Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

用「閃電」鍍製觸控螢幕的導電膜

創新科技專案 X 解密科技寶藏_96
・2015/03/12 ・1890字 ・閱讀時間約 3 分鐘 ・SR值 565 ・九年級

-----廣告,請繼續往下閱讀-----

文/劉珈均

工研院機械與系統所的團隊研發「大氣電漿鍍膜技術」,能在大氣常壓下鍍製透明導電膜,為目前已知唯一能常壓進行製程並達到商用品質的技術,此技術也曾獲得「R&D百大科技獎」與「華爾街日報科技創新獎(TIA)」。

手指滑過手機或平板電腦時,因為螢幕下面那層透明導電薄膜,機器才得以「感知」碰觸、執行功能。現在觸控面板常用ITO(Indium Tin Oxide,銦錫氧化物)作為透明導電材料,透明導電膜兩項主要的性能指標為電阻和透光率,ITO符合低電阻與高可見光穿透率,此外還具有良好的化學穩定性和熱穩定性、基材黏著性佳、利於圖形加工等優點。因此,在眾多可作為透明電極的材料中,ITO成為主流,應用也相當廣泛,觸控面板、太陽電池、液晶、電漿顯示器等光電產品皆可見ITO。

業務組長周大鑫博士說,研發初衷是為了節能,希望開發低耗能的光電產業鍍膜技術。現在鍍膜的製程為達到高品質,須在真空環境下進行,為了維持真空度,即便不鍍膜,真空設備也要持續運行,相當耗能;另一方面,銦是稀有金屬,主要出產自中國,來源不穩定,常有價格波動問題。隨著近年導入非銦材料取代ITO薄膜的議題亦趨熱門,團隊也研究導入非貴重金屬材料鍍製透明導電膜,降低製造成本與風險。

-----廣告,請繼續往下閱讀-----
大氣電漿鍍膜技術的計畫主持人、工研院機械所業務組長周大鑫博士。
大氣電漿鍍膜技術的計畫主持人、工研院機械所業務組長周大鑫博士。

相較於傳統真空環境製程,團隊的「大氣電漿鍍膜技術」省了一半以上的電力,也節省了60%的設備空間。大氣電漿製程最大缺點是材料出了噴嘴、碰到大氣便容易碰撞產生結晶,團隊技術的巧思在於「電漿噴嘴」(又稱電漿頭或電漿產生器)裡電極與氣流場特殊設計,在局部區域裡產生高密度的電弧。

團隊設計電漿噴嘴,使其電漿密度夠高,得以完整解離材料,透過氣流帶下來,讓材料順利覆在基板上形成一層薄膜。「有點像大自然現象的閃電,我們可以讓電弧產生的數量最多,產生的能量高,範圍也大。」周大鑫說,模組也整合電源供應器設計,控制電極的放電頻率,達到足夠溫度。

14_02

機械所團隊開發的大氣鍍膜機器。電漿噴嘴的電漿密度夠高,完整解離氧化鋅,透過氣流帶下來,讓材料順利覆在基板上形成一層薄膜。
機械所團隊開發的大氣鍍膜機器。電漿噴嘴的電漿密度夠高,完整解離氧化鋅,透過氣流帶下來,讓材料順利覆在基板上形成一層薄膜。

「傳統也有大氣電漿技術,但能量沒像我們這麼高,所以只能做些表面清潔的工作。」周大鑫說,團隊的電漿密度高,得以完整解離材料,所以可在大氣條件下作鍍膜製程,甚至鍍製透明導電膜。高能量密度的電漿讓不同材料組合變得可行,團隊改以氧化鋅為鍍製材料,鍍出來的透明導電薄膜片電阻小於100 ohm/square,透明度90%以上,相當於市售的ITO薄膜水準。團隊計算過,觸控面板大約有三四成的成本都花在那透明導電膜,而用氧化鋅搭配大氣電漿技術,成本可降低為一成。(此為三年前的數據,現在透明導電膜成本較低了。)

團隊成員將玻璃基板放至鍍膜機並示範操作,此機器為線型鍍膜,鍍製疏水的功能性薄膜。
團隊成員將玻璃基板放至鍍膜機並示範操作,此機器為線型鍍膜,鍍製疏水的功能性薄膜。

大氣電漿鍍膜還可局部鍍製,讓製程環保許多。傳統上,若要局部鍍膜,得先全面鍍上一層,再用「黃光微影製程」去除不要的地方,過程中會產生許多化學廢液,新技術省下了這過程,避免了化學材料汙染。

-----廣告,請繼續往下閱讀-----

談及研發過程,周大鑫說,一開始大家聽到開發在非真空環境鍍膜技術的點子都覺得挑戰太大,難以達成。2008年計畫最初執行的那半年,團隊也果真鍍不出來,因為解離不完全,材料從噴嘴出來後接觸空氣立即結晶,在基板上覆上一層顆粒狀粉末,變成「一盤散沙」而不是融合成一層薄膜。後來調整電極模組設計、調整材料配方,隔年才成功鍍膜,再經兩三年改良製程,才鍍出透明導電膜。

不同的功能性薄膜的製程有差異,但概念與設備大致相同,只是更換材料組成。因此,此技術除了用於製作觸控面板的透明導電薄膜,作為ITO的替代品,也可以跨產業,用於其他功能性鍍膜製程,如表面抗污、疏水、親水等,除了硬材質的玻璃或塑膠產品表面鍍膜,周大鑫也期望未來延伸至軟性材基材元件,應用於穿戴式設備。

研發大氣電漿鍍膜技術的團隊。
研發大氣電漿鍍膜技術的團隊。

更多資訊請參考解密科技寶藏

-----廣告,請繼續往下閱讀-----
文章難易度
創新科技專案 X 解密科技寶藏_96
81 篇文章 ・ 3 位粉絲
由 19 個國家級產業科技研發機構,聯手發表「創新科技專案」超過 80 項研發成果。手法結合狂想與探索,包括高度感官互動的主題式「奇想樂園」區,以及分享科技新知與願景的「解密寶藏」區。驚奇、專業與創新,激發您對未來的想像與憧憬!

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
觸控面板的秘密:從靜電到你的指尖魔法——《物理角色圖鑑》
azothbooks_96
・2024/09/24 ・1254字 ・閱讀時間約 2 分鐘

歐姆定律:電流與電壓的完美協奏

川村老師,請用簡單的方式告訴我「歐姆定律」是什麼?

★歐姆定律,德國物理學家歐姆提出,在溫度不變時,流經金屬導線的電流I 與導線兩端的電壓 V 成正比,兩者的關係為 V=RI,R 是導線的電阻,單位為歐姆 Ω。圖/《物理角色圖鑑》
圖/《物理角色圖鑑》

老師:的方式會使電流變弱。電阻定律告訴我們,金屬導線的電阻 R 與長度 L 成正比,也就是導線愈長,電阻愈大。相反的,截面積 S 愈大,電阻愈小。

貓咪:能捲太多圈嗎?喵!

老師:這樣會讓導線長度增加。電阻 Rρ L/ Aρ 是電阻率。

圖/《物理角色圖鑑》

觸控面板的原理

觸控面板是貼附在螢幕玻璃表面上的薄膜,手機與電腦普遍使用的觸控面板是利用靜電原理進行感應。觸控面板有許多感應方法,最具代表性的是電容式觸控與電阻式觸控。手機使用的是電容式觸控面板,利用靜電就能讓 CPU 知道手指是否放在螢幕上。

-----廣告,請繼續往下閱讀-----

觸控面板中縱橫交錯著許多表面帶靜電的電極陣列,如下圖。

圖/《物理角色圖鑑》

手指碰到觸控面板時,會吸走該位置的靜電,感測器便據此判斷何處有靜電釋放。用一般的筆或戴著手套觸碰時,手機不會有反應,是因為其他東西與手指不同,不會導電,所以也不會釋放靜電。

電阻式觸控面板無法多點觸控;也就是說,不能用兩根手指同時操作。使用手機時,可以用拇指和食指同時觸碰面板,然後手指張開把照片放大,或手指閉合把照片縮小,電阻式觸控面板就沒辦法這麼方便。

電阻式觸控面板的電流是從兩片膜之間通過;手指碰觸時,上層膜會接觸到下層膜,使電阻降低,表示該處有電流通過,此時感測器便可讀取到接觸點位置。電阻式面板是透過壓力來操控,與觸控媒介是否導電無關;所以用筆、指甲來觸碰,螢幕也會有反應。這種面板也能感應觸碰壓力的強弱,因此常用於遊戲機。

-----廣告,請繼續往下閱讀-----
圖/《物理角色圖鑑》

——本文摘自《物理角色圖鑑:用35個萌角色掌握最重要的物理觀念,秒懂生活中的科普知識》,2024 年 9 月,漫遊者文化,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

azothbooks_96
55 篇文章 ・ 21 位粉絲
漫遊也許有原因,卻沒有目的。 漫遊者的原因就是自由。文學、人文、藝術、商業、學習、生活雜學,以及問題解決的實用學,這些都是「漫遊者」的範疇,「漫遊者」希望在其中找到未來的閱讀形式,尋找新的面貌,為出版文化找尋新風景。