼皮之下,潛艇真的還能保持隱形嗎?

反潛方怎麼找到藏匿海中的潛艦?

潛水艇以安靜、隱蔽著稱,有著極重要的戰略價值,不僅可以水下布雷、隱蔽投送兵力與物資;它難以被發現的特性,更是打擊水面艦的刺客,往往能讓敵人不敢越雷池一步。

當然,要造一艘能潛在水下的潛艇肯定不簡單,畢竟如果在水面下出事了,很難立即取得救援,安全的要求遠高於其他載具。另一方面,以隱蔽為最高原則的潛艦,從引擎、外型、武器到主動聲納,都需要新科技的改進,來讓自己發出的聲音降到最低。

但潛艦與反潛就像臥虎捉藏龍,如果能隨時掌握這隻水中蛟龍的動向,潛艦的威懾力就會大幅降低,甚至能將其一網打盡。因此相對地,隱蔽的技術進步時,反潛的技術也有所突破,透過光學、聲學、磁場等技術,要讓潛艦原形畢露。

潛艦與反潛就像臥虎捉藏龍。圖/imdb

既然我們知道潛艦的隱蔽性是最高考量,現在我們就站在反潛方,來看看如何抓出一艘潛水艇。
主動偵查其實跟「通訊」很像,都是傳送一個訊息到目標物,再接收傳回來的訊號。只是通訊的訊號是對方主動回傳回來的。主動偵查呢,則是訊號碰到目標物再反射回來被我們接收。沒錯,這跟蝙蝠的回聲定位很像,只是一個在水面上,一個在水裡。

為什麼水中使用的是「聲納」而非「雷達」?

現代遠距無線傳輸的方式主要有兩種,電磁波通訊與聲波通訊。在水面以上,我們通常以電磁波傳輸,因為在空氣中這麼做最有效率,因此不論是無線通訊還是手機微波訊號,多是以電磁波的形式在傳輸。
可惜這個方法到水中就不管用了,為什麼呢?電磁波穿過水的時候會因為兩個原因,讓強度快速衰減。一是電磁波容易被水吸收,二是電磁波與水分子碰撞會產生散射,舉例來說,太陽光也是電磁波的一種,而太陽光就會因為在海水中散射,而讓海看起來是藍色。

太陽光就會因為在海水中散射,而讓海看起來是藍色。圖/unsplash

這種電磁波衰減的程度有多少呢?具體來說,在最清澈的海水中,可見光每前進 1 公尺,亮度就會衰減 4% 。如果想使用無線電通訊,以一個頻率 1000 赫茲的電磁波來說,每向前進一千碼(大約 900 公尺),訊號強度就會減少 1300 分貝。這邊說明一下,「分貝 dB 」不只是聲音音量的單位,而是可以用在各種需要表達強度比例的單位。

電磁波每減少 10 分貝,就意味能量減小 10 倍。圖/PanSci YouTube

舉例來說,電磁波每減少 10 分貝,就意味能量減小 10 倍。在前進一千碼時減少 1300 分貝,就意味能量會衰退 10 的 130 次方倍,小到等於沒有。在實務上,通常電磁波的極限穿透距離就只有幾十到幾百公尺而已。相比之下,如果從電磁波換成低頻聲波,每一千碼的損失約為 0.01 分貝,跟電磁波相比起來可以說是幾乎沒有損失。

通常電磁波的極限穿透距離就只有幾十到幾百公尺而已。相比之下,低頻聲波可以說是幾乎沒有損失。圖/PanSci YouTube

因此在水中,大家聽到的不會是什麼「雷達」,因為雷達(RADAR)的全名是 Radio Detection and Ranging ,是使用電磁波偵查的技術。在水裡我們用的是「聲納」,是利用聲音當傳輸訊息與探知物體的手段。

此時蝙蝠的回聲定位使漆黑水底頓時明亮起來,聲波在海裡的傳播速度約為每秒 1500 公尺,只要計算我們發出的聲波與接收到聲波的時間差,我們就能辨別物體的距離。例如我們在聲波發出後的 10 秒後接收到反彈的訊號,就代表聲波來回走了 10 秒共 1 萬 5 千公尺的距離,我們和目標物就是這個距離的一半,也就是 7 千 5 百公尺。

