通常有名的哈柏太空望遠鏡(Hubble Space Telescope)星系影像,要不是壯觀的螺旋星系,就是邊緣和緩變化的橢圓星系,不過這些通常都是大型星系才有的模樣,瞧瞧右方影像中的星系,有沒有覺得與眾不同呢?因為影像中的主角—洪伯II(Holmberg II,UGC 4305)是不規則矮星系(dwarf irregular galaxy);這類矮星系的外型和型態差異頗大,很難歸類,故直接歸類為不規則星系。而哈柏先進巡天相機(Advanced Camera for Surveys)影像中可見模糊不清的洪伯II星系裡,有著數個巨大且發光的氣體泡泡呢!(譯者註:這個星系幾乎佔滿整個畫面,其中的紅色氣泡結構只是星系中的一部份而已喔!點選此處觀看這個星系的整體外觀影像。)
雖然以規模來論,洪伯II星系是不起眼的矮星系,不過這個星系還是有某些吸引人的特徵。例如它是1950年代洪伯(Erik Holmberg)在M81星系團中發現的9個低表面亮度星系(low-surface-luminosity galaxies)之一,它不尋常的外表為它在赫頓‧阿普(Halton Arp)的特殊星系表(Atlas of Peculiar Galaxies)中贏得一席之地。此外,這個星系還有個極明亮的X射線源,就在影像右上角3個氣體泡泡的中間那個裡;目前有許多種理論解釋這個強力輻射的來源,其中一種理論還提到可能是其中有個正在拉扯周邊物質的中型黑洞(intermediate-mass black hole)哩!不過這些理論有些甚至相互矛盾,讓這個強X射線源的起源仍是個未解之謎。
1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。
-----廣告,請繼續往下閱讀-----
我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。
麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。
而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。
不過,這裡有個關鍵細節。
在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。
從 DNA 藍圖到生物積木:融合蛋白的設計巧思
融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。
我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。
天文學家常用星系的「恆星形成率 SFR」來衡量一個星系的狀態。如果一個星系正在產生許多新恆星(即恆星形成率高),這就是個「生機勃勃」的星系(如左圖的 NGC 4038 / NGC 4039);反之,如果一個星系都只有年邁的恆星,那這就是個「死氣沉沉」的星系(如右圖的 IC 2006)。 圖/Wikipedia|ESO半人馬座 A 星系是經典的活躍星系之一。由星系中心射出的筆直藍色區域,就是超大質量黑洞的噴流。圖/ESA_Multimedia