0

0
0

文字

分享

0
0
0

目睹彗星磁層的誕生

臺北天文館_96
・2015/01/29 ・848字 ・閱讀時間約 1 分鐘 ・SR值 509 ・六年級
相關標籤: 彗星 (49)

與太陽風交互作用過程中67P Churyumov-Gerasimenko彗星周圍產生的磁層

瑞典太空物理研究所(Swedish Institute of Space Physics)天文學家Hans Nilsson等人呈現彗星周圍的磁層(magnetosphere)形成時究竟發生何事。搭載在羅賽達號太空船(Rosetta)上的RPC-ICA儀器恰好捕捉到67P Churyumov-Gerasimenko彗星靠近太陽並與太陽風交互作用的過程中,彗星周圍磁層形成的早期階段。

當彗星溫度漸漸升高,以水為主的易揮發物質會從表面蒸發,在彗星周圍形成一層大氣層。太陽的紫外輻射和太陽風粒子的碰撞,會使彗星大氣內的部份粒子被游離化,而這些新形成的離子受到太陽風所攜帶的電磁場影響,會被加速到極高速的狀態。當彗星足夠接近太陽,它的大氣層密度夠高,且離子數量也夠多時,大氣會變得具有導電性;一旦這種狀況發生,彗星大氣便開始可抵抗太陽風,彗星磁層於是誕生。

RPC-ICA儀器在2014年8月7日在距離67P彗星約100公里遠的地方偵測到低速水離子,當時是羅賽達號抵達67P彗星的一天之後。這個水離子訊號相當清晰,因此可以確認的確偵測到來自彗星大氣層的離子。RPC是羅賽達電漿組成儀器(Rosetta Plasma Consortium)的縮寫,用以測定彗核物理特性、瞭解彗核內部結構、監測彗星活動與研究彗髮與太陽風的交互作用等;ICA是組成RPC的5項儀器之一,為離子成份分析器Ion Composition Analyser的縮寫。

這是天文學家第一次看到在彗星大氣層開始抵抗太陽風之前發生了何事。Nilsson等人發現:彗星大氣層發展早期,對太陽風的影響程度比天文學家們先前認為的還要大;此外,他們還從觀測資料發現彗星大氣在彗核周圍分佈的結構非常不均勻。

-----廣告,請繼續往下閱讀-----

這項研究結果凸顯了羅賽達號的優越性。以往的彗星任務,通常太空船飛掠彗星時的距離太遠,而且飛掠速度高達每秒數十公里,沒辦法仔細研究,更何況這些太空船抵達彗星時,彗星磁層通常都已經發展完畢。而羅賽達號距離彗星只有數十公里遠,速度又不快,更重要的是它抵達並開始環繞67P彗星時,彗星的許多特徵都還沒開始發展,因而得以目睹67P彗星磁層的完整形成過程。

資料來源:Watching the birth of a comet magnetosphere  [Science Daily,January 22, 2015]

本文轉載自網路天文館

文章難易度
臺北天文館_96
482 篇文章 ・ 41 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

2
0

文字

分享

0
2
0
人體吸收新突破:SEDDS 的魔力
鳥苷三磷酸 (PanSci Promo)_96
・2024/05/03 ・1194字 ・閱讀時間約 2 分鐘

-----廣告,請繼續往下閱讀-----

本文由 紐崔萊 委託,泛科學企劃執行。 

營養品的吸收率如何?

藥物和營養補充品,似乎每天都在我們的生活中扮演著越來越重要的角色。但你有沒有想過,這些關鍵分子,可能無法全部被人體吸收?那該怎麼辦呢?答案或許就在於吸收率!讓我們一起來揭開這個謎團吧!

你吃下去的營養品,可以有效地被吸收嗎?圖/envato

當我們吞下一顆膠囊時,這個小小的丸子就開始了一場奇妙的旅程。從口進入消化道,與胃液混合,然後被推送到小腸,最後透過腸道被吸收進入血液。這個過程看似簡單,但其實充滿了挑戰。

首先,我們要面對的挑戰是藥物的溶解度。有些成分很難在水中溶解,這意味著它們在進入人體後可能無法被有效吸收。特別是對於脂溶性成分,它們需要透過油脂的介入才能被吸收,而這個過程相對複雜,吸收率也較低。

-----廣告,請繼續往下閱讀-----

你有聽過「藥物遞送系統」嗎?

