0

0
0

文字

分享

0
0
0

又一太陽閃焰的秘密被揭曉

臺北天文館_96
・2011/09/30 ・878字 ・閱讀時間約 1 分鐘 ・SR值 479 ・五年級

那是在1859年的9月1日星期四早上11:18,萬里無雲,是個看來很平常的晴天,33歲的太陽天文學家卡林頓(Richard C. Carrington)在他的私人天文台中,忙著將太陽投影在螢幕上以便描繪太陽表面的現象。他正在追蹤一群非常龐大的黑子群,突然就在他眼前,似乎在黑子上方出現兩個異常明亮的白色亮點,亮到他站直了都還看得到它們。卡林頓驚叫出聲,就在幾分鐘後,人類首度有目睹紀錄的太陽閃焰(solar flares)就消逝了。

太陽閃焰是太陽系中規模最大的爆發,不過科羅拉多大學(University of Colorado)物理學家Tom Woods表示:根據他們的最新研究,有些太陽閃焰的威力甚至是之前認為的數倍以上。卡林頓的閃焰目擊事件,空前,但非絕後。之後的天文學家,利用各種不同的儀器,從最簡單的業餘望遠鏡到裝置在太空船上最複雜的光譜儀,記錄過數千次大規模的閃焰爆發。在天文學的領域中,大概沒有其他現象被研究得這麼多次的。可是,在150多年後的今天,太陽閃焰的某些部分仍是未解之謎。

Woods等人利用2010年2月發射的太陽動力觀測衛星(Solar Dynamics Observatory,SDO)觀測資料進行研究,發現每17次閃焰中,會有1次經歷所謂的後震(aftershock)現象,在閃焰消逝90分鐘後,會突然再起,在極紫外波段產生一個額外的湧浪(surge),Woods等人稱之為「後期閃焰(late phase flare)」,且後期閃焰所釋出的總能量比主閃焰還多4倍左右。

到底是什麼原因造成後期閃焰?閃焰通常發生在太陽黑子混亂磁場重新連結(magnetic reconnection)的過程;因此Woods等人認為後期閃焰可能是部分太陽黑子磁圈重新形成的結果。

-----廣告,請繼續往下閱讀-----

後期閃焰所釋出的能量可能對地球有嚴重影響,因為極紫外輻射對加熱並游離地球高層大氣的效果最好;一旦地球大氣被極紫外輻射加熱後會膨脹,加速低軌道衛星的軌道降低速度。此外,極紫外輻射使空氣粒子游離的動作,則會使電波訊號偏折,擾亂正常的GPS運作。

Woods等人的研究論文發表在2011年10月1日發行的天文物理期刊(Astrophysical Journal)中。按此可觀看相關動畫

資料來源:The Secret Lives of Solar Flares

轉載自台北天文館之網路天文網網站

-----廣告,請繼續往下閱讀-----
文章難易度
臺北天文館_96
482 篇文章 ・ 38 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

4
0

文字

分享

0
4
0
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
193 篇文章 ・ 297 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
1

文字

分享

0
2
1
將陽光轉變成電能的太陽能電池:太陽能電池不是電池——《圖解半導體》
台灣東販
・2022/11/23 ・2778字 ・閱讀時間約 5 分鐘

備受關注的再生能源

近年來,以太陽能發電的再生能源備受關注。

近年來,以太陽能發電的再生能源備受關注。圖/pexels

太陽能電池是太陽能發電的關鍵裝置,這是用半導體將陽光的能量直接轉變成電能的裝置。雖然有「電池」這個名稱,但不像乾電池那樣可以儲存電能。所以「太陽能電池」這個稱呼其實並不洽當,應該稱其為「太陽光發電元件」才對。

