Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

化工系在做什麼?念化工不只是學知識,更要有解決問題的能力!

洪皓哲
・2015/04/14 ・3339字 ・閱讀時間約 6 分鐘 ・SR值 537 ・八年級

-----廣告,請繼續往下閱讀-----

文/洪皓哲,黃子洋

我(洪皓哲)身為一個從化工叛逃到建築的過來人,每想到過去滿滿的實驗和必修人生依然充滿感慨。畢業後,對於自己受的化工教育有了不少反思,但擔心自己太魯蛇沒什麼說服力,特地找了卷哥朋友黃子洋,一同整理我們對化工教育的感想,希望能分享給一樣迷惘的同學或是學弟妹們,如果你們也曾念得很掙扎,你們並不孤單(淚)。

6185756330_b7e5cc4df8_b
Photo Credit: C&EN @Flickr

從實驗課程談起

如果回想一下大學四年最熟悉實用的知識技能,相信不少化工系學生的腦袋會浮出Word、Excel、PowerPoint。想起來超弔詭,化工系學到最多的竟是文書處理軟體?這可以歸功於四年來實驗預報(預習報告)與結報(結果報告)的無限輪迴,已經成為現今化工教育底下學生的共同記憶。

目前的實驗課多是在驗證主修科目理論,導致實驗時沒有想要解決問題的動力,最終流於高度制式化、彈性極低的實驗報告寫作訓練。過程中也許能培養對於實驗數據的分析能力(所謂工程師對於數字曲線的敏感度),但更多時候卻是在努力想出誤差來源,沒有真正理解這些實驗單元或器材在解決問題時能扮演的角色,只是在按照實驗步驟熟練操作過程罷了。

-----廣告,請繼續往下閱讀-----

議題導向教育

作為工程師,最重要的是解決問題的能力:當問題出現時,如何去判別、定義問題、再依照既有的知識嘗試解決。實驗和現行主修科目若能部分改成議題導向的實作課程,便能讓學生在執行專案(project)時,自行摸索思考,而不是像目前的考試,僅以計算題或是背誦為主,在一個封閉的框架去驗證是否對定理公式理解,但實則無法落實在現實情境下。

日前聽指導教授吳乃立老師分享女兒在比利時求學的故事,我們覺得是議題導向實作的一個很好的例子:那裡的有機化學實驗課每學期有不同的主題與目標,染料(dye)是老師女兒在那學期的議題。各組選擇一種特定的顏色後就正式開始整個學期的實驗課程 ── 目標只有一個,那就是想辦法合成出選定顏色的染料。

實驗課本沒有化學藥品劑量、也不會告訴你實驗步驟,學生要自己試著查文獻、找出製備方式、設計實驗;助教和教授不會教你怎麼利用他人設計好的實驗驗證已知理論,而是學生主動找他們討論實驗怎麼安排,他們給建議、評估可能性、告知藥品器材的限制。期末報告變得像展示會場一般,各種五顏六色的染料(甚至嘗試染到布料)擺出來,除了分享實驗過程,順利合成染料的組別能夠分析品質與產率,未能有好結果的組別則討論可能原因和改進之道。

議題導向實作中遇到的問題我們不太可能都學過,但至少能觸發想要解決的動機,自發學習或與老師求助。當未來課程學習到相關知識時,這些知識就不再只是與自己不相干的論述,而成為與過去經驗契合的解決問題重點。

-----廣告,請繼續往下閱讀-----
2864013_2f11aa59a2_o
Photo Credit: ૐ Didi ૐ @Flickr

學非所用的困惑

「學了這門課,以後會用到嗎?」許多人從中學時期帶著這個疑惑一路上了大學,因為高中老師說專心念書考上好大學之後就會得到答案;無奈的是,當教授在大學裡認真教化學工程的重要理論時,我們還是不懂為何要學。

我們如同瞎子摸象般的學習,教授強調的總是我們所摸到大象器官的功能性,卻常忘了或太晚描述大象的全貌;(厲害的)學生懂得解各種微分方程式、記誦無數多的無因次群,卻要三年的必修課程學完才能開始有課程將這一切組織在一起。

化工系並不是沒有議題導向的課程,程序設計就是扮演這樣的角色,將不同的專業科目作串接,並對化工的整體面貌有更清楚的認識,效果也很好,只是要到大四才有這樣的機會來整合,有些太晚。這樣課程安排也許用意在於札實地建立起背景知識,但許多人的興趣及熱情早在之前就被必修課程學習上的挫敗感,以及不知到底為何而學的茫然給消磨殆盡。