為了解決這個問題,科學家們開發了許多藥物遞送系統,其中最引人注目的就是自乳化藥物遞送系統(Self-Emulsifying Drug Delivery Systems,簡稱 SEDDS),也被稱作吸收提升科技。這項科技的核心概念是利用遞送系統中的油脂、界面活性劑和輔助界面活性劑,讓藥物與營養補充品一進到腸道,就形成微細的乳糜微粒,從而提高藥物的吸收率。

自乳化藥物遞送系統,也被稱作吸收提升科技。 圖/envato

還有一點,這些經過 SEDDS 科技處理過的脂溶性藥物,在腸道中形成乳糜微粒之後,會經由腸道的淋巴系統吸收,因此可以繞過肝臟的首渡效應,減少損耗,同時保留了更多的藥物活性。這使得原本難以吸收的藥物,如用於愛滋病或新冠病毒療程的抗反轉錄病毒藥利托那韋(Ritonavir),以及緩解心絞痛的硝苯地平(Nifedipine),能夠更有效地發揮作用。

除了在藥物治療中的應用,SEDDS 科技還廣泛運用於營養補充品領域。許多脂溶性營養素,如維生素 A、D、E、K 和魚油中的 EPA、DHA,都可以通過 SEDDS 科技提高其吸收效率,從而更好地滿足人體的營養需求。

隨著科技的進步,藥品能打破過往的限制,發揮更大的療效,也就相當於有更高的 CP 值。SEDDS 科技的出現,便是增加藥物和營養補充品吸收率的解決方案之一。未來,隨著科學科技的不斷進步,相信會有更多藥物遞送系統 DDS(Drug Delivery System)問世,為人類健康帶來更多的好處。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
199 篇文章 ・ 304 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

2

5
3

文字

分享

2
5
3
披著喜劇外皮的警世寓言:《千萬別抬頭》背後的科學真相
PanSci_96
・2022/01/06 ・3626字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

2021 年底在 Netflix 上架的《千萬別抬頭》(Don’t Look Up)講的是一個彗星撞地球的故事,但這並不是一部普通的科幻災難片,而是帶有黑色幽默的諷刺電影,用來嘲諷拒絕科學、對科學冷漠的社會大眾。雖然製作團隊原先是想諷刺那些否認全球暖化的言論,但在 COVID-19 疫情肆虐的現在,恰巧也能影射抵制口罩和疫苗的行為、煽動對立的政治操作,以及人們對於社交媒體的過度依賴。即使整部電影看似穿插了不少笑點,仍能從中感受到一股壓抑和無力感。

《千萬別抬頭》還請來了星光熠熠的卡司陣容,包括李奧納多.狄卡皮歐、珍妮佛.勞倫斯、喬納.希爾和凱特.布蘭琪等多位奧斯卡得主。飾演美國總統的梅莉.史翠普更表示這是她拍過最重要的電影!

Don't Look Up Poster.jpg
《千萬別抬頭》的演員陣容十分豪華,主演群包括李奧納多.狄卡皮歐、珍妮佛.勞倫斯等人。圖/WIKIPEDIA

製作人亞當.麥凱(Adam McKay)希望這部電影能夠如實描繪科學事實以及科學家面臨的挑戰,於是,他邀請知名天文學家艾米.邁因策爾博士(Dr. Amy Mainzer)擔任電影的科學顧問。

邁因策爾博士現為亞利桑那大學月球與行星實驗室的教授、全球頂尖的小行星探測和行星防禦專家,以及 NASA NEOWISE(Near-Earth Object Wide-field Infrared Survey Explorer)計畫的首席研究員,負責監督這項史上規模最大的小行星探測計畫。在 2020 年 3 月,計劃內的一名天文學家成功發現了一顆新的彗星,並且將它命名為 NEOWISE,就跟計畫名稱一樣。

-----廣告,請繼續往下閱讀-----
Photo of Dr. Amy Mainzer
邁因策爾博士。 圖/NASA

科學家眼中的災難片

本片的科學顧問邁因策爾博士與北美天文學新聞網站《今日宇宙》(Universe Today)的編輯南西.阿特金森(Nancy Atkinson)聊了《千萬別抬頭》這部片,以及電影中的科學。

邁因策爾博士醉心於彗星和小行星的研究,所以她表示,自己非常喜歡隕石浩劫這類電影題材!非常開心能看到以彗星為主題的電影,也十分慶幸能夠成為災難電影的科學顧問。

雖然目前實際上沒有任何小行星或彗星運行在可能撞擊地球的軌道上,也沒有任何一顆即將撞上地球。但本片畢竟是科幻電影,需要設定一顆真的即將撞上地球的彗星,更像是「拋磚引玉」的功能。邁因策爾博士以「科學實在論」打造故事框架,希望觀眾重視科學家的警告,不再相信虛假的謠言。

而《千萬別抬頭》之所以涵蓋這麼多科學知識,是因為製作團隊對科學深感興趣,非常重視電影中的科學。因此電影畫面中,團隊設計的彗星既要符合電影的視覺需求,又要符合科學上真實彗星的樣貌。劇情不僅描述了發現彗星的過程,包括如何識別、確定彗星軌跡,還刻畫了科學家在探索未知事物時的反應。這不只描繪了科學家的形象,也告訴觀眾科學家是什麼樣的人,還有他們是如何傳播科學知識——有時很順利,但有時真的困難重重。

-----廣告,請繼續往下閱讀-----

這部電影讓《今日宇宙》編輯印象最深刻的是,科學家試圖警告災難,卻沒有被當一回事。若是套用在氣候變遷和傳染病肆虐等全球議題上,這種冷漠的態度似乎有點太寫實了。

邁因策爾博士也認為,這齣電影想強調人們對於科學新聞的態度。就像《今日宇宙》編輯平時所從事的科普工作,將複雜的概念轉化為淺顯易懂的文字是很困難的,因為科學家慣用的詞語與日常生活中的用詞完全不同。

例如,「不確定性」(Uncertainty)代表測量結果是一個可能的數值範圍,而不是指我們不確定自己測量的是什麼。在不同的情境下,詞語意思也會不一樣,確實有可能造成溝通障礙——這只是其中一個例子而已。

對邁因策爾博士來說,這部電影講述的是科學家如何傳播知識,如何讓眾人瞭解這些知識,還有如何根據科學做出明智的決定。這樣的題材很有挑戰性,因為這是一部喜劇,希望觀眾可以在笑著看完的同時,能夠更加理解科學家們多麼努力想做到這些事,「可是也請容許我們偶爾做不到。」

-----廣告,請繼續往下閱讀-----
陨石, 天空, 云, 火焰, 日落, 山, 人, 幻想, 数字艺术
《千萬別抬頭》希望透過反諷與幽默,能讓更多人抬起頭、睜開眼,開始關心環境議題。圖/Pixabay

幕後花絮:真正的 NEOWISE 計畫在做什麼?

其實,現實中新發現的 NEOWISE 彗星就是電影裡那顆彗星的原型。那是一顆長週期彗星,以驚人的速度從遠方朝太陽系飛來。邁因策爾博士在 2020 年 3 月發現 NEOWISE,7 月時它就接近地球了,就真的像電影中的彗星一樣,我們來得及反應的時間非常短。 

好消息是,我們已經開始監視那些能釀成全球性災難的近地小行星。以超過 1 公里的近地小行星來說,科學家已經找到了其中 90%,而且沒有一個會對地球造成威脅。

但長週期彗星就是另一回事了。比起小行星,長週期彗星相當稀有,但這不代表它們不存在。雖然科學家持續監測,還是無法推估總數到底有多少。在邁因策爾博士看來,任何物體接近地球的機率都不是零,我們需要獲得更多知識,才能做好準備,方法就是不斷尋找彗星和小行星,並且全面性地監測、追蹤。

邁因策爾博士也花了很多時間和導演討論小行星監測系統。當科學家們發現未知的小行星或彗星時,會透過這個系統比對所有已知的星體,如果確定是未知星體,系統就會公開觀測資訊,讓其他天文學家看見。從科學家的角度來看,他們努力地傳播科學資訊,但問題在於每個人對於科學的接受程度不同,這樣的矛盾在劇情中也有不少著墨。

-----廣告,請繼續往下閱讀-----

電影中的科學家發現彗星只是湊巧,他本身並不是研究彗星的專家,但製片團隊仍花了不少時間呈現他們識別彗星、確定軌道,以及將結果轉告其他科學家的過程。雖然這畢竟是電影,多少美化了實際情況,但還是希望能藉此讓觀眾看見科學論證的嚴謹之處。

Comet 2020 F3 (NEOWISE) on Jul 14 2020 aligned to stars.jpg
NEOWISE 彗星 或音譯尼歐懷茲彗星 ,又稱為 C/2020 F3,是一顆具有接近拋物線軌道的逆行長週期彗星。圖/WIKIPEDIA

科學講述事實,但藝術掌管對事實的感受

本片中有許多大咖演員,他們才華洋溢,而且都有自信能展現出科學家感性的一面。他們都熱衷科學、關心科學在日常生活中扮演的角色,也相信如果人們根據科學做決定,就能找到更好的問題解決方法。邁因策爾博士還花了很多時間陪演員練習台詞,因為劇本裡有很多艱澀的科學術語。這麼做還有另一個好處,就是當他們沒有在聽博士講話時,博士可以表達身為科學家的感受,供他們揣摩。

邁因策爾博士一直覺得科學和藝術之間的關係很有趣。科學告訴我們事情的本質,但藝術掌管我們對這些事情的感受。這部電影呈現出科學家和大眾對於科學的看法:科學家想改變社會,以做出基於科學的決定,但也必須設法讓大眾傾聽科學的聲音——這種矛盾和拉扯,就是這部電影的核心所在。

科學家有所隱瞞?他們更想說個沒完

那些拒絕科學的大眾普遍認為 NASA 或政府隱瞞了一些事情,可是所有科學家卻都說,如果他們發現太空有危險物體,絕對會爬上屋頂告訴全世界。

-----廣告,請繼續往下閱讀-----

如果換成是邁因策爾博士,她也會這樣做!當科學家學到新的酷東西時,就像一班人去了一趟很棒的旅行,回家後,他可能會讓其他人感到厭煩,因為他不斷提起旅行中的所見所聞。大多數科學家不會停止談論自身所學,因為他們熱愛這些知識,也希望其他人知道這些酷東西,或許他們就會因此愛上科學!

邁因策爾博士希望觀眾看完這部電影後,能夠理解科學家也是人,而且和一般人沒什麼兩樣。「作為科學家,我們經常遇到溝通方面的挑戰,但我們正在努力,而且我們不會放棄!」

圖/twitter @dobrienloml
所有討論 2
PanSci_96
1220 篇文章 ・ 2243 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

0
0

文字

分享

0
0
0
目睹彗星磁層的誕生
臺北天文館_96
・2015/01/29 ・848字 ・閱讀時間約 1 分鐘 ・SR值 509 ・六年級
相關標籤: 彗星 (49)

-----廣告,請繼續往下閱讀-----

與太陽風交互作用過程中67P Churyumov-Gerasimenko彗星周圍產生的磁層

瑞典太空物理研究所(Swedish Institute of Space Physics)天文學家Hans Nilsson等人呈現彗星周圍的磁層(magnetosphere)形成時究竟發生何事。搭載在羅賽達號太空船(Rosetta)上的RPC-ICA儀器恰好捕捉到67P Churyumov-Gerasimenko彗星靠近太陽並與太陽風交互作用的過程中,彗星周圍磁層形成的早期階段。

當彗星溫度漸漸升高,以水為主的易揮發物質會從表面蒸發,在彗星周圍形成一層大氣層。太陽的紫外輻射和太陽風粒子的碰撞,會使彗星大氣內的部份粒子被游離化,而這些新形成的離子受到太陽風所攜帶的電磁場影響,會被加速到極高速的狀態。當彗星足夠接近太陽,它的大氣層密度夠高,且離子數量也夠多時,大氣會變得具有導電性;一旦這種狀況發生,彗星大氣便開始可抵抗太陽風,彗星磁層於是誕生。

RPC-ICA儀器在2014年8月7日在距離67P彗星約100公里遠的地方偵測到低速水離子,當時是羅賽達號抵達67P彗星的一天之後。這個水離子訊號相當清晰,因此可以確認的確偵測到來自彗星大氣層的離子。RPC是羅賽達電漿組成儀器(Rosetta Plasma Consortium)的縮寫,用以測定彗核物理特性、瞭解彗核內部結構、監測彗星活動與研究彗髮與太陽風的交互作用等;ICA是組成RPC的5項儀器之一,為離子成份分析器Ion Composition Analyser的縮寫。

-----廣告,請繼續往下閱讀-----

這是天文學家第一次看到在彗星大氣層開始抵抗太陽風之前發生了何事。Nilsson等人發現:彗星大氣層發展早期,對太陽風的影響程度比天文學家們先前認為的還要大;此外,他們還從觀測資料發現彗星大氣在彗核周圍分佈的結構非常不均勻。

這項研究結果凸顯了羅賽達號的優越性。以往的彗星任務,通常太空船飛掠彗星時的距離太遠,而且飛掠速度高達每秒數十公里,沒辦法仔細研究,更何況這些太空船抵達彗星時,彗星磁層通常都已經發展完畢。而羅賽達號距離彗星只有數十公里遠,速度又不快,更重要的是它抵達並開始環繞67P彗星時,彗星的許多特徵都還沒開始發展,因而得以目睹67P彗星磁層的完整形成過程。

資料來源:Watching the birth of a comet magnetosphere  [Science Daily,January 22, 2015]

本文轉載自網路天文館

-----廣告,請繼續往下閱讀-----
文章難易度
臺北天文館_96
482 篇文章 ・ 41 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

1

7
3

文字

分享

1
7
3
Just Look Up!小行星監測系統「哨兵」全面升級
EASY天文地科小站_96
・2022/01/03 ・2549字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/陳子翔|師大地球科學系、EASY 天文地科團隊創辦者

看到下圖密布於太陽系的小行星軌道,你是否會對小行星撞地球這樣的災難感到擔心呢?

對地球有潛在撞擊威脅的 2200 個小行星軌道。圖/NASA/JPL-Caltech

事實上面對小行星的撞擊風險,科學家也是嚴陣以待。畢竟即便是一顆直徑只有數十公尺的小行星撞上地球,其威力也足以摧毀一座城市。更何況還有許多直徑數百公尺,甚至數公里的近地小行星(near-Earth asteroids)存在。因此,對於這些小行星的觀測、研究與監控就顯得格外重要。

揪出藏身夜空中的小行星

對近地小行星監測的第一步,就是要先找出「它們在哪裡」。如同在戰場上比起收到敵方要發動攻勢的情報,更可怕的就是連敵人是誰、敵人在哪裡都還不清楚就被暗中襲擊了。

然而棘手的是,由於直徑小,反照率低的特性,小行星的亮度往往非常低,需要仰賴觀測性能強大的天文台才有辦法看見它們。但大型天文台的觀測視野卻通常很小,難以有效率的「掃描」廣大的夜空,而且這些天文台本來就有很多天文研究工作要進行,能撥給小行星觀測的時間也相當有限。

有鑑於這些因素,專門設立搜尋近地小天體的計畫與望遠鏡,就成了更合適的選項。像是林肯近地小行星研究小組(Lincoln Near-Earth Asteroid Research, LINEAR)、卡特林那巡天系統計畫(Catalina Sky Survey, CSS)以及泛星計畫(Pan-STARRS)等。它們扮演「小行星獵人」的角色定期掃視夜空,尋找移動中的可疑光點。目前透過這些計劃發現的近地小行星已經多達數萬個。

-----廣告,請繼續往下閱讀-----
https://upload.wikimedia.org/wikipedia/commons/7/7d/Neo-chart.png
每年由近地小天體搜尋計畫找到的近地小行星數量,藍色為林肯近地小行星研究小組,綠色為卡特林那巡天系統計畫,紫色為泛星計畫。圖/Wikipedia

用自動化的監測系統,找出小行星中的「危險份子」

發現這些小行星的下一步,就是由觀測資料計算出它們的軌道,並找出哪些小行星對於我們的威脅比較大。而面對數量龐大的近地小行星資料,NASA 噴射推進實驗室(Jet Propulsion Laboratory, JPL)早在 2002 年就開發出一套名為「哨兵(Sentry)」的監測系統,運用設計好的演算法,自動化的評估每個近地小行星撞擊地球的機率,並列出對地球威脅比較大的小行星名單。

以目前的速率來看,每年大約有 3000 個新的近地小行星被發現。而未來隨著更多更先進的天文台投入小行星搜尋的計畫,可以預期小行星的發現數量還會出現顯著的成長。因此就在不久前,NASA 的天文學家已發展出下一代更先進的小行星監測系統:哨兵 II(Sentry II),以因應未來更龐大的資料,同時也對已經使用了近 20 年的哨兵系進行補強。

監測系統升級上線,更完善的為地球把關

就如同各種應用程式都會進行版本更新,並在更新中修正上一個版本的缺點,這次哨兵 II 系統的升級,也從哨兵一代系統多年累積的經驗進行修正。

首先,第一代哨兵系統只有計算萬有引力對小行星軌道的影響,並沒有考量其他外力,例如來自太陽的輻射壓等等。這些力量雖然相對微小,但積少成多、聚沙成塔,長期下來也能影響小行星運行的軌道。另一方面,由於小行星本身會自轉,因此小行星的受光面和背光面會不停改變方向,如此一來熱輻射對小行星造成的力,也會隨著轉動而變化,這個效應被稱作「亞爾科夫斯基效應」(Yarkovsky Effect)。而哨兵 II 的演算法都有將這些因素納入考量,讓小行星的軌道估計算更為精準。

-----廣告,請繼續往下閱讀-----
亞爾科夫斯基效應的動畫。影片/NASA

再來,當小行星的非常靠近地球時,受到地球引力的影響,軌道以及速度都會大幅改變。其原理與太空探測器借助行星的引力來改變自身的軌道和加減速的「重力彈弓」效應相同。

然而太空探測器上面有很多精密的儀器提供科學家精準的定位,小行星卻只能透過地面觀測來估算出它的軌道,科學家其軌道掌握的精確度當然就比較差。而當小行星接近地球時,軌道的計算誤差就會被大幅放大。一個小行星飛掠地球時幾百公尺的誤差,到了下一次來訪時可能就成了幾千公里的差別了。而這幾千公里,就有可能是「撞上地球」和「安全通過」的差距。好消息是,由於在軌道計算上考量的因素更全面,演算法也更加精密,讓哨兵 II 即使在面對這樣的狀況,也能計算出更為精準的結果。

最後,哨兵 II 系統在計算小行星的撞擊風險時,判斷的方式也相較上一代系統更縝密。如同任何觀測與測量,小行星的軌道也會存在誤差,而哨兵 II 會從小行星軌道的誤差範圍內隨機取樣進行計算,以檢查小行星有沒有撞上地球的可能性。相比於第一代哨兵系統預先將有撞擊風險的軌道推算出來後才評估撞擊機率的做法,這樣的更新能降低漏網之魚出現的可能性。

