0

0
0

文字

分享

0
0
0

橫掃歐陸有尾目的頭號殺手-蠑螈壺菌

曾 文宣
・2015/01/07 ・3201字 ・閱讀時間約 6 分鐘 ・SR值 585 ・九年級

目前全球近7000種的兩棲類動物中,約40%的物種面臨生存上的威脅,正在逐漸地消逝中。自1970年代以來科學家開始發現各大洲(當然沒有南極洲)的蛙類物種都出現了大量暴斃的現象,但死因終究不明。直到1999年學界才發現到這樣種喪心病狂的殺戮高手,是一種命名為蛙壺菌(Batrachochytrium dendrobatidis,以下簡稱Bd)的真菌。染上蛙壺菌的青蛙皮膚會開始大量增生角蛋白引發皮膚病變,影響離子、滲透壓、呼吸等正常生理機能,最後死去,致死率高達8成。更可怕的是,這種疾病的傳染性高、散播速度也快,幾乎橫掃了全世界熱帶、亞熱帶的兩棲類物種 [註1],2009年Kriger和Hero便指出當時已有287種兩棲類會感染Bd。我們也普遍認同這40年來兩棲類多樣性的驟降與蛙壺菌脫不了關係。

likely_extinct_frogs
照片裡這些物種被貼上「步向滅絕」的標籤,但是這還只是冰山一角,全球兩棲類多樣性的驟降已經是不爭的事實。
Photograph by Joe Sartore

聽起來慘不忍睹對不對?就在大家傷透腦筋、想盡辦法降低蛙壺菌病的盛行率時,2008年開始,荷蘭的棒紋真螈(Salamandra salamandra terrestris)開始一隻隻地離奇死亡,原先穩定健康的族群到了2011年竟然只剩下4% 個體!因此比利時和荷蘭的研究團隊開始抽絲剝繭,想釐清這樁奇案是否又是蛙壺菌搞的鬼。檢測結果排除了萬惡的蛙壺菌以及在英國肆虐青蛙的蛙虹彩病毒(Ranavirus),命案現場的水文、土壤、物候等環境因子也沒有異常狀況。

fire-salamander-richardson-winch
棒紋真螈受感染個體皮膚出現病變、甚至潰瘍。
Photograph by Richardson Winch

2013年八月發表於PNAS的文章,An Martel等人分離出病原株並且透過系統發生檢測,這樁感染真螈的兇手是個生面孔,一種與蛙壺菌互為姊妹種的蠑螈壺菌(阿就都給你們玩就是了…),學名是Batrachochytrium salamandrivorans 以下簡稱Bs。蠑螈遭受感染後,會再侵蝕皮膚表面,造成組織潰瘍和壞死的病徵,圈養環境下的蠑螈在接觸到Bs後七天內就身亡。咦?那這樣高致病力、高傳染率的Bs不就跟Bd競爭宿主搶得你死我活嗎?不會耶!演化的奧妙之處總是讓你跌破眼鏡。科學家發現Bs與Bd各占鰲頭:Bd專攻熱帶、亞熱帶地區,最適生長溫度是17~25°C之間;Bs主打溫帶攻勢,最適生長溫度是10~15°C之間,5°C也可以長,但在超過25°C的環境下五天內就會敗逃死去。這樣精心設計的棲位分化,一方面讓人讚嘆、另一方面又為我們的兩棲類蒙上一層揮之不去的陰影。

圖片2-horz
左圖: 感染蠑螈壺菌死亡真螈的組織免疫染色圖,可見到侵蝕性的病灶;右圖: 蠑螈壺菌不同溫度下的覆蓋面積,小圖abcd為4、15、20、30°C。
Source: Martel et al. 2009 PNAS

當年這項研究也試圖人工感染當地另一種常見的兩棲類,雄蛙以腳攜卵的產婆蟾(Alytes obstetricans),結果發現Bs沒法感染這種蛙類,團隊因而猜想也許Bs與它的Bd老兄能夠感染蚓螈目、有尾目、無尾目有別,無法感染有尾目外的兩棲動物。

同一個研究團隊(只是作者群從11人變27人了~)在去年(2014) 10月底又發表一篇文章於Science期刊上。為了確認Bs是否真的只會感染有尾目類群,作者找來35種兩棲類動物(蚓螈目1種、有尾目24種、無尾目10種)分別暴露在5000顆Bs孢子下24小時並追蹤個體4個禮拜檢查是否出現病徵,每個禮拜以棉花棒抹取皮膚組織進行qPCR(定量聚合酶連鎖反應)查驗感染程度,感染個體死後再進行組織病理切片檢視患壺菌病情形。這部分的實驗發現只有「有尾目」的成員會受到Bs感染,駭人的是44隻古北區西側的蠑螈中有41隻在染上Bs後迅速地發病死亡。

Bs invasion
暴露Bs真菌株於十種蠑螈腹部皮膚24小時候,孢子侵入的狀況。
Source: Martel et al. 2014 Science _SM

為了瞭解目前Bs於全球的感染狀況,作者們超大手筆找來了5391隻來自四塊大陸的兩棲動物的皮膚組織,利用qPCR(哦天阿好貴!)掃描這5000多隻樣本有無感染Bs。結果發現東亞(日本、泰國、越南)來的動物皮膚組織上有著和Bs序列一模一樣的DNA,但這些地方不曾有聞為此疾病侵擾。另外在壺菌爆發的疫區,比利時和荷蘭的樣本都有檢驗到Bs的DNA。上述結果意味著蠑螈壺菌可能在亞洲定居已久,當地物種已產生抗性抵禦壺菌,反之,歐洲的蠑螈卻被這些可能近年才引入的真菌搞得人仰馬翻。

接著若依第一階段的感染實驗可將這35個物種受感染表現的不同反應區分為四類,分別為Resistant(不感染不發病)、Tolerant(會感染但沒病)、Susceptible(會感染會發病但是有機會康復)、Lethal(所有受試個體感染後皆發病身亡)。多數歐洲產物種皆為L、多數亞洲產物種為R [註2]、北美產物種則各有R和L。其中最值得一提的是,有三個亞洲產物種的感染反應歸類在S,因此極有可能是Bs的保毒物種,分別是分布日本全境的赤腹蠑螈(Cynops pyrrhogaster)、分布於貴州雲南的藍尾蠑螈(Cynops cyanurus)、分布在越南北部的德氏瘰螈(Paramesotriton deloustali)。本篇從這張系統發生樹圖對應上時間,發現這三種保毒物種共同祖先出現的時間(約4000萬年前,始新世)正好落在Bs與Bd分家時的時間後(約6730萬年前,白惡紀晚期)。

response to Bs among Amphibian
此篇研究35種兩棲類物種感染Bs後,四種不同反應之特徵的祖先重建與系統發生樹。中文僅標註有尾目24個物種。Source: Martel et al. 2014 Science;
Photograph: Frank Pasmans/PA

由上述結果,Martel等人推斷蠑螈壺菌應是從亞洲起源 [註3],考量現今Bs相當間斷的分布,很有可能是在近幾年隨著人類活動而將Bs帶至歐洲。特別是寵物市場的國際化貿易,每年皆有大量的亞洲產蠑螈被銷往歐美,例如從2001~2009年就有230萬隻東方火龍輸入美國。為此,作者群們又大費周章從歐洲各寵物店、倫敦希斯洛機場、某個香港出口商找來1765隻圈養兩棲類,和570隻其他圈養來源的蠑螈皮膚樣本。檢測發現裡頭有三隻蠑螈為Bs陽性個體,皆為越南疣螈(Tylototriton vietnamensis),追蹤後還發現其中兩隻是在2010被運進歐洲!

究竟這三隻個體是否是把Bs帶入歐洲的元兇,我們需要更多的論證,但可以確定的是全球化的寵物交易與疾病的散播是密不可分的。例如蠑螈壺菌的疫區─荷蘭,除了是出口大量的毒品外,非法寵物貿易也相當盛行,每年都會從南美洲非法進口大量的箭毒蛙。至今,我們似乎還沒有一套有效遏止壺菌病蔓延的方法,在這樣的思維下,各貿易國更應該謹慎地把關世界各地流通的生物,制定輸入與輸出線上的管理、品管等機制,要求各國境內不得將外來種的寵物放生至野外影響當地的生態系統。我們都知道蛙壺菌是怎麼樣撲滅全球的蛙類,如今我們同時得把視角再往溫帶移動,想辦法對付這個新興起的蠑螈壺菌阿。