理論與實務的隔閡

過去四年的學習經驗給我們的心得是:目前大學教育的終點指向是教授多過於工程師。但畢業生成為教授的少,工程師反而是多數。當現行教育是為了培養研究人才時,就會導致理論比例過重而實務導向不足。學生無法在理論鑽研中得到熱情,可能自我否定認為自己沒興趣,更甚著覺得自己不適合唸化工。

-----廣告,請繼續往下閱讀-----

最近已有畢業學長姊和在學生共同成立的NTU ChEers組織,嘗試將業界和國外留學的校友資源導回校園,幫助學生在求職或是繼續升學抉擇時,對於自己與外界的需求有更明確的了解,避免走錯方向多花時間成本,並且NTU ChEers也積極推行實習媒合,協助弭平實務與理論的隔閡。這是我們在大學四年沒來得及享有的良好資源!如果能把議題導向課程落實在教育中,結合NTU ChEers的資源,相信能幫助目前在學學生更了解化工教育的本質,也讓大家對於未來少了很多迷惘和恐懼。

10420124_1441847896071718_44249727175462543_n
Photo Credit: NTU ChEers

創新創業

當這個時代大家都在談論創業與創新,為何化工似乎缺席?被稱為萬能工程師的化學工程師,若要論跨領域,我們學了很多其他科系的基礎課,本身在四年級也學了整合性思考的程序設計,我們理解工程和化學,還能以成本效益評估工廠,我們理當能在這強調創新的世代中扮演重要的角色。是否正因為我們能參與的領域太多,我們在既有的選擇上太過充分, 所以我們只需要在既定的選項中選擇,而不需要掙扎、迷惘和突破。

最近在泛科學實習,收集新知時看到了下面兩篇文章(案例一、案例二)。當我看到這些國外創新案例時,我直覺想到的是,這都是化工的專業呀,完全是我們可以做的!以化工的背景,我們一定也能做出類似的創新,改變我們的生活。

案例一:從自來水管產生的電力新來源

Photo Credit: Fast Company

利用水管中水流的位能差和渦流發電作為一個穩定的能源來源,將這電力回饋到建築物或是路旁電燈。並且利用這新的裝置當做感測器來偵測管線是否外洩,以快速維護。

以我們化工質能平衡的角度來看,其實就是工程師觀察到現有問題:在自來水管線的進口端(山上的水壩,input)與出口端(家中的水龍頭,output)間有相當高的自然重力位能差被浪費,於是將渦輪裝入管線中適度地消耗掉(consumption)過多的位能差,進一步轉換成可利用的電能。

資料來源:Portlands New Pipes Harvest Power From Drinking Water

案例二:沙漠智慧,會收集露水的溫室

Photo Credit: 創客窩

溫室能在白天留住陽光的熱量,土壤及植物表面上的水氣蒸發充滿溫室,確保溫室濕度不會散失,利於作物生長;到了晚上,農民可以手動拉繩將上蓋開啟,令溫室降溫,水氣遇到冷空氣凝結成露水,沿著集露網流進收集容器。收集來的水一方面可以重新用來灌溉植物,更能進一步供人飲用!

這項設計聰明之處在於白天利用溫室維持一定的蒸氣壓、防止植物與土壤水分過度蒸散,而也因為水的蒸氣壓夠高,不需要非常低溫就能夠達到露點(dew point),所以晚上利用環境自然降溫即可順利回收露水,是個熱力學上簡單巧妙的應用。

資料來源:沙漠智慧,會收集露水的溫室

大學時我時常在想,為何化工和消費者、使用者離得這麼遠?我們的存在是否真的有對他人產生價值?可能有人會說,去台GG做出來的東西是全球手機都會需要的零件!去台塑很多也是生產民生必需品的原料啊!但是在這些產業裡總給我一種「少我一個也沒差」的印象。到底經歷了這麼多的學習,我能貢獻的是什麼?

