0

0
0

文字

分享

0
0
0

化工系在做什麼?念化工不只是學知識,更要有解決問題的能力!

洪皓哲
・2015/04/14 ・3339字 ・閱讀時間約 6 分鐘 ・SR值 537 ・八年級

-----廣告,請繼續往下閱讀-----

文/洪皓哲,黃子洋

我(洪皓哲)身為一個從化工叛逃到建築的過來人,每想到過去滿滿的實驗和必修人生依然充滿感慨。畢業後,對於自己受的化工教育有了不少反思,但擔心自己太魯蛇沒什麼說服力,特地找了卷哥朋友黃子洋,一同整理我們對化工教育的感想,希望能分享給一樣迷惘的同學或是學弟妹們,如果你們也曾念得很掙扎,你們並不孤單(淚)。

6185756330_b7e5cc4df8_b
Photo Credit: C&EN @Flickr

從實驗課程談起

如果回想一下大學四年最熟悉實用的知識技能,相信不少化工系學生的腦袋會浮出Word、Excel、PowerPoint。想起來超弔詭,化工系學到最多的竟是文書處理軟體?這可以歸功於四年來實驗預報(預習報告)與結報(結果報告)的無限輪迴,已經成為現今化工教育底下學生的共同記憶。

目前的實驗課多是在驗證主修科目理論,導致實驗時沒有想要解決問題的動力,最終流於高度制式化、彈性極低的實驗報告寫作訓練。過程中也許能培養對於實驗數據的分析能力(所謂工程師對於數字曲線的敏感度),但更多時候卻是在努力想出誤差來源,沒有真正理解這些實驗單元或器材在解決問題時能扮演的角色,只是在按照實驗步驟熟練操作過程罷了。

-----廣告,請繼續往下閱讀-----

議題導向教育

作為工程師,最重要的是解決問題的能力:當問題出現時,如何去判別、定義問題、再依照既有的知識嘗試解決。實驗和現行主修科目若能部分改成議題導向的實作課程,便能讓學生在執行專案(project)時,自行摸索思考,而不是像目前的考試,僅以計算題或是背誦為主,在一個封閉的框架去驗證是否對定理公式理解,但實則無法落實在現實情境下。

日前聽指導教授吳乃立老師分享女兒在比利時求學的故事,我們覺得是議題導向實作的一個很好的例子:那裡的有機化學實驗課每學期有不同的主題與目標,染料(dye)是老師女兒在那學期的議題。各組選擇一種特定的顏色後就正式開始整個學期的實驗課程 ── 目標只有一個,那就是想辦法合成出選定顏色的染料。

實驗課本沒有化學藥品劑量、也不會告訴你實驗步驟,學生要自己試著查文獻、找出製備方式、設計實驗;助教和教授不會教你怎麼利用他人設計好的實驗驗證已知理論,而是學生主動找他們討論實驗怎麼安排,他們給建議、評估可能性、告知藥品器材的限制。期末報告變得像展示會場一般,各種五顏六色的染料(甚至嘗試染到布料)擺出來,除了分享實驗過程,順利合成染料的組別能夠分析品質與產率,未能有好結果的組別則討論可能原因和改進之道。

議題導向實作中遇到的問題我們不太可能都學過,但至少能觸發想要解決的動機,自發學習或與老師求助。當未來課程學習到相關知識時,這些知識就不再只是與自己不相干的論述,而成為與過去經驗契合的解決問題重點。

-----廣告,請繼續往下閱讀-----
2864013_2f11aa59a2_o
Photo Credit: ૐ Didi ૐ @Flickr

學非所用的困惑

「學了這門課,以後會用到嗎?」許多人從中學時期帶著這個疑惑一路上了大學,因為高中老師說專心念書考上好大學之後就會得到答案;無奈的是,當教授在大學裡認真教化學工程的重要理論時,我們還是不懂為何要學。

我們如同瞎子摸象般的學習,教授強調的總是我們所摸到大象器官的功能性,卻常忘了或太晚描述大象的全貌;(厲害的)學生懂得解各種微分方程式、記誦無數多的無因次群,卻要三年的必修課程學完才能開始有課程將這一切組織在一起。

化工系並不是沒有議題導向的課程,程序設計就是扮演這樣的角色,將不同的專業科目作串接,並對化工的整體面貌有更清楚的認識,效果也很好,只是要到大四才有這樣的機會來整合,有些太晚。這樣課程安排也許用意在於札實地建立起背景知識,但許多人的興趣及熱情早在之前就被必修課程學習上的挫敗感,以及不知到底為何而學的茫然給消磨殆盡。

理論與實務的隔閡

過去四年的學習經驗給我們的心得是:目前大學教育的終點指向是教授多過於工程師。但畢業生成為教授的少,工程師反而是多數。當現行教育是為了培養研究人才時,就會導致理論比例過重而實務導向不足。學生無法在理論鑽研中得到熱情,可能自我否定認為自己沒興趣,更甚著覺得自己不適合唸化工。

-----廣告,請繼續往下閱讀-----

最近已有畢業學長姊和在學生共同成立的NTU ChEers組織,嘗試將業界和國外留學的校友資源導回校園,幫助學生在求職或是繼續升學抉擇時,對於自己與外界的需求有更明確的了解,避免走錯方向多花時間成本,並且NTU ChEers也積極推行實習媒合,協助弭平實務與理論的隔閡。這是我們在大學四年沒來得及享有的良好資源!如果能把議題導向課程落實在教育中,結合NTU ChEers的資源,相信能幫助目前在學學生更了解化工教育的本質,也讓大家對於未來少了很多迷惘和恐懼。

10420124_1441847896071718_44249727175462543_n
Photo Credit: NTU ChEers

創新創業

當這個時代大家都在談論創業與創新,為何化工似乎缺席?被稱為萬能工程師的化學工程師,若要論跨領域,我們學了很多其他科系的基礎課,本身在四年級也學了整合性思考的程序設計,我們理解工程和化學,還能以成本效益評估工廠,我們理當能在這強調創新的世代中扮演重要的角色。是否正因為我們能參與的領域太多,我們在既有的選擇上太過充分, 所以我們只需要在既定的選項中選擇,而不需要掙扎、迷惘和突破。

最近在泛科學實習,收集新知時看到了下面兩篇文章(案例一、案例二)。當我看到這些國外創新案例時,我直覺想到的是,這都是化工的專業呀,完全是我們可以做的!以化工的背景,我們一定也能做出類似的創新,改變我們的生活。

案例一:從自來水管產生的電力新來源

Photo Credit: Fast Company

利用水管中水流的位能差和渦流發電作為一個穩定的能源來源,將這電力回饋到建築物或是路旁電燈。並且利用這新的裝置當做感測器來偵測管線是否外洩,以快速維護。

以我們化工質能平衡的角度來看,其實就是工程師觀察到現有問題:在自來水管線的進口端(山上的水壩,input)與出口端(家中的水龍頭,output)間有相當高的自然重力位能差被浪費,於是將渦輪裝入管線中適度地消耗掉(consumption)過多的位能差,進一步轉換成可利用的電能。

資料來源:Portlands New Pipes Harvest Power From Drinking Water

案例二:沙漠智慧,會收集露水的溫室

Photo Credit: 創客窩

溫室能在白天留住陽光的熱量,土壤及植物表面上的水氣蒸發充滿溫室,確保溫室濕度不會散失,利於作物生長;到了晚上,農民可以手動拉繩將上蓋開啟,令溫室降溫,水氣遇到冷空氣凝結成露水,沿著集露網流進收集容器。收集來的水一方面可以重新用來灌溉植物,更能進一步供人飲用!

這項設計聰明之處在於白天利用溫室維持一定的蒸氣壓、防止植物與土壤水分過度蒸散,而也因為水的蒸氣壓夠高,不需要非常低溫就能夠達到露點(dew point),所以晚上利用環境自然降溫即可順利回收露水,是個熱力學上簡單巧妙的應用。

資料來源:沙漠智慧,會收集露水的溫室

大學時我時常在想,為何化工和消費者、使用者離得這麼遠?我們的存在是否真的有對他人產生價值?可能有人會說,去台GG做出來的東西是全球手機都會需要的零件!去台塑很多也是生產民生必需品的原料啊!但是在這些產業裡總給我一種「少我一個也沒差」的印象。到底經歷了這麼多的學習,我能貢獻的是什麼?