太陽能電池會利用到第 1 章 1-2 節提到的半導體光電效應(將光轉變成電能的現象)。不過,僅僅只透過照光,並不能從半導體中抽取出電能。要將光能轉變成電能,必須使用 pn 接面二極體(參考第 1 章 1-8 節)才行。

pn 接面二極體。圖/東販

圖 5-1(a) 為 pn 接面二極體,p 型半導體有許多電洞做為載子,n 型半導體內則有許多電子做為載子。這個 p 型與 n 型半導體接合後,接合面附近的電洞會往 n 型移動擴散,電子則會往 p 型移動擴散,如圖 5-1(b) 所示。

-----廣告,請繼續往下閱讀-----

移動擴散之後,接面附近的電子與電洞會彼此結合,使載子消滅,這個過程稱為複合。結果會得到圖 5-1(c) 般,沒有任何載子存在的區域,這個區域就稱為空乏層。

接面附近的空乏層中,n 型半導體的帶負電電子不足,故會帶正電;另一方面,p 型半導體的帶正電電洞不足,故會帶負電(圖 5-1(d))。

因此,n 型與 p 型半導體之間的空乏層會產生名為內建電位的電位差,在接面部分形成電場。這個電場可以阻擋從 n 型半導體流出的電子,與電子從 n 型流向 p 型的力達到平衡,故可保持穩定狀態。

這種狀態為熱平衡狀態,放著不管也不會發生任何事。也就是說,接面上有內建電位差之壁,不管是電子還是電洞,都無法穿過這道牆壁。

-----廣告,請繼續往下閱讀-----
用光發電的機制。圖/東販

在這種狀態下,如果陽光照入空乏層,半導體就會在光能下產生新的電子與電洞,如圖 5-2 所示。此時,新的電子會因為內建電場所產生的力而往 n 型半導體移動,新的電洞則往 p 型半導體移動(圖 5-2(a))。於是,電子便會在外部電路產生推動電流的力,稱為電動勢。

在光照射半導體的同時,電動勢會一直持續發生,愈來愈多電子被擠入外部電路,於外部電路供應電力。被擠出至外部電路的電子會再回到 p 型半導體,與電洞結合(圖 5-2(b))。我們可以觀察到這個過程所產生的電流。

太陽能電池的結構。圖/東販

目前太陽能電池的大部分都是由 Si 半導體製成。以 Si 結晶製成的太陽能電池結構如圖 5-3 所示。

為方便理解,前面的示意圖中,都是以細長型的 pn 接面半導體為例。但實際上,太陽能電池所產生的電流大小,與 pn 接面二極體的接面面積成正比。所以 pn 接面的面積做得愈廣愈好,就像圖 5-3 那樣呈薄型平板狀。

-----廣告,請繼續往下閱讀-----

前面的說明提到,陽光可產生新的載子,這裡讓我們再進一步說明其原理。

pn 接面二極體的電子狀態。圖/東販

圖 5-4 為 Si 原子之電子組態的示意圖(亦可參考第 38 頁圖 1-11)。Si 原子最外層的軌道與相鄰 Si 原子以共價鍵結合,故 Si 結晶的軌道填滿了電子,沒有空位(圖 5-4(a))。

若摻雜雜質磷(P)或砷(As)等 15 族(Ⅴ族)元素,形成 n 型半導體,便會多出 1 個電子。這個電子會填入最外層電子殼層的最外側軌道(圖 5-4(b)),與共價鍵無關,故能以自由電子的狀態在結晶內自由移動。

由於電子軌道離原子核愈遠,電子的能量愈高,所以位於最外側軌道的電子擁有最高的能量(參考第 57 頁,第 1 章的專欄)。最外側軌道與最外層電子殼層的能量差,稱為能隙。

-----廣告,請繼續往下閱讀-----

另一方面,如果是摻雜鎵(Ga)或銦(In)等 13 族(Ⅲ族)元素的 p 型半導體,會少 1 個電子,形成電洞。這個電洞位於最外層電子殼層,能量比自由電子還要低(圖 5-4(c))。