聲納裝載潛水艇上可以成為潛水艇的眼睛,裝在水面艦上,可以成為抓出潛水艇的掃描儀。潛水艇沒有聲納,姑且可以靠海圖小心航行,水面艦沒有聲納,面對潛水艇就只能海底撈針。

潛艦與反潛技術的發展

潛水艇在第一次世界大戰中開始展現出重要的戰略價值,其中最著名的潛艇戰就是德國的 U 艇和德國實施的「無限制潛艇戰」。當時德國的對手英國是個島國,因此便想到利用潛艦封鎖英國,無論是軍艦或商船一律擊沉,希望能拖垮英國的經濟。雖然德國最後未取得戰爭勝利,但潛水艇也確實擊沉了多艘協約國的船艦,立下的戰績是有目共睹。

最著名的潛艇戰就是德國的 U 艇和德國實施的「無限制潛艇戰」。圖/wikipedia

有鑑於此,反潛聲納的技術由此萌芽。第一個主動式聲納在第一次世界大戰期間,被著名物理學家朗之萬發明。 1915 年,第一個潛艇探測器「ASDIC」開始在英國海軍的艦艇上被運用。 1931 年,美國也發明了潛艇偵測裝置,並稱它為「SONAR」,顯然這名字取得比較好,也成為現在最常稱呼這種技術的名稱,聲納。

第一個主動式聲納在第一次世界大戰期間,被著名物理學家朗之萬發明。圖/PanSci YouTube

至此,水面艦就像開了白眼一樣,潛水艇終於無所遁形⋯⋯真的嗎?聲納既然已經發明了百年,為何潛水艇至今似乎仍保有隱蔽優勢呢?在科技發達的現代,聲納為何還是無法抓出所有潛艇?

很可惜,事情沒有那麼簡單。當大家帶著最新科技和設備準備挑戰潛水艇這個可敬對手,卻突然被隱藏 BOSS 跳出來狠狠地打了臉,他就是:物理。

什麼是「陰影區」?潛艦能夠躲藏的位置?

讓我們回到大家都做過的實驗,準備一個透明杯子裝水,把筷子插入水中。因為光線在穿過不同介質的介面時,會因為速度改變而轉彎,所以筷子插到水杯中會出現偏折,水面上跟下呈現不同角度,看起來就像是被折彎了。

光線在穿過不同介質的介面時,會因為速度改變而轉彎,聲音也是。圖/wikipedia

聲音跟光一樣都是「波」的一種,因此在穿過不同密度的介質時也會產生折射,路徑出現偏折。你說道理我都懂,但海裡面只有水,哪來的不同介質?

還真的有,那就是隨著經緯度與深度變化,鹽分、水溫、密度都不同的海水。鹽分、水溫、密度的升高,都會導致聲速變快。而這三者在海中的各處都不會是固定的。例如在不同深度的海水中,深度 1000 公尺內上層海域的斜溫層,當深度越深離海面越遠,海水越得不到太陽的加溫,因此海溫快速驟減,而海溫的降低也會導致聲速降低。深度超過 1000 公尺以後的深海等溫層,溫度、鹽分的變化趨緩,此時壓力會隨著深度增加而增加,海水密度開始小幅度上升,因此聲速緩慢增加。

每一處海水根據鹽分、水溫、密度不同,都會影響聲速。圖/PanSci YouTube

每一層有不同聲速的海水,就等於是不同的介質,聲波會在不同層的海水之間產生折射。類似的現象也發生在空氣中。在炙熱的沙漠或是天氣熱的柏油路面,偶而會因為空氣的密度分布不均,光線在不同密度的空氣間產生偏折,出現影像在空中出現的錯覺,也就是海市蜃樓的現象。

重點來了,在海裡的折射會是怎麼樣的呢?假設我們有一艘潛的足夠深的潛艇,海面附近的聲納發出一道聲音斜向海洋深處前進,根據決定折射角度的斯乃爾定律,當聲速上升,聲音會偏離介面的法線,偏向兩個液體的交界面。在海中的實際表現,就是聲音產生偏折,漸漸與海平面平行,當偏折的角度超過 90 度,最後甚至會向上偏折,產生全反射。

而斯乃爾定律也告訴我們,偏折的程度跟入射角有關,當角度超過臨界角時,才會產生全反射。根據這些聲波行進路線畫出來的圖,可以看到一塊聲波永遠到達不了的地方,這就是陰影區(shadow zone)。如果潛艇躲藏在這個位置,那麼水面上的敵人就永遠也無法透過主動聲納發現你。