在大家都在談Maker和創新的年代,製作新產品的成本已經遠比過去低廉很多,我們有機會不仰賴大資本,不用到工廠也能發揮我們所學,不用繼續到大公司當個按按儀器、轉轉旋鈕的螺絲釘,而是可以到Makerspace、Fablab等空間,拿起工具、用電腦軟體就能開始設計新的產品。這是化工人能產生價值的絕佳時刻!不是只有會coding的可以改變世界,我們也可以。為何現在HackNTU和圖書館合作如何改善地下自習室的系統時,我們只能在實驗室等蒸餾塔沸騰?

知識、應用、想像

目前的化工教育過分偏重既有知識的傳授使得我們深陷傳統框架中的泥淖,難以跳脫與創新。我們所期待的化工教育應為知識、應用與想像三者兼備,避免學生成為徒有化工知識的工匠,培養能夠以創新思維解決問題的工程師。

-----廣告,請繼續往下閱讀-----
5574116508_8e93f9fa0d_b
Photo Credit: Virtueel Platform @Flickr
文章難易度
洪皓哲
3 篇文章 ・ 0 位粉絲
台大化工系畢業,卻對建築情有獨鍾。熱愛聊天分享,前一句科學後一句人文,喜歡把看起來艱澀的事情試著講得簡單好玩。生性矛盾,愛出外旅遊又愛掛網看文章狂轉貼。若有意和我聊天,歡迎餵食,請勿拍打。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

0
1

文字

分享

0
0
1
備審卡關、筆記好難整理?國高中生必學,一個 prompt 讓 AI 幫你做科系探索!
泛科學院_96
・2024/04/13 ・450字 ・閱讀時間少於 1 分鐘

這集來分享學生必學的 AI 工具與操作!

本來是想做寫作業的 AI prompt,但肯定會被罵翻……因此這次聚焦在如何用 AI 協助整理筆記、職涯探索、製作歷程檔案等事情上。

廢話不多說,讓我們開始吧 !

最後,附上本支影片的學習懶人包:

如果你有更多想要學習的操作技巧,歡迎在下面留言跟我們敲碗~有其他想要看的 AI 測試或相關問題,也可以留言分享喔!

更多、更完整的內容,歡迎上科學院的 youtube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

討論功能關閉中。

泛科學院_96
44 篇文章 ・ 51 位粉絲
我是泛科學院的AJ,有15年的軟體測試與電腦教育經驗,善於協助偏鄉NPO提升資訊能力,以Maker角度用發明解決身邊大小問題。與你分享人工智慧相關應用,每週更新兩集,讓我們帶你進入科技與創新的奇妙世界,為未來開啟無限可能!

0

4
2

文字

分享

0
4
2
比爾蓋茲談創新:沒有穩定的創新供給,我們沒有辦法面對氣候變遷——《如何避免氣候災難》
天下雜誌出版_96
・2023/04/02 ・1880字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

任何通盤的氣候計畫都必須借助許多不同領域的力量。氣候科學能說明我們需要處理這個問題的「原因」,卻告訴不了我們處理的「方法」。為此,我們需要結合生物學、化學、物理學、政治學、經濟學、工程學等領域。

創新不只是技術革新

就能源、軟體等領域來說,不能只是從嚴格的技術角度來思考創新。創新不僅僅是發明一台新機器或新製程,還包括對商業模式、供應鏈、市場和政策提出新穎觀點,以協助新發明問世、達到全球規模。

創新既代表全新的工具,也代表全新的做事方式。

考量到上述種種前提,我把計畫中的不同內容分為兩大類。其中一類是擴大創新的供給,實驗大量的新穎想法;另一類是加速對創新的需求。兩者攜手並進。如果沒有創新需求,發明家和決策者就不會有任何動力推出新想法;如果沒有穩定的創新供給,消費者就無法取得全球亟需的環保產品,來實現零排放。

擴大創新的供給

第一階段的工作是典型的研究與開發,即偉大的科學家和工程師發想出我們需要的技術。儘管今天有許多低成本的低碳解決方案,卻仍然沒有掌握實現全球零排放所需的一切技術。為了盡快備妥這些技術來發揮影響力,各國政府需要做到以下幾點:

-----廣告,請繼續往下閱讀-----

未來10年內,對清潔能源與氣候相關的研發投入增加五倍

對研發的直接公共投資,是我們因應氣候變遷的重要方式,但政府在這方面的投入遠遠不足。

我們應該花多少錢呢?我認為美國國家衛生研究院(NIH)提供很棒的比較基準。NIH 每年預算約為 370億美元,成功研發許多救命藥物和治療方法,對美國人與世界各地的民眾來說不可或缺。

這正是絕佳的例子,也是我們因應氣候變遷所需決心的典範。雖然將研發預算變五倍聽起來是天文數字,但與當前挑戰的難度相比,顯得微不足道,而且強力反映了政府對此問題的重視程度。

對研發的直接公共投資,反應了我們因應氣候變遷所需的決心,與當前的挑戰相比,我們的投入遠遠不足(示意圖)。圖/envatoelements

加大投資高風險、高回報的研發計畫

這不僅僅攸關政府砸了多少經費,更攸關政府是否把經費花在刀口上。

-----廣告,請繼續往下閱讀-----

各國政府曾因為投資清潔能源而引火上身。決策者不想讓人覺得自己在浪費納稅人的錢,這當然可以理解,但因為恐懼失敗,反而造成對於研發的投資短視近利,傾向找更為安全的投資目標,而且最好交由私部門出資。政府主導研發的真正價值在於,可以冒險嘗試那些可能失敗或不會立即獲益的大膽理念。

我們需要政府承諾資助能推動清潔能源科學發展的超大規模計畫(數億或數十億美元)。政府也得承諾長期資助這些計畫,這樣研究人員就會曉得來年都會固定得到補助。

研發呼應最大需求

實用價值尚不明顯的「藍天研究」(blue-sky research,又稱基礎研究)與科學發現的實際應用(即所謂的應用研究轉譯研究)兩者有明顯區別。雖然是不同的概念,但如果凡事都要講究正統,認為基礎科學不應該被商業考量給汙染,毋寧大錯特錯。

那些優異的發明之所以問世,是因為科學家在研究之初就考慮到最終用途。我們需要更多的政府計畫,整合亟需突破領域中的基礎研究和應用研究。

-----廣告,請繼續往下閱讀-----
比爾蓋茲認為,如果凡事都要講究正統,認為基礎科學不應該被商業考量給汙染,毋寧大錯特錯(示意圖)。圖/envatoelements

一開始就與產業界合作

我還遇過另一項人為的區分,即初期的創新是為政府服務,而後期的創新是為產業服務。但在現實中不該如此區分,我們在能源領域面臨的艱難技術挑戰尤其不能如此簡化,因為想法成功與否最重要的衡量標準,就是能否遍及全國、甚至全球的規模。

初期的合夥關係會吸引懂得達標的內行人。政府和產業界需要共同努力,才能克服障礙、加快創新循環。企業可以幫忙製作新技術的原型,提供市場方面的洞見,並且共同投資計畫。當然,他們負責把技術商業化,所以理應要盡早讓他們參與。

——本文摘自《如何避免氣候災難:結合科技與商業的奇蹟,全面啟動淨零轉型新經濟》,2023 年 3 月,天下雜誌出版,未經同意請勿轉載。

天下雜誌出版_96
24 篇文章 ・ 17 位粉絲
天下雜誌出版持續製作與出版國內外好書,引進新趨勢、新做法,期盼能透過閱讀與活動實做,分享創新觀點、開拓視野、促進管理、領導、職場能力、教養教育、同時促進身心靈的美好生活。