圖片5
越南疣螈(Tylototriton vietnamensis)是2005年新發表的物種,只分布在越南北江省的低地森林中。也是此篇研究於圈養個體偵測到Bs陽性並輸入歐洲的物種。
Photograph by Phùng Mỹ Trung

[註1] 婆羅洲(2011)、巴布亞紐幾內亞(2012) 截至括號內年代尚未有任何感染蛙壺菌的病例。
[註2] 歐洲產但不為L的例外有:掌狀滑螈 Lissotriton helveticus為R。亞洲產但不為R的例外有:三種保毒物種S、西伯利亞極北鯢 Salamandrella keyserlingii為T、文縣疣螈 Tylototriton wenxianensis為L(雖與上述越南疣螈同一屬,但卻歸類在Lethal的等級,也許Bs感染強度也與宿主所棲居的環境因子有關)。
[註3] 2004年Weldon等人指出蛙壺菌Bd可能從非洲起源,他們發現最早在1938年的某隻爪蟾中就檢測到了Bd真菌株。但仍有其他研究認為北美洲東部(Garner et al., 2006)和日本(Goka et al., 2009)也檢測到年代久遠的真菌株,亦有可能是發源地。

An Martel 兩篇文獻:

  • An Martel et al. (2013) “Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians” Proceedings of the National Academy of Sciences. 110(38). doi:10.1073/pnas.1307356110
  • An Martel et al. (2014) “Recent introduction of a chytrid fungus endangers Western Palearctic salamanders” Science. 346(6209):630-631. doi:10.1126/science.1258268

其他參考文獻:

  • Kriger K. M., Hero J. M. (2009) “Chytridiomycosis, Amphibian Extinctions, and Lessons for the Prevention of Future Panzootics” EcoHealth (6)1, 6-10.
  • Weldon Ch`e et al. (2004) “Origin of the amphibian chytrid fungus.” Emerging Infect. Dis. 10 (12): 2100–5.
  • Kristine K., Grafe T. U. (2011) “Chytrid Fungus Not Found in Preliminary Survey of Lowland Amphibian Populations Across Northwestern Borneo” Herpetological Review 42(1).
  • Chris D. et al. (2012) “Batrachochytrium dendrobatidis not found in rainforest frogs along an altitudinal gradient of Papua New Guinea” The Herpetological Journal. 22(3):183-186
  • Garner T. W. J. et al. (2006) “The emerging pathogen Batrachochytrium dendrobatidis globally infects introduced populations of the North American bullfrog, Rana catesbeiana.” Biology Letters 2:455–459
  • Goka K. et al. (2009) “Amphibian chytridiomycosis in Japan: distribution, haplotypes and possible route of entry into Japan” Molecular Biology. 18(23):4757-4774

文章難易度
曾 文宣
22 篇文章 ・ 12 位粉絲
我是甩啊!畢業於臺灣師範大學生科系生態演化組|寫稿、審稿、審書被編輯們追殺是日常,經常到各學校或有關單位演講,寒暑假會客串帶小朋友到博物館學暴龍吼叫。癡迷鱷魚,守備領域從恐龍到哺乳動物,從陰莖到動物視覺,因此貴為「視覺系男孩」、或被稱呼「老二大大」。


0

15
0

文字

分享

0
15
0

人類的遠古好兄弟:認識鯊魚的「適應性免疫系統」——《我們為什麼還沒有死掉?》

麥田出版_96
・2021/10/23 ・1867字 ・閱讀時間約 3 分鐘

• 作者/伊丹.班—巴拉克
• 譯者/傅賀

你可能聽過這個說法:鯊魚不會得癌症。事實上,牠們的免疫系統接近完美,牠們幾乎不會得任何疾病,牠們的免疫系統在過去幾億年裡都沒多大變化。是不是很神奇?

可惜,這都是無稽之談。沒錯,鯊魚的免疫系統非常驚人,全身分布有許多有趣而且有效的抗菌和抗病毒分子,牠們患癌症的概率也的確比人們通常預計的更低,但是鯊魚仍然會患上各種疾病,包括腫瘤。除此之外,數百萬隻鯊魚每年死於愚蠢。不是牠們自己的愚蠢(就智力而言,鯊魚還行),而是人類的愚蠢,特別是那些認為鯊魚軟骨產品可以「提高免疫力」、抗發炎甚至抗癌的江湖郎中。那種認為「鯊魚有完美的免疫系統」的觀念是由那些想透過賣軟骨藥而大賺一筆的藥商推動的,這背後的研究也不可靠。真正的科學研究已經揭穿了這些騙人的鬼把戲,但是依然有人在獵殺鯊魚,依然把它們的骨骼碾碎,當成「神奇的藥方」。

