Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

矮星系吹泡泡

臺北天文館_96
・2011/10/07 ・963字 ・閱讀時間約 2 分鐘 ・SR值 522 ・七年級

通常有名的哈柏太空望遠鏡(Hubble Space Telescope)星系影像,要不是壯觀的螺旋星系,就是邊緣和緩變化的橢圓星系,不過這些通常都是大型星系才有的模樣,瞧瞧右方影像中的星系,有沒有覺得與眾不同呢?因為影像中的主角—洪伯II(Holmberg II,UGC 4305)是不規則矮星系(dwarf irregular galaxy);這類矮星系的外型和型態差異頗大,很難歸類,故直接歸類為不規則星系。而哈柏先進巡天相機(Advanced Camera for Surveys)影像中可見模糊不清的洪伯II星系裡,有著數個巨大且發光的氣體泡泡呢!(譯者註:這個星系幾乎佔滿整個畫面,其中的紅色氣泡結構只是星系中的一部份而已喔!點選此處觀看這個星系的整體外觀影像。)

天文學家推測:洪伯II星系裡這些精細而明亮的氣體殼層,應該是歷經數代活力充沛的恆星演化後的結果。高質量恆星(high-mass star)從稠密的氣體雲中誕生,之後發出強烈的恆星風將周圍物質吹開;到了生命末期,發生超新星爆炸所產生的衝擊波,將已經比較沒那麼稠密的氣體往外推,並加熱這些氣體使其發光,最後就形成了今日所見的泡泡狀結構。

洪伯II星系的中間區域勉強算是個密集的恆星形成區,但向外延伸達數千光年的範圍內都相當貧瘠,缺乏製造新恆星的材料。作為一個矮星系,它既沒有像銀河系一樣的旋臂,也沒有橢圓星系常見的稠密核心。這使得洪伯II星系的重力場不夠強,所以像這樣脆弱的氣泡結構能夠大致維持形狀而沒啥改變。

雖然以規模來論,洪伯II星系是不起眼的矮星系,不過這個星系還是有某些吸引人的特徵。例如它是1950年代洪伯(Erik Holmberg)在M81星系團中發現的9個低表面亮度星系(low-surface-luminosity galaxies)之一,它不尋常的外表為它在赫頓‧阿普(Halton Arp)的特殊星系表(Atlas of Peculiar Galaxies)中贏得一席之地。此外,這個星系還有個極明亮的X射線源,就在影像右上角3個氣體泡泡的中間那個裡;目前有許多種理論解釋這個強力輻射的來源,其中一種理論還提到可能是其中有個正在拉扯周邊物質的中型黑洞(intermediate-mass black hole)哩!不過這些理論有些甚至相互矛盾,讓這個強X射線源的起源仍是個未解之謎。

-----廣告,請繼續往下閱讀-----

洪伯II星系屬於M81星系團成員之一,距離地球約1200萬光年,位在大熊座方向,這個星系團主要的領袖星系為M81和M82,是離銀河系所在的本星系群最近的星系集團之一。

資料來源:Galaxy caught blowing bubbles

轉載自台北天文館之網路天文網網站

-----廣告,請繼續往下閱讀-----
文章難易度
臺北天文館_96
482 篇文章 ・ 44 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

2
1

文字

分享

0
2
1
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

13
6

文字

分享

0
13
6
毀滅與新生:超大質量黑洞觸發的恆星形成
EASY天文地科小站_96
・2022/03/18 ・2555字 ・閱讀時間約 5 分鐘

  • 林彥興|EASY 天文地科小站主編、清大天文所碩士生,努力在陰溝中仰望繁星

2022 年 1 月底,兩位天文學家在頂尖科學期刊《自然》發表的論文中,宣布他們發現矮星系「Henize 2-10」中的超大質量黑洞,觸發了一批新恆星的誕生。可是,我們印象中的黑洞不是會以極強的重力撕碎、吞噬周遭一切的嗎?怎麼這樣毀滅性的天體,居然還能誕生新的恆星?今天就讓我們來一探究竟!