在大家都在談Maker和創新的年代,製作新產品的成本已經遠比過去低廉很多,我們有機會不仰賴大資本,不用到工廠也能發揮我們所學,不用繼續到大公司當個按按儀器、轉轉旋鈕的螺絲釘,而是可以到Makerspace、Fablab等空間,拿起工具、用電腦軟體就能開始設計新的產品。這是化工人能產生價值的絕佳時刻!不是只有會coding的可以改變世界,我們也可以。為何現在HackNTU和圖書館合作如何改善地下自習室的系統時,我們只能在實驗室等蒸餾塔沸騰?

知識、應用、想像

目前的化工教育過分偏重既有知識的傳授使得我們深陷傳統框架中的泥淖,難以跳脫與創新。我們所期待的化工教育應為知識、應用與想像三者兼備,避免學生成為徒有化工知識的工匠,培養能夠以創新思維解決問題的工程師。

-----廣告,請繼續往下閱讀-----
5574116508_8e93f9fa0d_b
Photo Credit: Virtueel Platform @Flickr
-----廣告,請繼續往下閱讀-----
文章難易度
洪皓哲
3 篇文章 ・ 0 位粉絲
台大化工系畢業,卻對建築情有獨鍾。熱愛聊天分享,前一句科學後一句人文,喜歡把看起來艱澀的事情試著講得簡單好玩。生性矛盾,愛出外旅遊又愛掛網看文章狂轉貼。若有意和我聊天,歡迎餵食,請勿拍打。

0

1
1

文字

分享

0
1
1
伺服器過熱危機!液冷與 3D VC 技術如何拯救高效運算?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/11 ・3194字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 高柏科技 合作,泛科學企劃執行。

當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。

 2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。 

不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。

-----廣告,請繼續往下閱讀-----

但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!

運算=發熱?為何電腦必然會發熱?

為什麼電腦在運算時溫度會升高呢? 圖/unsplash

這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。

換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。

要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。

-----廣告,請繼續往下閱讀-----

散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。

「導熱介面材料(TIM)」:提升散熱效率的關鍵角色

在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。

現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。

為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。

-----廣告,請繼續往下閱讀-----

那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。

典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。

為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。

OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?

-----廣告,請繼續往下閱讀-----

液冷與 3D VC 散熱技術:未來高效散熱方案解析

除了風扇之外,目前還有哪些方法可以幫助電腦快速散熱呢?圖/unsplash

傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。

其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。

3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。

在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。

-----廣告,請繼續往下閱讀-----

整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。

從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。

隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。

然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。

-----廣告,請繼續往下閱讀-----

另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。

高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
224 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
1

文字

分享

0
0
1
備審卡關、筆記好難整理?國高中生必學,一個 prompt 讓 AI 幫你做科系探索!
泛科學院_96
・2024/04/13 ・450字 ・閱讀時間少於 1 分鐘

-----廣告,請繼續往下閱讀-----

這集來分享學生必學的 AI 工具與操作!

本來是想做寫作業的 AI prompt,但肯定會被罵翻……因此這次聚焦在如何用 AI 協助整理筆記、職涯探索、製作歷程檔案等事情上。

廢話不多說,讓我們開始吧 !

最後,附上本支影片的學習懶人包:

如果你有更多想要學習的操作技巧,歡迎在下面留言跟我們敲碗~有其他想要看的 AI 測試或相關問題,也可以留言分享喔!

更多、更完整的內容,歡迎上科學院的 youtube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

泛科學院_96
44 篇文章 ・ 53 位粉絲
我是泛科學院的AJ,有15年的軟體測試與電腦教育經驗,善於協助偏鄉NPO提升資訊能力,以Maker角度用發明解決身邊大小問題。與你分享人工智慧相關應用,每週更新兩集,讓我們帶你進入科技與創新的奇妙世界,為未來開啟無限可能!

0

4
2

文字

分享

0
4
2
比爾蓋茲談創新:沒有穩定的創新供給,我們沒有辦法面對氣候變遷——《如何避免氣候災難》
天下雜誌出版_96
・2023/04/02 ・1880字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

任何通盤的氣候計畫都必須借助許多不同領域的力量。氣候科學能說明我們需要處理這個問題的「原因」,卻告訴不了我們處理的「方法」。為此,我們需要結合生物學、化學、物理學、政治學、經濟學、工程學等領域。

創新不只是技術革新

就能源、軟體等領域來說,不能只是從嚴格的技術角度來思考創新。創新不僅僅是發明一台新機器或新製程,還包括對商業模式、供應鏈、市場和政策提出新穎觀點,以協助新發明問世、達到全球規模。