所謂「鯊魚的免疫系統從未改變過」的說法也經不起推敲。根據化石證據,我們的確發現今天的鯊魚跟牠們幾億年前的祖先「看起來 」 沒什麼差別,顯然,這讓一些人認為,鯊魚在其他方面也沒有任何變化。但這裡有一個重要區別:鯊魚的體型解決的是在水中穿行的問題;鯊魚的免疫系統解決的則是對抗病原體的問題。水沒有發生演化,但是病原體卻一直在演化。想必你明白我的意思了。

模樣特別古老的皺腮鯊(Chlamydoselachus anguineus)。圖/WIKIPEDIA by Citron

鯊魚有適應性免疫系統,也有完整可辨認的 T 細胞、B 細胞、抗體,以及各種其他組成。鯊魚跟人類的適應性免疫系統有許多差異,畢竟,我們分開的時間已經很久了。不過,牠們在許多基本的細節上跟我們類似,我們可以自信地說,某種類似的適應性免疫系統在四億年前(我們分開的時候)就已經出現並且發揮功能了。

牠們選擇留在水裡,發育出可以替換的鋒利牙齒,追逐魚類,而我們(更準確地說,是那些不再是硬骨魚的我們)則爬到岸上,失去了鰓,發育出了四肢,又過了許多年,我們回到海裡,拍攝了多部關於鯊魚及其鋒利牙齒的驚悚電影。儘管如此,我們的免疫系統提醒我們,在不同的外表之下,鯊魚和我們其實是失散多年的兄弟

但是,讓我們沿著演化史再往回走一步,來到所有的脊椎動物分成兩類—有頜與無頜脊椎動物—的時間點。你也許沒聽說過還有無頜脊椎動物;老實說,這一類生物後來活得不太好,只有兩個科的動物避免了滅絕的厄運,活到了今天:七鰓鰻和盲鰻。這兩種動物長得都比較搞笑,牠們看起來像是努力要長成魚,但是好像不太合格,直到最近,人們一直都認為牠們並沒有適應性免疫系統

屬於無頷類的盲鰻,是韓國炒魚菜的原料。圖/WIKIPEDIA

也許牠們不需要:第一批有頜脊椎動物可能是掠食者,而掠食者往往會活得更久,後代更少,而且一般更注重質而不是量。同樣可以推斷,牠們在演化過程中對感染的抵抗力更強。鯊魚、人類、其他魚類以及所有有頜脊椎動物都有一個胸腺和脾臟,而且在各個物種裡無論是形狀還是功能看起來都比較類似,但是七鰓鰻和盲鰻就沒有。研究人員仔細檢查了無頜脊椎動物的基因組,發現牠們也沒有 T 細胞、B 細胞或者抗原受體的重組基因。但是問題在於,牠們實際上是有適應性免疫系統的—只是跟我們的不一樣而已。

這一點其實意義重大。我們以為我們的適應性免疫系統相當特殊,但是我們現在看到,適應性免疫系統在脊椎動物中似乎出現了兩次,而且是獨立演化出來的。

這也許是一種經典的趨同演化(convergent evolution):正如鳥類和蝙蝠各自以不同的方式演化出了翅膀,無頜脊椎動物使用一種和我們一樣的隨機重排機制,來增加抗原受體基因的多樣性,但是牠們使用的是跟我們這些有頜脊椎動物完全不同的一套基因,這種重排機制使用的是不同的酶,做著完全不同的事情。同樣地,牠們的淋巴球類型跟我們的也不一樣。不過,牠們的免疫系統看起來跟我們的一樣有效。

——本文摘自《我們為什麼還沒有死掉?》,2020 年 9 月,麥田出版

麥田出版_96
1 篇文章 ・ 3 位粉絲
1992,麥田裡播下了種籽…… 耕耘多年,麥田在摸索中成長,然後努力使自己成為一個以人文精神為主軸的出版體。從第一本文學小說到人文、歷史、軍事、生活。麥田繼續生存、繼續成長,希圖得到眾多讀者對麥田出版的堅持認同,並成為讀者閱讀生活裡的一個重要部分。
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策