哈伯太空望遠鏡拍攝的 Henize 2-10 矮星系。
圖/Hubblesite

黑洞:宇宙燈塔核心

多數人對黑洞的印象,大概是一個擁有強大重力、會撕碎與吞噬一切的純黑球體。由於連光也無法逃離它的魔爪,因此黑洞總是隱身在宇宙黑暗的背景中難以觀測。

這樣的圖象雖然大致正確,卻不是事情的全貌。黑洞確實會以它強大的重力吃進物質,天文學家也確實相信茫茫星海中,有許多難以觀測的黑洞漫步其中。但是被黑洞重力捕獲的物質,往往不會直直地朝黑洞落去,而是會在黑洞週遭形成一個旋轉的盤狀構造,稱為「吸積盤 Accretion Disk」。

在吸積盤上,物質之間不斷的碰撞、摩擦、緩緩向黑洞靠近,在過程中將重力位能轉化為動能、熱能、磁能等各式各樣的能量形式,並釋放出橫跨伽瑪射線到無線電波的電磁輻射。在許多系統中,還可以觀測到物質快速的從黑洞附近噴出,通常速度較慢(約每秒數百至數千公里)者通常稱為「外流 Outflow」,速度較快(接近光速)者則稱為「噴流 Jet」。

對超大質量黑洞吸積盤與噴流的數值模擬。在吸積盤上,物質以圓形軌道環繞黑洞,並緩緩的向內移動,直到最終在吸積盤的最內側被黑洞吞噬。而從黑洞兩極高速噴出的物質,則形成了噴流。
影/EHT, Hotaka Shiokawa.

黑洞產生的輻射、噴流與外流,不僅讓我們能夠用各式各樣的觀測手段去尋找和研究黑洞,它們同時也會對黑洞所在的環境產生影響。

-----廣告,請繼續往下閱讀-----

尤其當身處星系中心、質量是太陽數百萬倍以上的「超大質量黑洞 SMBH」們在大快朵頤週遭的氣體時,能夠以太陽數百萬倍、甚至數千億倍以上的功率釋放能量,成為宇宙中最明亮的天體。

如此龐大的能量,足以影響整個星系乃至於星系團的演化。它可能促進星系中恆星的形成,為星系帶來新生;或者是抑制星系中恆星的形成,讓星系變得死氣沉沉。另一方面,星系中恆星的形成、超新星爆炸等其他現象,也會決定有多少氣體能夠流到位於星系中心的黑洞上,從而影響黑洞的成長。

超大質量黑洞與星系之間互相影響、共同演化的機制,統稱為「活躍星系核回饋 AGN Feedback」,是當代天文物理非常重要的研究領域。

天文學家常用星系的「恆星形成率 SFR」來衡量一個星系的狀態。如果一個星系正在產生許多新恆星(即恆星形成率高),這就是個「生機勃勃」的星系(如左圖的 NGC 4038 / NGC 4039);反之,如果一個星系都只有年邁的恆星,那這就是個「死氣沉沉」的星系(如右圖的 IC 2006)。
圖/WikipediaESO

半人馬座 A 星系是經典的活躍星系之一。由星系中心射出的筆直藍色區域,就是超大質量黑洞的噴流。圖/ESA_Multimedia

過去 20 多年的無數理論與觀測成果,讓天文學家相信活躍星系核回饋確實對星系的演化有重要的影響。但是具體是怎麼影響?影響多大?目前仍沒有明確的結論,甚至連直接的觀測證據都十分稀少。因此,天文學家迫切的想要找到更多活躍星系核回饋的直接證據,了解黑洞究竟是怎麼與星系一同成長。

-----廣告,請繼續往下閱讀-----

瞄準目標:矮星系 Henize 2-10

在這個研究中,天文學家鎖定位在羅盤座(Pyxis)、距離地球約 3400 萬光年的矮星系「Henize 2-10」。過去其他天文學家以無線電與 X 射線觀測的結果顯示,這個星系中心可能有一個正在進食的超大質量黑洞,因此是尋找活躍星系核回饋證據的絕佳場所。

為了得到高解析度的影像,天文學家使用哈伯太空望遠鏡仔細的研究星系中心的影像與光譜,發現在星系的中心有一道長約 500 光年、由游離氣體組成的纖維狀結構,源自星系中心的超大質量黑洞噴出的外流。而黑洞東方(圖中的左手邊)約 230 光年外,有一片正在形成許多新恆星的區域(稱為恆星形成區),與外流相連。

天文學家仔細分析星系的光譜後,認為黑洞的外流正是催生這片恆星形成區的幕後推手。因為外流推擠、壓縮了星系中的氣體,增加了氣體的密度,才進一步激發了這批新恆星的形成。對研究黑洞與活躍星系核的天文學家來說,這無疑是一次振奮人心的發現!

