0

1
1

文字

分享

0
1
1

失落的一塊拼圖:發現連結腦與免疫系統的腦內淋巴管

動眼神經
・2015/06/10 ・1393字 ・閱讀時間約 2 分鐘 ・SR值 579 ・九年級

-----廣告,請繼續往下閱讀-----

維吉尼亞大學醫學院(University of Virginia School of Medicine)的研究團隊,發現一條直接連接大腦與免疫系統的淋巴管,這很可能改寫全球的教科書。

令人驚訝的是,這條淋巴管居然能逃過詳徹的全身淋巴系統偵測如此多年。這條特別的淋巴管,將補足過去淋巴系統於中樞神經系統中所缺失的一塊。此項發現的中樞神經淋巴系統,迫使過去神經免疫學的基礎假設要重新評估,並可能揭示與免疫系統障礙相關的神經炎、及阿茲海默症等退化性神經疾病的病因。

因為發現了腦有腦膜淋巴管,科學家可以像討論其他與周邊神經系統相連的組織一樣,從機制面上探討免疫相關的神經疾患。維吉尼亞大學腦免疫與神經膠細胞中心(UVA’s Center for Brain Immunology and Glia, BIG)主任Jonathan Kipnis教授說:「這項發現完全改變了我們看待神經與免疫的交互作用。之前我們一直認為它是深奧而無法進行研究的東西,但現在我們能夠很務實地從機制面來提問了。」

人體中的新發現

維吉尼亞大學神經科學系(UVA Department of Neuroscience)主任Kevin Lee教授對於Kipnis實驗室研究發現的第一個反應是:「他們即將改寫教科書!」他表示,中樞神經系統中從來就不曾存在淋巴系統,但很明顯地,這第一次非凡的觀察,將徹底改變人們看待中樞神經系統與免疫系統之間的關係。

-----廣告,請繼續往下閱讀-----

儘管Kipnis起初抱著懷疑的心態,不相信居然有人們從未注意到的結構存在在人體中。他們在發現那條淋巴管之後,做了許多研究以鞏固其研究發現。他說:「我以為這項發現早該在中世紀時結案,但很顯然並不是。」

image
左:傳統的淋巴系統圖;右:因應新發現而重新繪製的淋巴系統圖(credit: University of Virginia Health System)

藏得非常好

這項發現因為Kipnis實驗室中的Antoine Louveau博士後研究員而誕生。 Louveau發展了一種方法來把老鼠的腦膜(覆蓋在大腦上的薄膜)安放在一個切片上,以便以一個整體的方式來檢查。他們把腦膜固定在顱骨內,好讓組織能妥當地在其原本的生理環境之中,然後再進行解剖。如果用其他方法執行,將不會是這樣的結果。

在注意到他切片上免疫細胞中類似血管圖樣的分佈,他做了淋巴管的測試,於是不可能成真了。

Kipnis 形容這淋巴管「藏得非常好」,並提到它沿著一條主要的血管一路通到靜脈竇:一個難以造影的地方。他說:「它太靠近血管了,如果你不知道你在找什麼,你必定會錯過它!」

-----廣告,請繼續往下閱讀-----

Kipnis說:「這些淋巴管的即時的影像至關重要地展示了它們的功能,若不是與Tajie Harris合作,這是不可能成真的。」Harris博士,是神經科學系的助理教授也是BIG中心的一員。Kipnis亦向擁有驚人外科技巧的副研究員Igor Smirnov致敬,因為他也在此項造影的成功中扮演了關鍵的角色。

阿茲海默症、自閉症、多發性硬化症……以及更多

這意外發現的淋巴管,揭示了數億千計需被回答的,不管是關於大腦的運作、還是阻礙其運作的問題。以阿茲海默症為例, Kipnis表示:「阿茲海默症的患者的大腦中有許多蛋白質的累積。我們認為他們會積聚在大腦,可能是因為他們無法被有效地被這些淋巴管排除。」他指出,淋巴管在不同年齡看起來是不同的,所以他們在退化中所扮演的角色則是另一條可探索的途徑。而其他從自閉症到多發性硬化症等數量龐大的神經系統疾病,必須根據科學上存在的東西而非不存在的東西去重新思索。

參考資料:

  1. University of Virginia Health System. (2015, June 1). Missing link found between brain, immune system; major disease implications. ScienceDaily. Retrieved June 10, 2015 from www.sciencedaily.com/releases/2015/06/150601122445.htm
  2. Missing link found between brain, immune system — with profound disease implications. University of Virginia Health System [01 Jun, 2015]
  3. Louveau, A. et al. (2015) Structural and functional features of central nervous system lymphatic vessels. Nature. DOI: 10.1038/nature14432

-----廣告,請繼續往下閱讀-----
文章難易度
動眼神經
7 篇文章 ・ 1 位粉絲
曾經的泛科實習生S編,現在的動眼神經。 大叔魂少女心,說走就走的效率姐。喜歡接觸新事物,有一點資訊焦慮症;喜歡把想法化為文字,相信文字的力量能夠讓世界變得更美好。

0

4
3

文字

分享

0
4
3
前額葉皮質的奇蹟:如何保養你的記憶引擎!——《記憶決定你是誰》
天下文化_96
・2024/08/04 ・2641字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

憂鬱症或阿茲海默症?前額葉皮質的雙面效應

額葉損傷病患遇到的記憶問題,跟我們在日常生活中所面對的記憶挑戰有著直接的關聯,而這個關聯成為我對前額葉皮質深感興趣的原因之一。即使在沒有具體損傷的情況下,前額葉皮質的功能仍會受到許多因素影響,進一步導致顯著的記憶問題,例如我在埃文斯頓醫院神經心理學診間測試的許多病患,轉介過來是為了評估阿茲海默症的可能性,但在進一步測驗後,卻發現是臨床上的憂鬱症。

在年紀較長的成人身上,憂鬱症有可能看起來很像早期的阿茲海默症,好比我曾經測驗過一名剛退休不久的學校老師,他一向以頭腦清晰自豪,現在卻難以專注,一直忘東忘西。儘管從磁振造影看不出明顯的腦部損傷,但他的認知卻不比前額葉皮質受損的人好上多少。他和醫生都沒想到,這些認知問題可能與他剛經歷一場離婚,以及幾十年來第一次獨居的情況有關。

前額葉皮質是腦部最晚成熟的區域之一,在整個青春期會持續調整與其他腦區的聯繫。兒童雖然學習很快,卻不擅長專注在應該專注的事物上,因為容易分心。這對於有 ADHD(注意力缺失/過動障礙症)的兒童更是嚴重,他們在學校表現不佳並不是因為缺乏理解力,而是因為在教室裡難以集中注意力、培養有效的學習習慣,以及利用可以應付考試的策略。有大量證據顯示,ADHD與前額葉皮質的異常活動有關。

前額葉皮質也是我們進入老年時,首先開始衰退的區域之一,我們因此覺得自己變得比較健忘。幸好,對多數年長的人來說,形成記憶的能力不會有問題,倒是專注力的改變會影響我們記憶事件的方式。舉例來說,你可能記不住你在表妹婚禮上遇到的某個人叫什麼名字,卻可以記得你們會面時各式各樣的其他資訊,諸如他臉上有雀斑,戴著鮮黃色的領結,或不停說著他最近到田納西州那許維爾(Nashville)的事。

-----廣告,請繼續往下閱讀-----

隨著年齡變長,我們想起瑣事卻想不起重要事情的傾向也會提高。已經有無數研究顯示,在必須專心、忽視干擾的情況下記憶時,年長者表現得比年輕人要差,然而他們記得干擾訊息的能力卻與年輕人一樣好,有時甚至更好。隨著年歲漸長,我們依然能夠學習,卻較難專注於想要記住的細節,反倒常常記住無關緊要的事情。

多工殺手:為什麼一心多用讓你大腦退化

除了年齡之外,讓你覺得自己的前額葉皮質有問題的因素多得不得了。在現代世界裡,一心多用恐怕是最常見的罪魁禍首。我們的對話、活動和會議不斷受到簡訊、電話的干擾,而我們本身又常把注意力分散在好幾個目標上,使得問題更加嚴重。就算是神經科學家也無法免於多工作業--在今天,幾乎每一場學術演講中,都能發現臺下的科學家(包括我自己)拿出筆記型電腦,時而聽講、時而回電子郵件。

很多人甚至對一心多用的能力很自豪,但同時做兩件事很難不用付出代價。為了達成目標,前額葉皮質能幫助我們專注在所需的事情上,但如果我們在不同目標間迅速換來換去,這項美妙的能力就會消失。

加州大學舊金山分校神經科學家安卡佛(Melina Uncapher)的團隊便指出,「媒體多工」(media multitasking)對記憶不利,意思是在不同媒體的訊息間切換會妨礙記憶,例如一下子看簡訊、一下子看電子郵件。更嚴重的是,習慣重度媒體多工的人,平均而言前額葉皮質的某些區域會變得較薄。

-----廣告,請繼續往下閱讀-----

至於額葉的功能失常究竟是媒體多工的原因或是結果,還需要更多研究才能了解,但不管如何,這裡傳達出來的訊息相當一致。我的樂團夥伴米勒爾(Earl Miller)是世界頂尖的前額葉皮質專家及麻省理工學院的教授,他經常這樣說:

「沒有所謂一心多用;你只是輪流把不同的事情做得很糟。」

前額葉的功能也會遭到一些健康問題的破壞。例如高血壓和糖尿病會傷害大腦各區域間相互溝通的神經纖維通路,也就是白質。我和同事發現,與年齡相關的白質損傷,似乎會讓前額葉皮質失去跟大腦其他部分的聯繫--試想這名執行長被單獨鎖在房間裡,無法使用電話和網路。

感染疾病後如果造成腦部的發炎,也可能導致相似的結果,例如在新冠肺炎流行早期受到感染的人,注意力和記憶力等執行功能出現衰退,而且前額葉皮質部分區域的結構發生改變。

一旦前額葉的運作發生改變,就可能導致「腦霧」(又稱為「長新冠」)--當感染的時間很長,或罹患慢性疲勞症候群(chronic fatigue syndrome)等與感染相關的病症時,有機率出現腦霧的症狀。

-----廣告,請繼續往下閱讀-----
感染或罹患慢性疲勞症候群,都可能影響到前額葉皮質。圖/envato

養成健康生活:強化前額葉皮質的簡單步驟

如果我們生活時忽視自己的身心健康,也可能使前額葉皮質暫時失能。例如睡眠剝奪可能對前額葉皮質和記憶造成毀滅性的打擊。酒精也對前額葉皮質帶來負面影響,有些研究顯示這些影響在大量喝酒後還會持續好幾天。我們在後面的章節將探討,壓力會破壞前額葉的運作。如果你在充滿壓力的一週工作之後,熬夜喝酒又不停滑手機看網路新聞,然後整個週末都在跟腦霧奮戰,不用太驚訝。

幸運的是,我們確實可以做一些事來增進前額葉皮質的運作,雖然那些事可能跟你想的不一樣。你的腦是身體的一部分,所以任何對身體有幫助的事情,對你的腦都有幫助,進一步也對記憶有幫助。例如充足的睡眠、適度的運動、健康的飲食,這些事物都有益於你的生理和心理健康,也有益於你的前額葉皮質。

有氧運動如跑步,能促進腦部化學物質釋放,進而提升神經可塑性,改善為腦運送氧氣和能量的血管系統,降低發炎並減少罹患腦血管疾病和糖尿病的可能性。運動也會改善睡眠、降低壓力,而睡眠不足和壓力過高正是耗盡前額葉資源的兩大元凶。

這些因素會一同作用,影響記憶功能在我們年齡增長時的維持狀況。有一項令人敬佩的研究,追蹤了多達兩萬九千人的記憶表現,發現那些在生活方式裡包含上述某些有益因素的人,在十年期間記憶能力的維持狀況也較佳。

-----廣告,請繼續往下閱讀-----

——本文摘自《記憶決定你是誰:探索心智基礎,學習如何記憶》,2024 年 7 月,天下文化,未經同意請勿轉載

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

天下文化_96
142 篇文章 ・ 623 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

5
0

文字

分享

0
5
0
含糖飲料讓思考能力受損,還和失智有關聯?——《大自然就是要你胖!》
天下文化_96
・2024/06/24 ・2352字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

認知與失智

阿茲海默症是現代社會面臨的一大困擾,這種可怕的疾病是俗稱老年痴呆的失智症最常見的原因,也是 2022 年全美第七大死因。阿茲海默症是一種行為失能疾病,目前尚無有效的治療方法。這項疾病的特徵是神經元會持續死亡、大腦萎縮、神經元之間形成富含 β 澱粉樣蛋白(beta-amyloid)的蛋白質斑塊,並在神經元內部出現濤蛋白(tau)累積。患者通常一開始的症狀是短期記憶喪失,並在幾年內發展為完全的失智。

阿茲海默症中,Tau蛋白異常會造成腦細胞內的微管瓦解。圖/wikimedia

大多數科學家認為,若能阻止澱粉樣蛋白在腦部沉積或濤蛋白在腦神經中累積,就可以預防失智症。然而,目前有幾種治療失智症的方法,正是採行預防或減少澱粉樣斑塊累積,只是全都失敗,導致有人質疑澱粉樣蛋白斑塊是否真的是致病原因,並開始嘗試尋找其他可能的解釋。

許多科學家指出,阿茲海默症患者在早期通常會表現出兩種顯著的特徵。首先,患者大腦中的某些區域,會減少對葡萄糖的吸收和代謝,因此有人將阿茲海默症稱為「大腦糖尿病」或「第三型糖尿病」。其次,大腦神經元內的能量工廠粒線體,不論是數量或功能都出現下滑,導致 ATP 產量減少。這兩項特徵都顯示生存開關可能涉入其中。

的確,大量攝取糖、高升糖碳水化合物和鹽,全都是阿茲海默症的危險因子,而這些食物正好都會啟動生存開關。肥胖症和糖尿病等疾病也可能提高罹患阿茲海默症的風險。若果糖是導致肥胖症和糖尿病的根本原因,而肥胖症和糖尿病又與阿茲海默症的罹患風險上升有關,那可以合理懷疑:果糖也可能是造成阿茲海默症的原因。

-----廣告,請繼續往下閱讀-----

實驗研究也支持糖與認知之間的關聯。例如,實驗室大鼠飲用含糖飲料之後,思考能力會受損。我的同事生理學家魯尼(Kieron Rooney)每天餵食大鼠兩小時的蔗糖水,濃度為 10%,大約與軟性飲料相同,為期一個月。結果這些喝糖水的大鼠,變得很難找到走出迷宮的路。更令人擔憂的是,即使大鼠停止飲用糖水,這種情況還是持續了六週。同樣的,經常飲用軟性飲料的兒童,在閱讀、寫作、文法和數學方面的學業表現,都相對較差。

經常飲用軟性飲料的兒童,在閱讀、寫作、文法和數學方面的學業表現,都相對較差。圖/envato

這些研究顯示,攝取含糖飲料可能對認知功能造成影響,而且影響所及的時間有可能持續。然而,這不一定代表蔗糖會導致失智。即使每天喝一種或多種含糖飲料,與情節記憶(episodic memory,對過去經歷或事件的回憶)受損和腦容量萎縮有關,但目前還無法做出任何定論。

不過,有愈來愈多證據將果糖與阿茲海默症聯繫起來。阿茲海默症患者大腦中的果糖濃度偏高,且含量比同年齡、同性別的非患者高出四至六倍,而果糖濃度最高的地方通常就是病變區域。也有證據顯示,大腦中的果糖大多是透過多元醇途徑生成。這些患者腦內有大量的山梨糖醇,也就是果糖的前驅物,這跟躁鬱症患者的情況類似。正如我們所知的,果糖一旦生成,會刺激生存開關啟動,造成細胞中的 ATP 含量減少。此外,阿茲海默症患者大腦中負責「清除」AMP 的酵素濃度,比同年齡對照組高出約兩倍。AMP 原本可重新轉化為 ATP,當愈多 AMP 遭到清除,腦內的能量濃度也就隨之下降。

我認為果糖導致阿茲海默症的途徑大致如下。之前提過,在缺少食物時,身體會活化生存開關以保護大腦,這時血液中的葡萄糖無法進入肌肉和肝臟,而會保留在血液中供大腦吸收與使用。這道開關的運作是透過阻斷胰島素作用來完成,因為肌肉和肝細胞需要胰島素才能吸收和使用葡萄糖,但大腦多半不需要。

-----廣告,請繼續往下閱讀-----
阿茲海默症患者大腦中的果糖濃度偏高,且含量比同年齡、同性別的非患者高出四至六倍,而果糖濃度最高的地方通常就是病變區域。圖/envato

然而有例外,大腦中與記憶和決策相關的區域,需要借助胰島素的作用才能攝取葡萄糖。加州大學洛杉磯分校的神經生理學家戈梅茲皮尼拉(Fernando Gomez-Pinilla)發現,大鼠攝取果糖後,大腦中與記憶和決策相關的區域會失去對胰島素的反應,導致葡萄糖吸收減少。實際上,果糖引起胰島素抗性的區域除了肌肉和肝臟,還有與記憶相關的大腦重要區域,這或許正是阿茲海默症的根本原因。

但限制大腦的這些特定區域攝取葡萄糖,對生存有什麼好處?之前提過,衝動和探索屬於覓食行為。記憶受壓抑的動物,可能更願意前往危險區域探索,因為牠們忘了潛在危險,而決策區受損的動物則會變得更衝動。因此可合理推測,果糖會透過在特定大腦區域引發胰島素抗性,以促進覓食行為,這是一種生存反應。

生存開關活化導致特定腦區的功能受到短期抑制,一開始的確能帶來生存優勢,但如果是反覆或慢性的刺激,反而可能導致腦部損傷。這些重要的神經元長期得不到足夠的葡萄糖,最終可能因為營養不良而功能受損。而且果糖代謝會對粒線體造成氧化壓力,使得 ATP 產量減少,更使狀況進一步惡化。一旦 ATP 濃度過低,神經元會死亡,最後的結果就是阿茲海默症。依此觀點來看,阿茲海默症患者大腦的後續變化,例如澱粉樣蛋白和濤蛋白的積累,都是次要的,而阿茲海默症的根本原因,主要是生存開關慢性活化。

——本文摘自《大自然就是要你胖!》,2024 年 06 月,天下文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

天下文化_96
142 篇文章 ・ 623 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

1

8
3

文字

分享

1
8
3
阿茲海默症靠吃藥效果有限?關鍵基因找到了!
PanSci_96
・2023/08/13 ・5061字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

你身邊有人罹患失智症嗎?失智症和其他破壞身體的疾病很不一樣,它攻陷和摧毀心智,使我們最愛的人變成陌生人。其中,有六到七成的失智症患者都患有阿茲海默症,2023 年 5 月,對抗阿茲海默症的護腦基因研究出爐,有機會打破幾乎束手無策的現狀,催生出治病的新藥和新策略。而且,這是 6000 人、跨越 30 多年用他們的人生教給我們的一堂課。

為什麼整個世紀阿茲海默症都沒藥醫?

1906年德國一位醫師阿茲海默(Alois Alzheimer)發表一個病例,這名女性患者在生前接受治療的期間答非所問、時間感混亂,也不知道自己身在何處,這種導致大腦病變的疾病後來就稱為阿茲海默症(Alzheimer’s disease)。

這位病患過世後,阿茲海默醫師解剖她的大腦,發現腦部嚴重萎縮,而且腦組織的切片經過銀染色後,可以看到布滿許多斑塊,神經細胞也扭曲變形,這兩種腦部的變化到現在還是診斷阿茲海默症的重要依據。

後來的科學家接棒研究,檢驗出這些斑塊是由一類叫做類澱粉蛋白質(amyloids)的不可溶蛋白質所形成,這些蛋白質會沉澱在神經細胞外面,部分研究者猜想這些斑塊或許是導致神經細胞活性衰減或死亡的兇手。而這些異常蛋白質跟食物裡的澱粉沒有關係,只是因為染色以後看起來和澱粉染色類似,澱粉的拉丁語是 amylum,所以早期的科學家就把它叫做類澱粉蛋白質 amyloid,一直延用到今天。