空乏層不存在自由電子或電洞等載子,此處原子的電子組態皆如圖 5-4(a) 所示。

陽光照進這個狀態下的空乏層區域時,原子的電子會獲得光能飛出,轉移到能量較高的外側軌道(圖 5-4(d))。此時的重點在於,電子從光那裡獲得的能量必須大於能隙。如果光能比能隙小的話,電子就無法移動到外側軌道。

光的能量由波長決定,波長愈短,光的能量愈高(參考第 217 頁,第 5 章專欄)。光能 E(單位為電子伏特eV)與波長 λ(單位為 nm)有以下關係。

-----廣告,請繼續往下閱讀-----

E[eV]=1240/λ[nm]

抵達地表的陽光光譜。圖/東販

另一方面,抵達地表的陽光由許多種波長的光組成,各個波長的光強度如圖 5-5 所示。

由圖可以看出,可見光範圍內的陽光強度很強。陽光中約有52%的能量由可見光貢獻,紅外線約佔 42%,剩下的 5~6% 則是紫外線。

若能吸收所有波長的光,將它們全部轉換成電能的話,轉換效率可達到最高。不過半導體可吸收的光波長是固定的,無法吸收所有波長的光。

-----廣告,請繼續往下閱讀-----

Si結晶的能隙為 1.12eV,對應光波長約為 1100nm,位於紅外線區域。也就是說,用 Si 結晶製造的太陽能電池,只能吸收波長小於 1100nm 的光,並將其轉換成電能。

不過,就像我們在圖 5-5 中看到的,就算只吸收波長比 1100nm 還短的光,也能吸收到幾乎所有的陽光能量。

光是看以上說明,可能會讓人覺得,如果半導體的能隙較小,應該有利於吸收波長較長的光才對。不過,並不只有能隙會影響到發電效率,圖 5-6 提到的光的吸收係數也會大幅影響發電效率。光的吸收係數代表半導體能吸收多少光,可以產生多少載子。

有幾種材料的光吸收係數特別高,譬如 Ⅲ—Ⅴ 族的砷化鎵(GaAs)。GaAs 的能隙為 1.42eV,轉換成光波長後為 870nm,可吸收的光波長範圍比 Si 還要狹窄。但因為吸收係數較高,所以用砷化鎵製作的太陽能電池的效率也比較高。

-----廣告,請繼續往下閱讀-----

總之,GaAs 是效率相當高的太陽能電池材料。然而成本較高是它的缺點,只能用於人造衛星等特殊用途上。即使如此,研究人員們仍在努力開發出成本更低、效率更好,以化合物半導體製成的太陽能電池。

——本文摘自《圖解半導體:從設計、製程、應用一窺產業現況與展望》,2022 年 11 月,台灣東販出版,未經同意請勿轉載。

台灣東販
5 篇文章 ・ 2 位粉絲
台灣東販股份有限公司是在台灣第1家獲許投資的國外出版公司。 本公司翻譯各類日本書籍,並且發行。 近年來致力於雜誌、流行文化作品與本土原創作品的出版開發,積極拓展商品的類別,期朝全面化,多元化,專業化之目標邁進。

0

6
2

文字

分享

0
6
2
18世紀的金星變形秀:行星凌日與黑滴效應
全國大學天文社聯盟
・2022/06/28 ・3216字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

1761 年 6 月 6 日,歐洲的天文學家們乘船抵達世界各地的天文台,爭相用最先進的儀器紀錄一個罕見的天文現象──金星凌日, 因為此天文現象可以幫助人們精確測算地球與太陽的距離。在英法七年戰爭的氛圍下,兩國的天文學家尤其較勁,都想要第一個量出日地距離,為天文學史畫下濃墨重彩的一筆。然而當大家拭目以待地望向剛與太陽重疊的金星時,卻都露出了驚訝的表情──金星變形了!