創新既代表全新的工具,也代表全新的做事方式。

考量到上述種種前提,我把計畫中的不同內容分為兩大類。其中一類是擴大創新的供給,實驗大量的新穎想法;另一類是加速對創新的需求。兩者攜手並進。如果沒有創新需求,發明家和決策者就不會有任何動力推出新想法;如果沒有穩定的創新供給,消費者就無法取得全球亟需的環保產品,來實現零排放。

擴大創新的供給

第一階段的工作是典型的研究與開發,即偉大的科學家和工程師發想出我們需要的技術。儘管今天有許多低成本的低碳解決方案,卻仍然沒有掌握實現全球零排放所需的一切技術。為了盡快備妥這些技術來發揮影響力,各國政府需要做到以下幾點:

-----廣告,請繼續往下閱讀-----

未來10年內,對清潔能源與氣候相關的研發投入增加五倍

對研發的直接公共投資,是我們因應氣候變遷的重要方式,但政府在這方面的投入遠遠不足。

我們應該花多少錢呢?我認為美國國家衛生研究院(NIH)提供很棒的比較基準。NIH 每年預算約為 370億美元,成功研發許多救命藥物和治療方法,對美國人與世界各地的民眾來說不可或缺。

這正是絕佳的例子,也是我們因應氣候變遷所需決心的典範。雖然將研發預算變五倍聽起來是天文數字,但與當前挑戰的難度相比,顯得微不足道,而且強力反映了政府對此問題的重視程度。

對研發的直接公共投資,反應了我們因應氣候變遷所需的決心,與當前的挑戰相比,我們的投入遠遠不足(示意圖)。圖/envatoelements

加大投資高風險、高回報的研發計畫

這不僅僅攸關政府砸了多少經費,更攸關政府是否把經費花在刀口上。

-----廣告,請繼續往下閱讀-----

各國政府曾因為投資清潔能源而引火上身。決策者不想讓人覺得自己在浪費納稅人的錢,這當然可以理解,但因為恐懼失敗,反而造成對於研發的投資短視近利,傾向找更為安全的投資目標,而且最好交由私部門出資。政府主導研發的真正價值在於,可以冒險嘗試那些可能失敗或不會立即獲益的大膽理念。

我們需要政府承諾資助能推動清潔能源科學發展的超大規模計畫(數億或數十億美元)。政府也得承諾長期資助這些計畫,這樣研究人員就會曉得來年都會固定得到補助。

研發呼應最大需求

實用價值尚不明顯的「藍天研究」(blue-sky research,又稱基礎研究)與科學發現的實際應用(即所謂的應用研究轉譯研究)兩者有明顯區別。雖然是不同的概念,但如果凡事都要講究正統,認為基礎科學不應該被商業考量給汙染,毋寧大錯特錯。

那些優異的發明之所以問世,是因為科學家在研究之初就考慮到最終用途。我們需要更多的政府計畫,整合亟需突破領域中的基礎研究和應用研究。

-----廣告,請繼續往下閱讀-----
比爾蓋茲認為,如果凡事都要講究正統,認為基礎科學不應該被商業考量給汙染,毋寧大錯特錯(示意圖)。圖/envatoelements

一開始就與產業界合作

我還遇過另一項人為的區分,即初期的創新是為政府服務,而後期的創新是為產業服務。但在現實中不該如此區分,我們在能源領域面臨的艱難技術挑戰尤其不能如此簡化,因為想法成功與否最重要的衡量標準,就是能否遍及全國、甚至全球的規模。

初期的合夥關係會吸引懂得達標的內行人。政府和產業界需要共同努力,才能克服障礙、加快創新循環。企業可以幫忙製作新技術的原型,提供市場方面的洞見,並且共同投資計畫。當然,他們負責把技術商業化,所以理應要盡早讓他們參與。

——本文摘自《如何避免氣候災難:結合科技與商業的奇蹟,全面啟動淨零轉型新經濟》,2023 年 3 月,天下雜誌出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
天下雜誌出版_96
24 篇文章 ・ 17 位粉絲
天下雜誌出版持續製作與出版國內外好書,引進新趨勢、新做法,期盼能透過閱讀與活動實做,分享創新觀點、開拓視野、促進管理、領導、職場能力、教養教育、同時促進身心靈的美好生活。