-----廣告,請繼續往下閱讀-----
異常蛋白質染色以後看起來和澱粉染色類似。圖/PanSci YouTube

神經細胞的扭曲變形則是因為神經細胞裡面冒出了大量的 Tau 蛋白質,這種蛋白質會在細胞內部聚集成雜亂糾結的纖維狀結構,也可能因此造成神經細胞沒辦法正常運作。

抓到大腦異狀的可疑元凶了,離找到解藥就不遠了吧?沒想到焦急的病患和家人們這一等,就等了快要 90 年。

第一個阿茲海默症的藥一直到 1993 年才推出,而且只能延緩心智瓦解的速度,沒辦法逆轉病程。1993 到 2003 年之間,一共有 5 種藥上市,其中 4 種的功效是提高神經傳導物質乙醯膽鹼的濃度,使神經訊號能順利傳送;另一種藥作用在神經細胞膜上的 NMDA 受體(N-methyl-D-aspartate receptor),這種受體分布在腦部多個區域,可以接收神經訊號,和認知學習有關。打個比方,這些藥都像是給瀕臨油盡燈枯的腦神經細胞打強心針,再盡可能多傳遞一些訊號,只能暫時減輕症狀,沒辦法解除病因。

目前全球失智症患者估計已經超過五千五百萬人,估計 2050 年時會膨脹到將近一億四千萬人;臺灣更是現在進行式,推估 80 歲以上每 5 個人就有 1 個人失智。一個影響如此之大的疾病,卻只有少得可憐的解方。綜觀整部醫療史,這種山窮水盡的情況其實很少見,其他的病再怎樣難纏,或多或少總可以想出一些辦法,就算是萬病之王癌症,人類還是不斷做出新藥、新療法,不會落到這種兩手一攤無計可施的地步。

-----廣告,請繼續往下閱讀-----
臺灣五歲分年齡層失智症盛行率。圖/台灣失智症協會

2003 年以後又是一大段空白,到了 2021 年——距離發現阿茲海默症已經有 115 年之久——終於有新藥 Aducanumab 問世,它是第一種直接針對可能病因的藥物,鎖定的目標是清除類澱粉蛋白質。

爭議藥物強行通關,FDA委員憤而辭職

然而這款藥飽受爭議。大致來說,它最大的問題是雖然能減少類澱粉斑塊,但是只有部分受試患者的認知功能稍有改善。當時美國食品及藥物管理局(FDA)諮詢委員會的 11 名委員中 1 人棄權、10 個人投下反對票,可見得專家並不認同這款藥達到上市標準,但是 FDA 還是在病患人數多、有迫切醫療需求等等考量下強行核准過關。事後陸續有 3 名專家憤而辭職,掀起醫界不小的波瀾。

2023 年 1 月,第二種新藥 Lecanemab 推出,治療過程中可以把認知功能退化速度減少約四分之一;5 月上旬,第三種藥 Donanemab 公布第三期人體臨床試驗結果,減少認知退化速度約三分之一。兩種藥也都針對類澱粉斑塊,療效比第一種藥 Aducanumab 好了不少,但是使用上有限制,例如 Lecanemab 建議在疾病早期使用,效果可能比較好,然而很多阿茲海默症患者確診時已經是中晚期。兩種藥也有副作用,例如用藥後部分患者發生腦水腫或腦出血。

換句話說,現在寥寥無幾的藥都還有無法忽視的缺陷。找藥已經找到焦頭爛額的科學家,靈光一閃,另闢蹊徑從基因下手。而且,真的在陰霾中找到了一線亮光。

-----廣告,請繼續往下閱讀-----

害腦基因 VS. 護腦基因,腦部小宇宙裡的戰爭

過去兩三個世代的科學家費盡心思,上山下海去搜索和阿茲海默症罹病風險相關的基因,他們決定直球對決:想辦法抑制或清除掉致病基因產生的壞東西,大腦自然就沒事了。

比如說,第一型早老素(PSEN1)、第二型早老素(PSEN2),以及 APOE 脂蛋白(Apolipoprotein E)基因等等。早老素顧名思義,被認為和腦神經功能衰退相關;APOE 則是和人體代謝膽固醇及三酸甘油酯有關,也會影響腦部類澱粉蛋白質的沉積過程。

有會傷害大腦的基因,那有沒有能保護大腦的基因呢?