說到金星凌日,大家最有印象的或許是 2012 年的一次金星凌日,從天文學家到各個職業的人們都拿著減光濾鏡共襄盛舉,畢竟下一次的金星凌日要到 2117 年才會再發生。然而在過去,金星凌日並不只是歡樂的娛樂事件,也是非常嚴肅的科學事件。

在十八世紀時,多數天文學家都接受哥白尼的日心說,而克卜勒提出的行星運動三大定律,則可以推導出各行星軌道半徑與地球軌道半徑之間的相對長度,然而最大的問題是當時的人們並不知道地球軌道半徑(地球到太陽的平均距離)的絕對長度。為了解決這個問題,英國天文學家愛德蒙.哈雷於 1716 年提出了使用金星凌日來測量日地距離的方法。如圖一所示,金星凌日的軌跡長短與在地球上的何處觀測有關,在軌跡較長處金星凌日的時間較長,反之則較短,這是因為在地球上不同處觀測金星的視角不同造成的。

假設我們在地球上的 A 與 B 兩處量測金星凌日的時間,我們可以量出兩地觀測金星時的視角差,在知道 A 與 B 間距的前提下,我們可以用視差法量出地球到金星在金星凌日發生時的距離(見圖二)。最後根據克卜勒第三行星運動定律─行星公轉太陽週期平方與行星到太陽的平均距離立方成反比─可以得出金星到太陽的距離約為地球到太陽距離的 0.7 倍,我們也可以得知地球與金星在金星凌日時的距離是地球到太陽距離的0.3倍,由此可以推導出太陽與地球的距離。



圖一(左):金星凌日軌跡。圖二(右):視差法算金星與地球距離。

此方法在當時極大鼓舞了天文學家的士氣,大家都摩拳擦掌的為 1761 年的金星凌日作出準備,共一百多名天文學家乘船至世界各地以測量不同地方金星凌日的時長,其中較為著名的有英國派出的庫克船長於大溪地觀測金星凌日,以及荷蘭則派出的 Johan Maurits Moh 到歷史課本中提過的荷蘭東印度公司巴達維雅總部進行觀測(圖三)。

-----廣告,請繼續往下閱讀-----

然而正當金星與太陽重疊時,大家卻不知道何時該按下碼表記錄金星凌日開始的時間,因為金星變形了。圖四是最早關於金星變形的紀錄,在金星靠近太陽的邊緣時金星的旁邊會出現黑色的陰影與太陽邊緣相連接,而這樣的陰影狀似水滴,因此這個現象也被稱作「黑滴現象」

圖三(左):巴達維雅總部,Johan Maurits Mohr 的私人天文台。
圖四(右):於1761年被Torbern Bergman 記錄之黑滴現象。

當時的天文學家們為黑滴現象提出了各種不同的解釋,有些天文學家認為黑色的陰影是金星大氣對太陽光的散射與折射造成的錯覺,也有人認為這是地球大氣擾動造成的現象,還有人認為是太陽光通過金星時繞射所造成的陰影。

前面兩種解釋在 1999 年 NASA 的 TRACE 太空望遠鏡對水星凌日的觀測後被否定,因為太空中沒有地球大氣干擾,水星上則沒有大氣可以散射或折射太陽的光線,而觀測的照片中卻仍出現黑滴效應(圖五)。光的繞射所能造成的影響則不足以產生黑滴現象(繞射影響在約 10^{-9} 角秒,可忽略[1])。

圖五:1999年水星凌日,攝於 NASA’s Transition Region and Explorer (TRACE) 太空船(Schneider, Pasachoff, and Golub/LMSAL and SAO/NASA)

關於黑滴現象的成因一直到 2004 年才得到令人信服的解釋,天文學家 Glenn Schneider 認為黑滴現象是由望遠鏡的點擴散函數(Point Spread Function, PSF)以及太陽的周邊減光造成的 [2]

為了簡單瞭解他所提出的概念,大家可以將大拇指與食指放在一光源之前漸漸靠近(直視強光源會傷害眼睛,請注意光源強度不可以太強),在兩指快要靠在一起時,可以看見兩指中間突然浮現出一段陰暗的橋將兩指相連(如圖六)。

