0

0
0

文字

分享

0
0
0

用「閃電」鍍製觸控螢幕的導電膜

創新科技專案 X 解密科技寶藏_96
・2015/03/12 ・1890字 ・閱讀時間約 3 分鐘 ・SR值 565 ・九年級

文/劉珈均

工研院機械與系統所的團隊研發「大氣電漿鍍膜技術」,能在大氣常壓下鍍製透明導電膜,為目前已知唯一能常壓進行製程並達到商用品質的技術,此技術也曾獲得「R&D百大科技獎」與「華爾街日報科技創新獎(TIA)」。

手指滑過手機或平板電腦時,因為螢幕下面那層透明導電薄膜,機器才得以「感知」碰觸、執行功能。現在觸控面板常用ITO(Indium Tin Oxide,銦錫氧化物)作為透明導電材料,透明導電膜兩項主要的性能指標為電阻和透光率,ITO符合低電阻與高可見光穿透率,此外還具有良好的化學穩定性和熱穩定性、基材黏著性佳、利於圖形加工等優點。因此,在眾多可作為透明電極的材料中,ITO成為主流,應用也相當廣泛,觸控面板、太陽電池、液晶、電漿顯示器等光電產品皆可見ITO。

業務組長周大鑫博士說,研發初衷是為了節能,希望開發低耗能的光電產業鍍膜技術。現在鍍膜的製程為達到高品質,須在真空環境下進行,為了維持真空度,即便不鍍膜,真空設備也要持續運行,相當耗能;另一方面,銦是稀有金屬,主要出產自中國,來源不穩定,常有價格波動問題。隨著近年導入非銦材料取代ITO薄膜的議題亦趨熱門,團隊也研究導入非貴重金屬材料鍍製透明導電膜,降低製造成本與風險。

大氣電漿鍍膜技術的計畫主持人、工研院機械所業務組長周大鑫博士。
大氣電漿鍍膜技術的計畫主持人、工研院機械所業務組長周大鑫博士。

相較於傳統真空環境製程,團隊的「大氣電漿鍍膜技術」省了一半以上的電力,也節省了60%的設備空間。大氣電漿製程最大缺點是材料出了噴嘴、碰到大氣便容易碰撞產生結晶,團隊技術的巧思在於「電漿噴嘴」(又稱電漿頭或電漿產生器)裡電極與氣流場特殊設計,在局部區域裡產生高密度的電弧。

團隊設計電漿噴嘴,使其電漿密度夠高,得以完整解離材料,透過氣流帶下來,讓材料順利覆在基板上形成一層薄膜。「有點像大自然現象的閃電,我們可以讓電弧產生的數量最多,產生的能量高,範圍也大。」周大鑫說,模組也整合電源供應器設計,控制電極的放電頻率,達到足夠溫度。

14_02

機械所團隊開發的大氣鍍膜機器。電漿噴嘴的電漿密度夠高,完整解離氧化鋅,透過氣流帶下來,讓材料順利覆在基板上形成一層薄膜。
機械所團隊開發的大氣鍍膜機器。電漿噴嘴的電漿密度夠高,完整解離氧化鋅,透過氣流帶下來,讓材料順利覆在基板上形成一層薄膜。

「傳統也有大氣電漿技術,但能量沒像我們這麼高,所以只能做些表面清潔的工作。」周大鑫說,團隊的電漿密度高,得以完整解離材料,所以可在大氣條件下作鍍膜製程,甚至鍍製透明導電膜。高能量密度的電漿讓不同材料組合變得可行,團隊改以氧化鋅為鍍製材料,鍍出來的透明導電薄膜片電阻小於100 ohm/square,透明度90%以上,相當於市售的ITO薄膜水準。團隊計算過,觸控面板大約有三四成的成本都花在那透明導電膜,而用氧化鋅搭配大氣電漿技術,成本可降低為一成。(此為三年前的數據,現在透明導電膜成本較低了。)

團隊成員將玻璃基板放至鍍膜機並示範操作,此機器為線型鍍膜,鍍製疏水的功能性薄膜。
團隊成員將玻璃基板放至鍍膜機並示範操作,此機器為線型鍍膜,鍍製疏水的功能性薄膜。

大氣電漿鍍膜還可局部鍍製,讓製程環保許多。傳統上,若要局部鍍膜,得先全面鍍上一層,再用「黃光微影製程」去除不要的地方,過程中會產生許多化學廢液,新技術省下了這過程,避免了化學材料汙染。

談及研發過程,周大鑫說,一開始大家聽到開發在非真空環境鍍膜技術的點子都覺得挑戰太大,難以達成。2008年計畫最初執行的那半年,團隊也果真鍍不出來,因為解離不完全,材料從噴嘴出來後接觸空氣立即結晶,在基板上覆上一層顆粒狀粉末,變成「一盤散沙」而不是融合成一層薄膜。後來調整電極模組設計、調整材料配方,隔年才成功鍍膜,再經兩三年改良製程,才鍍出透明導電膜。

不同的功能性薄膜的製程有差異,但概念與設備大致相同,只是更換材料組成。因此,此技術除了用於製作觸控面板的透明導電薄膜,作為ITO的替代品,也可以跨產業,用於其他功能性鍍膜製程,如表面抗污、疏水、親水等,除了硬材質的玻璃或塑膠產品表面鍍膜,周大鑫也期望未來延伸至軟性材基材元件,應用於穿戴式設備。

研發大氣電漿鍍膜技術的團隊。
研發大氣電漿鍍膜技術的團隊。

更多資訊請參考解密科技寶藏

文章難易度
創新科技專案 X 解密科技寶藏_96
81 篇文章 ・ 1 位粉絲
由 19 個國家級產業科技研發機構,聯手發表「創新科技專案」超過 80 項研發成果。手法結合狂想與探索,包括高度感官互動的主題式「奇想樂園」區,以及分享科技新知與願景的「解密寶藏」區。驚奇、專業與創新,激發您對未來的想像與憧憬!


0

0
0

文字

分享

0
0
0

解析「福衛七號」的觀測原理——它發射升空後,如何讓天氣預報更準確?

科技大觀園_96
・2021/10/25 ・2915字 ・閱讀時間約 6 分鐘

2019 年 6 月 25 日,福爾摩沙衛星七號(簡稱福衛七號)在國人的引頸期盼下升空。一年多來(編按:以原文文章發佈時間計算),儘管衛星還沒有全部轉換到預定的軌道,但已經回傳許多資料,這些資料對於天氣預報的精進,帶來很大的助益。中央大學大氣系特聘教授黃清勇及團隊成員楊舒芝教授、陳舒雅博士最近的研究主題,就是福衛七號傳回的資料,對天氣預報能有哪些改善。

掩星觀測的原理

要介紹福衛七號帶來的貢獻,得先從它的上一代──福衛三號說起。福衛三號包含了 6 顆氣象衛星,軌道高度 700~800 公里,以 72 度的傾角繞著地球運轉(繞行軌道與赤道夾角為 72 度)。這些衛星提供氣象資訊的方式,是接收更高軌道(約 20,200 公里)的 GPS 衛星所放出的電波,這些電波在行進到氣象衛星的路程中,會從太空進入大氣,並產生偏折,再由氣象衛星接收。換句話說,氣象衛星接收到的電波並不是走直線傳遞來的,而是因為大氣的折射,產生了偏折,藉由偏折角可推得大氣資訊。

▲低軌道衛星(如福衛三號)持續接收 GPS 衛星訊號,直到接收不到為止,整個過程會轉換成一次掩星事件,讓科學家取得大氣溫濕度垂直分佈。圖/黃清勇教授提供

氣象衛星會一邊移動,一邊持續接收電波,直到接收不到為止,在這段過程中,電波穿過的大氣從最高層、較稀薄的大氣,逐漸變為最底層、最接近地面的大氣,科學家能將這段過程中每一層大氣所造成的偏折角,通過計算回推出折射率,而折射率又和大氣溫度、水氣、壓力有關  ,因此可再藉由每個高度的大氣折射率,得出溫濕度垂直分布,這種觀測方式稱為「掩星觀測」。掩星觀測所得到的資料,可以納入數值預報模式,進一步做各種預報分析。 

資料同化──觀測與模式的最佳結合

在將掩星觀測資料納入數值預報模式時,必須先經過「資料同化」的過程。數值預報模式內含動力方程式,可以模擬任何一個位置的氣塊的運動,但是因為大氣環境非常複雜,模擬時不可能納入全部的動力條件,因此模擬結果不一定正確。而另一方面,掩星觀測資料提供的是真實觀測資訊,楊舒芝形容:「觀測就像拿著照相機拍照,不管什麼動力方程式,拍到什麼就是什麼。」但是,觀測的分布是不均勻的—唯有觀測過的位置,我們才會有觀測資料。

所以,我們一手擁有分布不均勻但很真實的觀測資料,另一手擁有很全面但可能不太正確的模式模擬。資料同化就是結合這兩者,找到一個最具代表性的大氣初始分析場,再以這個分析場為起點,去做後續的預報。資料同化正是楊舒芝和陳舒雅的重點工作之一。 

中央大學分別模擬 2010 年梅姬颱風和 2013 年海燕颱風的路徑,發現加入福三掩星觀測資料之後,可以降低颱風模擬路徑的誤差。圖/黃清勇教授提供

由於掩星觀測取得的資料與大氣的溫度、濕度、壓力有密切關係,因此在預報颱風、梅雨或豪大雨等與水氣量息息相關的天氣時,帶來重要的幫助。黃清勇的團隊針對福衛三號的掩星觀測資料對天氣預報的影響,做了許多模擬與研究,發現在預測颱風或氣旋生成、預報颱風路徑,以及豪大雨的降雨區域及雨量等,納入福衛三號的掩星觀測資料,都能有效提升預報的準確度。

黃清勇進一步說明,由於颱風都是在海面上生成的,而掩星觀測技術仰賴的是繞著地球運行的衛星來收集資料,相較於一般位於陸地上的觀測站,更能夠取得海上大氣資料,因此對於預測颱風的生成有很好的幫助。另一方面,這些資料也能幫助科學家掌握大氣環境,例如對於太平洋高壓的範圍抓得很準確,那麼對颱風路徑的預測自然也會更準。根據團隊的研究,加入福衛三號的掩星觀測資料,平均能將 72 小時颱風路徑預報的誤差減少約 12 公里,相當於改進了 5%。

豪大雨的預測則不只溫濕度等資訊,還需要風場資訊的協助,楊舒芝以 2008 年 6 月 16 日臺灣南部降下豪大雨的事件做為舉例,一般來說豪大雨都發生在山區,但這次的豪大雨卻集中在海岸邊,而且持續時間很久。為了找出合理的預測模式,楊舒芝探討了如何利用掩星觀測資料來修正風場。 

從 2008 年 6 月 16 日的個案發現,掩星資料有助於研究團隊掌握西南氣流的水氣分佈。上圖 CNTL 是未使用掩星資料的控制組,而 REF 和 BANGLE 皆有加入掩星資料(同化算子不一樣),有掩星資料可明顯改善模擬,更接近觀測值(Observation)。圖/黃清勇教授提供

福衛七號接棒觀測

隨著福衛三號的退休,福衛七號傳承了氣象觀測的重責大任。福衛七號也包含了 6 顆氣象衛星,不過它和福衛三號有些不同之處。

福衛三號是以高達 72 度的傾角繞著地球運轉,取得的資料點分布比較均勻,高緯度地區會比低緯度地區密集一些。相較之下,福衛七號的傾角只有 24 度,它所觀測的點集中在南北緯 50 度之間,對臺灣所在的副熱帶及熱帶地區來說,密集度更高;加上福衛七號收集的電波來源除了美國的 GPS 衛星,還增加了俄國的 GLONASS 衛星,這些因素使得在低緯度地區,福衛七號所提供的掩星觀測資料將比福衛三號多出約四倍,每天可達 4,000 筆。

福衛三號與福衛七號比較表。圖/fatcat 11 繪

另一方面,福衛七號的軟硬體比起福衛三號更加先進,可以獲得更低層的大氣資料,而因為水氣主要都集中在低層,所以福衛七號對水氣掌握會比福衛三號更具優勢。

從福衛三號到福衛七號,其實模式也在逐漸演進。早期的模式都是納入「折射率」進行同化,而折射率又是從掩星觀測資料測得的偏折角計算出來的。「偏折角」是衛星在做觀測時,最直接觀測到的數據,相較之下,折射率是計算出來的,就像加工過的產品,一定有誤差。因此,近來各國學者在做數值模擬時,愈來愈多都是直接納入偏折角,而不採用折射率。黃清勇解釋:「直接納入偏折角會增加模式計算的複雜度,也會增加運算所需的時間,而預報又是得追著時間跑的工作,因此早期才會以折射率為主。」不過現在由於電腦的運算能力與模式都已經有了進步,因此偏折角逐漸成為主流的選擇。 

由左至右依序為,楊舒芝教授、黃清勇特聘教授、陳舒雅助理研究員。圖/簡克志攝

福衛七號其實還沒有全部轉換到預定的軌道,不過這一年多來的掩星觀測資料,已經讓中央氣象局對熱帶地區的天氣預報,準確度提升了 4~10%;陳舒雅也以今年 8 月的哈格比颱風為案例,成功地利用福衛七號的掩星觀測資料,模擬出哈格比颱風的生成。

除了福衛七號,還有一顆稱為「獵風者」的實驗型衛星,預計 2022 年將會升空。獵風者的任務是接收從地表反射的 GPS 衛星電波,然後推估風速。可以想見,一旦有了獵風者的加入,我們對大氣環境的掌握度勢必更好,對於颱風等天氣現象的預報也能更加準確。就讓我們一起期待吧!

科技大觀園_96
156 篇文章 ・ 375 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策