但是也有科學家偏要和別人逆向,他們問的問題很簡單:既然有會毒害大腦的基因,那有沒有能保護大腦的基因呢?他們認為,只要弄清楚這些基因是用什麼方式為腦細胞穿上金鐘罩鐵布衫,人類就可以效仿了。

但是這種研究非常困難。原因是如果要找壞基因,可以藉由比對病人和健康人的 DNA,先勾勒出一個模糊的輪廓。就好像拿癌細胞和健康細胞來互相比較,可以挖到深埋在 DNA 裡的致癌基因。但是要找護腦基因,卻沒有對照組可以當成參考的基準點。也因為這個主要障礙,這類研究推進得相當龜速。

-----廣告,請繼續往下閱讀-----

為什麼沒有對照組呢?因為最理想的受測者必須滿足三項條件。第一,他體內要攜帶能保護腦的基因,雖然科學家這時候還不知道這些基因是什麼;第二,他同時也帶有會傷害腦的基因;還有關鍵的第三點,那就是要可以觀察到護腦基因發功,壓過傷腦基因的破壞力道。

天啊,這也太困難了!不過科學家找到了理想的試驗對象,或許更精確的形容詞是,終於讓他們「等」到了。

尋找阿茲海默症致病基因——阿茲海默症家族

在南美洲哥倫比亞,有一個被早發型阿茲海默症魔咒纏身的大家族,人數約有 6 千人,其中許多人通常在 40 到 50 歲間就發病,遠比一般人早,病情惡化速度也更快。科學家追蹤這個家族 30 多年,鑑別出和腦部退化相關的多個遺傳因素。

2023 年 5 月,研究團隊在《Nature Medicine》發表成果,他們分析了大約一千兩百位帶有早發型致病基因的家族成員,從中找到一名特殊個案,這個男性首次接受認知功能測試的時候是 67 歲,已經超過發病年齡中位數 20 多年,但是卻只有輕度的認知障礙,沒有惡化成失智。

-----廣告,請繼續往下閱讀-----

之後,科學家掃描這個人的大腦,發現腦部堆積大量的類澱粉斑塊,還有 Tau 蛋白質造成的神經細胞纖維糾結,簡單來說,他的大腦就像一個嚴重失智病人的腦。不過,其中有一塊名叫內嗅皮質(entorhinal cortex)的腦區,只有少少的 Tau 蛋白質。

內嗅皮質緊貼著掌管記憶形成過程的海馬迴(hippocampus),它的角色有點像海馬迴的守門人,能把遠處腦區傳來的電訊號接力送進海馬迴,先前已知內嗅皮質和記憶及空間定位能力有關。

2014 年諾貝爾生醫獎得主歐基輔和穆瑟夫婦,因為發現動物利用腦中一組排列成六角形網格狀的特殊細胞來記住地圖和認路,因而獲得殊榮,網格細胞就是位在內嗅皮質。阿茲海默症患者的內嗅皮質通常在疾病早期就遭到破壞,因此導致頻繁迷路、出得了門回不了家的症狀。或許我們該幫索隆檢查一下內嗅皮質?

常常迷路的索隆。圖/tenor

研究團隊進一步分析這個男性的基因,發現他有一個稱為 RELN 的基因發生突變。RELN 基因已知和思覺失調症、躁鬱症等腦部變化有關聯,但科學家以往對這個基因和阿茲海默症的關聯了解得不多。

-----廣告,請繼續往下閱讀-----

RELN 基因和阿茲海默症的關聯

為了瞭解這種突變會觸發什麼後續效果,研究者改造小鼠的基因,試驗結果發現,突變 RELN 基因轉譯出來的蛋白質,會促使 Tau 蛋白質發生化學修飾,降低了某些腦區裡 Tau 蛋白質聚集形成纖維糾結的能力。

這項研究其實是史上第二例基因突變大幅延緩早發型阿茲海默症病程的報告,第一例是同一個家族的一位女性,2019 年發表在《Nature Medicine》,她比同家族人晚了將近 30 年才發病,不過她發生突變的地方是在 APOE 基因,突變後 APOE 脂蛋白的致病力減弱,比較難以造成腦部病變。

阿茲海默的新假設與新挑戰

這兩份研究報告帶出了一個假設,以及一個挑戰。新的假設是,用人為方式加強 RELN 的護腦效果,或是削弱 APOE 的傷腦能力,對於開發新藥和新療法來說可能是更好的目標。

不過,持平來說,目前這類護腦基因突變僅僅發現兩例,還太少了,只能用試驗結果建立假說,也不能確定是不是適用於所有患者,必須累積更多調查和試驗數據才能判斷。

-----廣告,請繼續往下閱讀-----

提出的新挑戰則是,現在 FDA 核准的藥物都是鎖定類澱粉蛋白質為目標,還有一大堆同類的藥正在燒鈔票試驗中,但是新研究對於類澱粉斑塊致病假說是一記強而有力的警鐘。或許 Tau 蛋白質的角色一直被誤解了,它才是真正的幕後黑手?又或許根本不需要保護整個腦,只要想辦法保住關鍵腦區或必要的神經元通道,就可以對抗阿茲海默症?這些問題都是接下來研究的重點。

腦真的是類澱粉蛋白質殺的?阿茲海默症研究風向轉變中

類澱粉蛋白質是主要致病元兇的說法在近幾年已經受到不少質疑。原因有好幾個,概略來說,主因是科學家陸陸續續看到一些當事人大腦裡有類澱粉斑塊沉積,但是心智沒有明顯受影響的案例;還有,長久以來全球許多研究團隊把類澱粉蛋白質當作開發藥物的目標,結果失敗率幾乎是 100%,也讓人對這個假說起疑。

就在 2022 年,阿茲海默症醫療史上一樁惡名昭彰的醜聞爆發,更把致病原因的爭議推上最高點。

事件導火線是一位神經科學家揭露 2006 年發表在《Nature》的一篇阿茲海默症經典論文涉嫌造假,這篇報告以及它後續的研究,提出某個類型的類澱粉蛋白質可能導致阿茲海默症的看法。2022 年 7 月《Science》刊出長篇報導,指出科學界調查認為有數百張論文圖片疑似有問題。

2006 年發表在《Nature》的一篇阿茲海默症經典論文涉嫌造假,調查認為有數百張論文圖片疑似有問題。圖/PanSci YouTube

這把火最直接燒出來的問題是,會不會整整十六年來大家都被誤導了?白白浪費了大批科學家的時間,連帶燒掉幾千萬甚至幾億美元。這裡我們沒辦法再多講細節,如果你想更詳細瞭解這場「阿茲海默之亂」和後續影響,想知道研發阿茲海默藥物的百年崎嶇路和未來進程的更多新知,或是想跟上失智症的其他最新研究,歡迎加入我們的頻道會員來投票喔!

不過,這並不是說類澱粉斑塊假說就此被一竿子打翻,畢竟很多患者大腦有明確的斑塊沉積是事實,而且醜聞裡牽涉到的只是類澱粉蛋白質之中的特定類型;再加上 2023 年針對類澱粉斑塊的 Lecanemab 和 Donanemab 兩款新藥的確有療效,也是有力的佐證。

目前生物醫學界的看法,逐漸轉向認為阿茲海默症很可能不是單一種疾病,而是應該再切分出多種亞型,類澱粉蛋白質斑塊是部分患者的病因但不是全部。打個比方,就好像同樣是肺癌,按照基因差異和疾病進程不同,醫師和科學家可以把患者再分成多個小群,每一群都有相對更適合的療法。

阿茲海默症很可能不是單一種疾病,而是應該再切分出多種亞型。圖/PanSci YouTube

舉例來說,前面說到的從阿茲海默症家族發現的傷腦和護腦基因,以及關鍵腦區有沒有受損,或許就有機會成為打開分型治療之門的幾把鑰匙。

如果這個多亞型的新觀點成立的話,那麼要怎麼樣為患者分型?有哪些生物標記可以用?每種亞型要怎麼治療?這些一連串問題勢必會變成接下來研究的重點,我們也可以想像得到,阿茲海默症的醫療即將出現百花齊放的局面,不過呢,這又是另一個故事了。如果你身邊有人也對這個議題好奇,歡迎分享給他,如果你就是阿茲海默症的患者跟照顧者,在此跟你說聲辛苦了。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
所有討論 1
PanSci_96
1262 篇文章 ・ 2408 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。