根據這些聲波行進路線畫出來的圖,可以看到一塊聲波永遠到達不了的地方,這就是陰影區(shadow zone)。圖/PanSci YouTube

除此之外,從聲納路徑圖可以看得出來,在水中聲納走的路徑像是 U 字型一樣,會不斷在海面反射,在海中全反射。而線與線之間的空白處,是聲波不會經過的地方,也屬於陰影區。因此實際從水面偵測潛艦時,只有在碰到這些線的時候會收到該點的訊號,如果要抓出敵人,就要在獲知訊號時抓緊時間。

如何減少陰影區範圍?

為了減少這些陰影區死角的範圍,也有一些有趣但複雜的想法,例如使用拖曳式陣列聲納,一個點不夠,那我就拉一排,減少盲區。或是透過小角度的海底反射,來覆蓋近距離內的更多範圍。然而這也不會只是畫一張圖那麼簡單,平常聲納就要過濾來自自身引擎的噪音,或是因為海底等非目標物的環境反射。多一次反射,就意味會多一道訊號反射到聲納中,要如何將這些訊號區分開來,判斷哪些是海床訊號,哪些是敵艦訊號,就各憑本事。

沒錯,就算有了聲納系統還不夠,海底資訊的掌握度和後期運算更是兵家相爭的關鍵。你想想,就算你知道聲音會隨著密度轉彎,但你知道眼前海域每個深度的實際密度嗎?如果你不知道這些資料,就算接收到訊號,你真的算得出敵艦的位置嗎?

舉例來說,冬天和夏天的海溫不同,聲音偏折的角度不同,能探查的範圍與死角就不相同。當你在不同緯度,不同海域作戰時,所需要的資料也不相同。

冬天和夏天的海溫不同,聲音偏折的角度不同,能探查的範圍與死角就不相同。圖/PanSci YouTube

台灣冬夏兩季分別受東北季風與西南季風吹拂,周圍又有黑潮、中國沿岸流等洋流影響,各層水溫隨季節變化影響劇烈,台灣海峽又因地形原因海流複雜,被稱為黑水溝。在此之上,能掌握好周圍的海流活動,除了能兼顧潛艦的航行安全外,也有助於提升潛艦的隱蔽性。

潛艦與反潛的無數過招?

海洋的複雜性,構成了潛艦至今仍能維持隱蔽優勢的原因。而這場臥虎捉藏龍的對決到此還沒有結束,我們只介紹了第一招,後面大概還有 99 種招式等待要過招。例如潛艦關掉主動聲納後,如何靠被動聲納安全航行並鎖定目標?

除了透過聲納,搭載磁性探測儀的反潛機怎麼從異常磁場訊號中辨別海底的金屬潛艇?又或是水面上的聲納會被全反射,那麼改變深度的話是不是就能解決了?實際上,既然在海面上聽不見,反過來把聲納放進海中,放在海水密度最低的「深海聲道通道軸」這個如同光纖般的區域,就能清楚聽到來自遠方的聲音。

諸如此類的軍事科技對弈,就像其他科技一樣,對決永遠不會結束。如果你還有那些想了解的面向,不論是潛艦或是其他軍事科技,也歡迎留言告訴我們。

最後也想問問大家,你覺得潛水艇最大的戰略價值是什麼呢?

  1. 多一種隱蔽武器,多一種威嚇,提升敵人的作戰成本
  2. 突破封鎖線,在關鍵時刻打擊敵人的大型艦艇
  3. 間諜作戰,深入敵後蒐集電訊號與艦艇聲譜特徵,偷偷獲取情報

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

0

2
0

文字

分享

0
2
0
【從中國經典認識大腦系列】「風聲鶴唳,草木皆兵」——戰爭與創傷壓力造成的精神傷害
YTC_96
・2023/11/24 ・3921字 ・閱讀時間約 8 分鐘

「風聲鶴唳」、「草木皆兵」可能與創傷後壓力症候群有關?圖/GIPHY

「風聲鶴唳,草木皆兵」形容疑神疑鬼、驚恐不安,典故來自歷史上著名的「肥水之戰」。當時的慘烈狀況,前秦苻堅甚至可能出現與戰爭有關的創傷後壓力症候群 PTSD 的症狀。

根據《晉書·卷一一四.苻堅載記下》和《晉書.卷七九.謝安列傳》的記載,東晉時期野心勃勃的前秦苻堅意圖征服中原,東晉太元八年(前秦建元十九年)(西元 383 年),他率領龐大的八十萬大軍逼近肥水,準備進攻東晉。

東晉派出大將謝玄和謝石帶領八萬精兵抵抗。苻堅錯誤地認為東晉兵力不足,自以為佔有優勢,計劃迅速擊敗晉軍。然而未料到謝玄巧妙運用奇襲戰術,使苻堅損失了許多重要將領和士兵。

在肥水戰前,苻堅登上壽陽城觀察晉軍的情勢,卻發現晉軍部隊整齊有序,士氣高昂,戰鬥力十分強大。他遙望八公山,發現山上長滿無數草木,隨著風吹過,那些草木地晃動就像無數士兵在移動,於是他轉身對弟弟苻融說:「你看那山上,還有那麼多實力強大的軍隊,誰說晉軍很少呢?」這顯示出他內心的憂慮和恐慌,也是「草木皆兵」的由來。

後來苻堅的軍隊在淝水一戰中遭受重大失敗,苻融壯烈戰死;苻堅本人中箭受傷,只能率領殘兵拼命逃回北方。當他們逃亡的過程中,只要聽到風聲呼嘯、飛鶴的鳴叫聲,他們都以為晉軍仍然緊追不捨,他們日夜奔逃,飢寒交迫。然而,當他們最終回到北方時,龐大的百萬大軍已經損失了七八成。逃亡的過程他們疑神疑鬼,恐懼不安,也是成語「風聲鶴唳」的由來。

看不見的敵人——戰爭壓力造成的心理創傷

我們對於 PTSD 的了解,是建立在數百萬歸來士兵們的真實體驗。圖/GIPHY

我們對於 PTSD 的了解,並非一朝一夕就在醫學上產生了共識,從誤解到了解,是數百萬歸來士兵們的真實體驗。

1914 年,第一次世界大戰發生的早期, 英國遠征軍(British Expeditionary Force)發現多達 10% 的英國軍官和 4% 的士兵在戰鬥後出現一些醫學上的症狀,包括耳鳴、健忘症、頭痛、頭暈、震顫和對噪音過敏,甚至有人表現出恐慌、恐懼、逃跑,或是嚴重到無法思考推理、睡眠、行走或說話。由於這些症狀和腦部神經直接受傷類似,當時被認為是一種因中樞神經受傷而導致的精神疾病,但奇怪的是那些士兵們的頭部其實並未發現任何的外傷。

1915 年,英國醫生查爾斯·邁爾斯(Charles Myers)首次在醫學期刊柳葉刀(The Lancet)使用「彈震症」(shellshock)一詞,用來形容因為爆震衝擊而造成生理以及心理受損的士兵。

第二次世界大戰( 1939 年至 1945 年)後,隨著對士兵出現的壓力症狀有很多的認識,醫師的診斷上開始使用戰鬥反應壓力(Combat Stress Reaction (CSR))取代彈震症。雖然比起彈震症有了更多的了解,但醫學界們對於該症狀的出現仍不清楚。

1955 年,越戰爆發,美國總共派出 270 萬人前往越南作戰,最後高達 70 萬人需要某種形式的心理治療。

美國海軍陸戰隊列兵西奧多・J・米勒(Theodore J. Miller)表現出「千碼凝視」(thousand-yard stare),是「戰鬥反應壓力」的常見表現,包含注意力不集中、沮喪和疲倦的凝視。圖/Wikipedia

戰爭後的第二次創傷

創傷後壓力症候群 PTSD 被發現以前,已遭受精神創傷的士兵們可能需要面對社會歧視所造成的二次傷害。當時由於對彈震症的成因了解極少,有士兵因此被指控逃兵以及懦弱被送上軍事法庭,甚至因此被處決。越戰後雖然試圖重新融入社區的遭受創傷的退伍軍人數量相當驚人,但他們既無法獲得適當的治療,也無法從退伍軍人管理局獲得殘疾撫卹金,導致美國產生極大的家庭以及社會問題,也催生許多描述退伍士兵因戰爭創傷導致無法正常回歸社會的經典影視作品,如電影《越戰獵鹿人 The Deer Hunter 》(1978),以及《第一滴血 First Blood 》(1982)。

電影《第一滴血 》的藍波是有 PTSD 的越戰退伍士兵,在重返社會時遭受不合理待遇。圖/imdb

創傷後壓力症候群 PTSD

在 1970 年代,臨床上醫師開始使用創傷後壓力症候群(posttraumatic stress disorder),簡稱 PTSD 一詞來診斷越戰回來的退伍軍人出現的症狀。一直到 1980 年代,美國精神學會(American Psychiatric Association)才將 PTSD 納入精神疾病診斷與統計手冊(Diagnostic and Statistical Manual of Mental Disorders, Third Edition (DSM-III))。雖然 PTSD 被正式承認為精神疾病,但診斷上仍面臨許多挑戰。最大的困難就是 PTSD 的症狀與太多的精神疾病相似,如強迫症(Obsessive Compulsive Disorder)和廣泛性焦慮症(Generalized Anxiety Disorder)。這也使得 PTSD 的歸類和診斷需要不斷的精進修正,在 DSM-IV 時 PTSD 歸類在焦慮症(Anxiety Disorder)的範疇,但在最新版本的 DSM-V,PTSD 已經和焦慮症分開來,有著自己的分類——創傷及壓力相關疾患(Trauma- and Stressor-related Disorders)。這也有助於醫界以及學界提高對 PTSD 的重視,能更了解 PTSD 對神經的影響以及治療方式。

中醫如何治療受戰爭創傷的軍人

根據《晉書.卷一一四.苻堅載記下》和《晉書.卷七九.謝安列傳》的描述,苻堅和許多他隊伍中的士兵已經出現 PTSD 的症狀,但西方國家一直到西元 1970 年代才對 PTSD 有更多醫學上的見解,那究竟古代中國是如何治療那些精神上受到創傷的軍人們呢?

中國傳統醫學的奠基之作,也是現存最早的中醫理論經典著作——《黃帝內經》,成書於戰國至秦漢時期,並在東漢至隋唐時期經過多次的修訂和補充。PTSD 出現的症狀,可能接近中醫所說的「驚悸」、「健忘」、「情志病」的範疇。在《黃帝內經》中《素問》的《舉痛論》就記載「百病生於氣也,怒則氣上,喜則氣緩,悲則氣消,恐則氣下,寒則氣收,炅則氣泄,驚則氣亂,勞則氣耗,思則氣結」,說明人的七情(喜、怒、憂、思、悲、恐、驚)傷人先造成氣的變化﹐然後才有各式疾病的產生。七情分別屬於五臟(心、肝、脾、肺、腎),以喜、怒、思、悲、恐為代表,稱為五志。五志與五臟的對應關係為心志為喜,肝志為怒,脾志為思,肺志為憂(悲),腎志為恐,所以說怒傷肝、思傷脾、喜傷心、憂傷肺、恐傷腎。

雖然 PTSD 涵蓋中醫許多症狀的描述,但古代中國並未有明確文獻指出治療的方式,透過現代醫學診斷以及中醫的結合,有研究認為 PTSD 最可能是熱、火或體虛引起的心神失調;肝氣鬱結;及腎虛。次要的模式是長期肝氣鬱結(肝主脾胃、肝火、痰火、痰濕和心火)以及心、腎和脾器官系統體質缺陷的結果(Sinclair-Lian et al., 2006)。如此治療上就可以根據中醫師的評估來進行各臟器的調節。

結論

我們無法透過經典文學和改編真實事件的影視作品,就完全理解親臨戰場帶來的創傷。圖/pixabay

我們能從許多經典文學和改編真實歷史事件的影視作品認識到戰爭的殘酷,但這遠遠比不上親身面臨戰場上的恐怖和帶來的創傷。戰爭奪取無數人的性命,存活者面臨的巨大的壓力也將改變一個人的一生。

參考文獻

YTC_96
11 篇文章 ・ 15 位粉絲
從大學部到博士班,在神經科學界打滾超過十年,研究過果蠅、小鼠以及大鼠。在美國取得神經科學博士學位之後,決定先沉澱思考未來的下一步。現在於加勒比海擔任志工進行精神健康知識以及大腦科學教育推廣。有任何問題,歡迎來信討論 ytc329@gmail.com。