哈伯太空望遠鏡拍攝的 Henize 2-10(左),以及其中心部分的 H alpha 波段影像(右)。在右編的影像中 Massive Black Hole 即是黑洞所在的位置,Outflow 是外流、Triggered Star Formation 即是恆星形成區。
圖/Hubblesite

結語:萬里長征的一小步

黑洞不只是能夠吞噬一切的引力怪獸。它在囫圇吞棗的過程中,其實可以釋放出巨大的能量。尤其是位於星系中心的超大質量黑洞們,它們產出的能量之龐大,甚至能夠影響整個星系的演化,稱為活躍星系核回饋。但是怎麼影響?影響多大?天文學家們仍在積極的研究。

-----廣告,請繼續往下閱讀-----

這次在 Henize 2-10 星系中觀測到的黑洞外流與其激發的恆星形成,是活躍星系核回饋相當重要的直接證據。未來,天文學家將繼續在更多的星系中,尋找黑洞與星系互動的蛛絲馬跡,直到揭開活躍星系核回饋的神秘面紗。

參考資料

-----廣告,請繼續往下閱讀-----
EASY天文地科小站_96
23 篇文章 ・ 1585 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事

0

0
0

文字

分享

0
0
0
矮星系吹泡泡
臺北天文館_96
・2011/10/07 ・963字 ・閱讀時間約 2 分鐘 ・SR值 522 ・七年級

通常有名的哈柏太空望遠鏡(Hubble Space Telescope)星系影像,要不是壯觀的螺旋星系,就是邊緣和緩變化的橢圓星系,不過這些通常都是大型星系才有的模樣,瞧瞧右方影像中的星系,有沒有覺得與眾不同呢?因為影像中的主角—洪伯II(Holmberg II,UGC 4305)是不規則矮星系(dwarf irregular galaxy);這類矮星系的外型和型態差異頗大,很難歸類,故直接歸類為不規則星系。而哈柏先進巡天相機(Advanced Camera for Surveys)影像中可見模糊不清的洪伯II星系裡,有著數個巨大且發光的氣體泡泡呢!(譯者註:這個星系幾乎佔滿整個畫面,其中的紅色氣泡結構只是星系中的一部份而已喔!點選此處觀看這個星系的整體外觀影像。)

天文學家推測:洪伯II星系裡這些精細而明亮的氣體殼層,應該是歷經數代活力充沛的恆星演化後的結果。高質量恆星(high-mass star)從稠密的氣體雲中誕生,之後發出強烈的恆星風將周圍物質吹開;到了生命末期,發生超新星爆炸所產生的衝擊波,將已經比較沒那麼稠密的氣體往外推,並加熱這些氣體使其發光,最後就形成了今日所見的泡泡狀結構。

洪伯II星系的中間區域勉強算是個密集的恆星形成區,但向外延伸達數千光年的範圍內都相當貧瘠,缺乏製造新恆星的材料。作為一個矮星系,它既沒有像銀河系一樣的旋臂,也沒有橢圓星系常見的稠密核心。這使得洪伯II星系的重力場不夠強,所以像這樣脆弱的氣泡結構能夠大致維持形狀而沒啥改變。

雖然以規模來論,洪伯II星系是不起眼的矮星系,不過這個星系還是有某些吸引人的特徵。例如它是1950年代洪伯(Erik Holmberg)在M81星系團中發現的9個低表面亮度星系(low-surface-luminosity galaxies)之一,它不尋常的外表為它在赫頓‧阿普(Halton Arp)的特殊星系表(Atlas of Peculiar Galaxies)中贏得一席之地。此外,這個星系還有個極明亮的X射線源,就在影像右上角3個氣體泡泡的中間那個裡;目前有許多種理論解釋這個強力輻射的來源,其中一種理論還提到可能是其中有個正在拉扯周邊物質的中型黑洞(intermediate-mass black hole)哩!不過這些理論有些甚至相互矛盾,讓這個強X射線源的起源仍是個未解之謎。

-----廣告,請繼續往下閱讀-----

洪伯II星系屬於M81星系團成員之一,距離地球約1200萬光年,位在大熊座方向,這個星系團主要的領袖星系為M81和M82,是離銀河系所在的本星系群最近的星系集團之一。

資料來源:Galaxy caught blowing bubbles

轉載自台北天文館之網路天文網網站

-----廣告,請繼續往下閱讀-----
文章難易度
臺北天文館_96
482 篇文章 ・ 44 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

0
0

文字

分享

0
0
0
電腦裡的小宇宙,重現絢麗的恆星爆炸!
研之有物│中央研究院_96
・2018/12/05 ・3579字 ・閱讀時間約 7 分鐘 ・SR值 495 ・六年級

-----廣告,請繼續往下閱讀-----

  • 採訪編輯|歐柏昇 美術編輯|張語辰

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

天文學家無法做實驗來製造一個宇宙,卻可以在超級電腦中製造小宇宙,探索宇宙中複雜的現象。中研院天文及天文物理研究所的助研究員陳科榮,利用電腦模擬,揭開觀測背後的物理過程,了解超新星爆發的機制,以及超新星與宇宙學的關聯。