-----廣告,請繼續往下閱讀-----

這是因為非點光源會在兩指的邊緣製造出模糊的陰影,而人眼對模糊的陰影並不敏感,因此直到兩指特別靠近時,兩指的陰影重疊導致陰影變明顯才看得出來。圖七與圖八中的兩塊陰影可以幫助大家更好地破除這個錯覺,圖七單純顯示兩塊模糊的陰影,而圖八將陰影的等暗度線畫出來。比較兩圖我們可以發現雖然圖七中兩塊陰影像是連接在一起,然而實際上圖八卻顯示兩陰影並沒有連接在一起 [3]

圖六(左):大拇指與食指之間的暗橋。圖七(中):兩個模糊陰影 [3]。圖八(右):同中間圖,但是增加了等暗度線 [3]

金星凌日所產生的黑滴效應也是透過類似的方式產生的,不過金星模糊陰影與太陽邊緣模糊的成因不同。金星陰影在望遠鏡的觀測中,會因為望遠鏡的點擴散函數而在成像時顯得模糊。望遠鏡的點擴散函數,指的是一望遠鏡在觀測點光源時成像的樣子,不同望遠鏡的點擴散函數有所不同,但通常口徑小做工差的望遠鏡會有較大之點擴散函數,點光源被模糊化的程度也越高,看的也就越不清晰。

回到金星的陰影,當古代人們用做工差且口徑較小的望遠鏡觀測金星時,其陰影非常模糊、黑滴現象較現在的望遠鏡明顯的多,這也是為什麼各地回報黑滴現象的次數隨著望遠鏡的進步逐漸地減少 [4]

太陽邊緣的模糊則主要是因為太陽是一團沒有銳利邊緣的發光電漿。如圖九所示,假設每單位體積電漿能發出的光相同,我們可以看到往太陽邊緣的線上通過的電漿比往太陽中心的線上通過的電漿要少,這也代表著往太陽中心看去的光線較亮,而越往太陽邊緣看去亮度會逐漸減少。圖十是一個比較誇張的示意圖,圖中一模糊的黑影為金星,一模糊的白色邊緣則代表太陽邊緣,即便兩者的邊緣沒有接觸,我們仍能看到金星的邊緣伸出了黑影,與太陽邊緣相連接,這便是黑滴現象的由來。

-----廣告,請繼續往下閱讀-----
圖九(左):太陽周邊減光成因示意圖。圖十(右):黑滴現象示意圖。

回到日地距離的問題上,難道在這兩百多年的時間中沒有其他方式能量測金星與地球的距離嗎?實際上在雷達與遙測技術的加持下,人們早在 1964 年就能夠以高精度量測地球到金星間的距離了,因此如今的日地距離測量早已與金星凌日無關。

不過黑滴現象這一歷史悠久的問題,仍在一代一代天文學家的不懈努力下被解決了;時至今日,我們仍面臨著宇宙的諸多未知,而我由衷的期待這些現在看似無解的問題,能在未來的某一天被解決,無論花上幾十年、幾百年的時間。

參考資料:

  1. The Transit of Venus and the Notorious Black Drop, Schaefer, B. E. (2000) https://ui.adsabs.harvard.edu/abs/2000AAS…197.0103S/abstract
  2. TRACE observations of the 15 November 1999 transit of Mercury and the Black Drop effect: considerations for the 2004 transit of Venus, Glenn Schneider (2004) https://www.sciencedirect.com/science/article/pii/S0019103503003841?via%3Dihub
  3. Stackexchange, Why do shadows from the sun join each other when near enough? (2014) https://physics.stackexchange.com/questions/94235/why-do-shadows-from-the-sun-join-each-other-when-near-enough
  4. The black-drop effect explained, Jay M. Pasachof (2005) https://ui.adsabs.harvard.edu/abs/2005tvnv.conf..242P/abstract