流星, 小行星, 空间, 灾难, 彗星, 天文学, 陨石, 宇宙, 星星, 星系, 坠落, 天空, 科学
隨著科技不斷在更新換代,人類對小行星的認識越來越深入,但我們也仍未擺脫小行星撞擊的威脅。圖/Pixabay

持續探索可能的威脅

小行星、彗星等天體的撞擊一直以來都是很多科幻作品的題材。從科學的角度來看,太陽系中也的確存在非常多小天體,可能對地球上的生命構成威脅。雖然對於近地小天體的災害預防,當今的科學與科技還遠達不到萬無一失的程度,但過去三十年,人類對近地小行星的認識已有了顯著的進展。從搜尋小行星的各個計畫,到針對小行星的太空探測任務,以及本篇文章介紹的兩代哨兵監測系統,都帶給我們許多重要資訊,立下人類面對小行星撞擊風險時不可或缺的基石。

-----廣告,請繼續往下閱讀-----

延伸閱讀

參考資料

所有討論 1
EASY天文地科小站_96
23 篇文章 ・ 1466 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事

0

0
0

文字

分享

0
0
0
目睹彗星磁層的誕生
臺北天文館_96
・2015/01/29 ・848字 ・閱讀時間約 1 分鐘 ・SR值 509 ・六年級
相關標籤: 彗星 (49)

與太陽風交互作用過程中67P Churyumov-Gerasimenko彗星周圍產生的磁層

瑞典太空物理研究所(Swedish Institute of Space Physics)天文學家Hans Nilsson等人呈現彗星周圍的磁層(magnetosphere)形成時究竟發生何事。搭載在羅賽達號太空船(Rosetta)上的RPC-ICA儀器恰好捕捉到67P Churyumov-Gerasimenko彗星靠近太陽並與太陽風交互作用的過程中,彗星周圍磁層形成的早期階段。

當彗星溫度漸漸升高,以水為主的易揮發物質會從表面蒸發,在彗星周圍形成一層大氣層。太陽的紫外輻射和太陽風粒子的碰撞,會使彗星大氣內的部份粒子被游離化,而這些新形成的離子受到太陽風所攜帶的電磁場影響,會被加速到極高速的狀態。當彗星足夠接近太陽,它的大氣層密度夠高,且離子數量也夠多時,大氣會變得具有導電性;一旦這種狀況發生,彗星大氣便開始可抵抗太陽風,彗星磁層於是誕生。

RPC-ICA儀器在2014年8月7日在距離67P彗星約100公里遠的地方偵測到低速水離子,當時是羅賽達號抵達67P彗星的一天之後。這個水離子訊號相當清晰,因此可以確認的確偵測到來自彗星大氣層的離子。RPC是羅賽達電漿組成儀器(Rosetta Plasma Consortium)的縮寫,用以測定彗核物理特性、瞭解彗核內部結構、監測彗星活動與研究彗髮與太陽風的交互作用等;ICA是組成RPC的5項儀器之一,為離子成份分析器Ion Composition Analyser的縮寫。

-----廣告,請繼續往下閱讀-----

這是天文學家第一次看到在彗星大氣層開始抵抗太陽風之前發生了何事。Nilsson等人發現:彗星大氣層發展早期,對太陽風的影響程度比天文學家們先前認為的還要大;此外,他們還從觀測資料發現彗星大氣在彗核周圍分佈的結構非常不均勻。

這項研究結果凸顯了羅賽達號的優越性。以往的彗星任務,通常太空船飛掠彗星時的距離太遠,而且飛掠速度高達每秒數十公里,沒辦法仔細研究,更何況這些太空船抵達彗星時,彗星磁層通常都已經發展完畢。而羅賽達號距離彗星只有數十公里遠,速度又不快,更重要的是它抵達並開始環繞67P彗星時,彗星的許多特徵都還沒開始發展,因而得以目睹67P彗星磁層的完整形成過程。

資料來源:Watching the birth of a comet magnetosphere  [Science Daily,January 22, 2015]

本文轉載自網路天文館

-----廣告,請繼續往下閱讀-----
文章難易度
臺北天文館_96
482 篇文章 ・ 41 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!