一般人對於天文學家的想像,是拿著望遠鏡觀測宇宙的仰觀者。陳科榮是大家較不熟悉的另一類型:模擬天文學家。
攝影│張語辰

模擬天文學家的望遠鏡:超級電腦

對於模擬天文學家而言,超級電腦就是望遠鏡。我們可以在超級電腦裡模擬我們的小宇宙。

為什麼研究宇宙需要用電腦模擬呢?陳科榮說明,物理、化學研究可以在實驗室裡做測試,但是天文學家不可能自己做一個宇宙出來,必須仰賴電腦來做實驗。

用電腦模擬來研究宇宙,其基礎在於我們對物理的理解。我們覺得牛頓定律、電磁學等在宇宙其他地方也適用,就可用數學、物理的方程式,推算宇宙星體經歷的過程。然而,宇宙中的許多系統很複雜,沒辦法用人腦、用筆去算。因此,把物理方程式寫成程式,讓超級電腦計算。

-----廣告,請繼續往下閱讀-----

何謂「超級電腦」?陳科榮解釋,當一台電腦的記憶體、運算速度,大約是一般筆電的超過一萬倍以上,就可稱做超級電腦。也就是說,在一般筆電要花一萬個小時的計算,在超級電腦只要花一小時。近年來,電腦運算速度越來越快,幫助我們處理更複雜的問題。

「模擬」是根據基本數學、物理建構出來,製造一個虛擬的世界。虛擬世界跟實際世界是否真的相關聯,這就需要驗證。

陳科榮舉了工業上的例子,說明電腦模擬的應用。過去沒有電腦模擬,若要測試新型汽車的效能,就會先製造一個實體的模型車,放在「風洞」裡,讓風吹向車子,觀察流線的分布,來判斷模型是否優良。現在不必花高成本製造模型車,只要用電腦模擬,計算流體力學,就可以了解流線的情況。確定模擬出的最佳結果之後,才需要做出實體的模型車,再放到風洞裡做實驗,省下了很多開發資源。

用電腦模擬,追探觀測背後的玄機!

用電腦模擬來研究天文,可以幫助我們了解:天文觀測到的現象背後,到底發生了什麼事。

陳科榮說明,我們一般看到宇宙都是看到「光」,光會帶來很多訊息,但有時比較表面。就像我們在大樓裡面討論事情,有些訊號可能會傳到大樓外,但是大部分的光線都被牆壁擋住,大樓外面的人無法得知我們在做什麼。

-----廣告,請繼續往下閱讀-----

例如,超新星爆炸是發生在恆星內部的過程,我們只能看到爆炸後的現象,卻也想了解超新星爆炸內部的過程。做模擬的天文學家,便試著去探索背後的機制,了解爆炸怎麼產生。

以上方影片為例,這是陳科榮模擬「磁星」(magnetar) 的超新星爆發過程。簡單來說,中間有個很大的中子星,中子星放出的輻射促成了超新星的第二次爆炸。這種超新星爆炸會發出非常亮的光,且在輻射機制的加速過程中,被推出來的物質會承受流體的不穩定性。一開始小小的不均勻,可成長出「渦流」(eddy),形成大尺度的不穩定結構。

陳科榮發現,磁星的超新星爆炸機制,模擬出來的結構,竟然與下方右圖的蟹狀星雲非常像,推測蟹狀星雲可能是由這種爆炸機制形成。

磁星 (magnetar) 的超新星爆炸機制,左圖模擬出來的結構,與右圖的蟹狀星雲(紅框處)非常像。
資料來源│左圖:陳科榮,右圖:NASA, ESA, J. Hester and A. Loll (Arizona State University)

-----廣告,請繼續往下閱讀-----

陳科榮再舉一個爆炸模擬,如下方影片所示。一般想像的爆炸是四面八方擴散,但其實有種不均向的超新星,稱為極超新星 (hypernova)。爆炸能量主要集中在南北極,產生噴流的結構形成極大的不對稱性。這就像是大砲把恆星轟一個大洞,整顆炸開。

化作春泥更護花──超新星與宇宙學

陳科榮在博士班三年級的時候,得到一個獎學金,去德州大學做研究,開啟了宇宙學和超新星關聯的研究旅程。超新星對宇宙有何影響呢?陳科榮引用詩句來詮釋:

落紅不是無情物,化作春泥更護花。

星星就像是一朵花,這朵花是由它的泥土滋養而來。超新星爆炸時,這朵花就散落了,但是花瓣回歸到泥土,就繼續滋養下一代的花長大。超新星也是一樣,散出去的物質,變成之後下一代星星成長所需要的元素。因此,超新星是宇宙、恆星生命週期中的重要過程。

宇宙很大,恆星很小,恆星卻能影響宇宙。這就像是人體很大,細胞很小,但是細胞發生問題,可能會影響到整個人體。恆星、超新星、宇宙之間的關聯性相當重要,但因為跨越了巨大的物理空間,是不易研究的課題。

-----廣告,請繼續往下閱讀-----

為求了解恆星對宇宙的影響,陳科榮做了宇宙結構的模擬,如下方影片所示。首先,恆星會發光,將周圍氣體加熱、游離化。如果恆星死亡後直接變成黑洞,氣體會慢慢冷卻。但若恆星變成了超新星,則會發生許多有趣的變化。

在超新星的爆炸過程,會見到「紊流」這個現象。無序的紊流,是普遍發生於自然界的擴散過程。例如,滴下一滴墨水,很快地,杯子裡的水都變成藍色。其實短短時間內發生的物理過程很複雜,出現了「瑞利 – 泰勒不穩定性」等現象,使得流體混合在一起。透過下方的電腦模擬影片,我們可以仔細品味其中的過程,以及無序之美。

  • (紊流影片來源│謝宜達提供)

難以入眠的模擬天文學家

宇宙星體很美麗,卻看似離實際利用較遙遠,那研究目的是什麼呢?陳科榮認為,研究基礎科學最重要的動機,是對人類知識做出貢獻,滿足人類的好奇心、求知慾。是否能夠拿來賺錢,總是往後才應用出來的事。

陳科榮舉例,電磁學之父法拉第發明了「電場」的概念,國王問他,這個東西對國王有什麼用?法拉第回答,他也不知道這能幹嘛,但是相信它未來會貢獻國王的稅收。後來,全世界一半以上的產值都和「電」有關。研究天文、宇宙,現在也不知道馬上能夠拿來幹嘛。

-----廣告,請繼續往下閱讀-----

但若未來人類要去外太空旅行,也許就能知道要避開哪些爆炸的超新星。

談到研究的甘苦,陳科榮說,其實研究大部分時間都是苦的。一個研究結果出現,經常是失敗過很多次了。不過,痛苦與樂趣是相對的,如果沒有痛苦,就不會覺得快樂。如果有問題在腦中徘徊,經常睡覺就沒有睡好,但是想到答案時就很高興。他也有忙裡偷閒的方式,像是在美國時,有時自己一個人開車到山上躲個幾天,調劑身心。

模擬天文學家的另一項樂趣,是把研究成果作為藝術。超新星模擬結果的圖片,經常讓人感到新奇,容易登上新聞版面。陳科榮也常用模擬結果作為素材,創作出富有哲思的藝術品。

這是陳科榮相當自豪的一個超新星爆炸模型。過去他在加州大學聖塔克魯斯分校時,學校正好舉辦 50 週年校慶,選了他的這幅作品做成大型看板,擺在舊金山市區,配上標語 “Who says you can’t crack open a star?”(點圖放大)資料來源│陳科榮

這幅作品是把兩個不同的模擬結合在一起,外層是超新星爆炸的結構,裡面是宇宙的結構。納須彌於芥子,把一個很大的結構容納到一個非常小的尺度。陳科榮認為宇宙就是這樣:「一沙一世界,一花一天堂。」(點圖放大)
資料來源│陳科榮

-----廣告,請繼續往下閱讀-----

另一方面,陳科榮認為,能夠當科學家是得到一種「優待」,可以做自己喜歡的事,又有薪水過活;在研究上,自己就是自己的「老闆」,是個自由的工作。

相對地,科學家也有許多義務,不僅要做好研究,對人類知識做出貢獻,也有一些社會責任:將知識傳承下去,教育下一代。陳科榮回到臺灣之後即身體力行,在中研院成立了「爆炸小組」,帶領學生一起做研究,希望幫助學生,並且讓研究環境變得更好。

陳科榮與「爆炸小組」的快樂小夥伴。
照片來源│陳科榮臉書

延伸閱讀

本著作由研之有物製作,原文為《電腦裡的小宇宙,重現絢麗的恆星爆炸!專訪陳科榮》以創用CC 姓名標示–非商業性–禁止改作 4.0 國際 授權條款釋出。

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

-----廣告,請繼續往下閱讀-----
研之有物│中央研究院_96
296 篇文章 ・ 3665 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook