Loading [MathJax]/extensions/MathMenu.js

0

0
0

文字

分享

0
0
0

知識大圖解:拆解全片幅數位單眼相機

知識大圖解_96
・2015/01/12 ・639字 ・閱讀時間約 1 分鐘 ・SR值 541 ・八年級

-----廣告,請繼續往下閱讀-----

5051
(點擊看大圖)

我們打開Nikon D600,檢查其內部組件

D600是Nikon出產的全片幅數位單眼反射式相機(DSLR),旨在提供消費者一台具備專業性能但價格平易近人的相機。

拜大小為35.9×24公釐的CMOS感光元件所賜,它的畫素高達2430萬像素。與D600價位相近的款式通常感光元件只有其一半或四分之一大,這是由於傳統的全片幅感光元件成本相當高,導致每一片矽晶片可生產的感光元件數量較少。

以全片幅感光元件擷取的圖像由EXPEED 3成像引擎處理。EXPEED 3是內含多中央處理器(CPU)的媒體處理器,可以執行多重任務,例如色彩再現、灰階處理、影像銳化、伽馬校正和壓縮等。由於有多CPU,EXPEED 3成像引擎能夠平行執行多項任務,因此相機連拍速率可每秒高達5.5張。

-----廣告,請繼續往下閱讀-----

與其他同樣高級的全片幅相機相較,D600最重要的特點是它輕便的設計──體積為14.2×11.2×8.1公分,重量也輕。而輕便背後的奧祕在於整合雙SD卡插槽,並選用體積較小的內部晶片和電板。

何謂全片幅?

全片幅單眼相機的感光元件相當於35mm底片的大小,主要優點是以全片幅感光元件拍攝的影像範圍較一般感光元件來得大,因此畫面不會被裁切,拍攝到的角度也更寬廣。舉例而言,一個24mm的鏡頭若是裝在全片幅相機上,則可拍攝到視角84度的影像,而焦距轉換率為1.5的一般相機則只有62度。除此之外,全片幅相機能應用於較大的感光點,進而取得更寬廣的動態範圍與更低的雜訊,因此影像即使過曝仍能保留細節。

本文節錄自《How It Works知識大圖解 國際中文版》第04期(2015年1月號)

-----廣告,請繼續往下閱讀-----

更多精彩內容請上知識大圖解

-----廣告,請繼續往下閱讀-----
文章難易度
知識大圖解_96
76 篇文章 ・ 12 位粉絲
How It Works擅長將複雜的知識轉化為活潑有趣的圖解知識,編輯方式以圖像化百科呈現,精簡易懂、精采動人、深入淺出的圖文編排,讓各年齡層的讀者們都能輕鬆閱讀。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
2020世界地球日,一起玩 Google doodle 遊戲學蜜蜂小知識!
PanSci_96
・2020/04/22 ・1366字 ・閱讀時間約 2 分鐘 ・SR值 527 ・七年級

玩過今天的 Google Doodle 了嗎?為了慶祝世界地球日 50 週年,Google Doodle 以蜜蜂 (bee) 做為遊戲主角,讓大家體驗沾花粉與授粉的過程,並提供關於蜜蜂的小知識,就讓我們來了解一下吧!

大眼瞪小眼,此眼非彼眼

蜜蜂具有一對複眼 (compound eyes) 與三個小小的單眼 (ocelli)。其中,位於頭部兩側、又大又明顯的複眼是由許多的「小眼」(ommatidia) 單元所組合而成,每一個小眼上都具有角膜鏡 (corneal lens) 和晶錐 (crystalline cone),能夠將光線集中並聚焦在數個延長、環狀排列的網膜細胞 (retinula cell) 上,而在小眼的中央則具有能夠接受光的感桿 (rhabdom) 構造。

由於小眼環狀排列的一叢視網膜細胞外圍被一圈吸光的色素細胞(pigment cell)所包圍,導致每個小眼獨立成像,並與相鄰的小眼分開來,而當所有小眼的影像加在一起時則可提供全景式的影像,便是所謂的聯立影像眼 (apposition eyes)。

圖/slideplayer, after Snodgrass, 1935 / Wilson, 1978 / CSIRO, 1970 ; Rossel, 1989

-----廣告,請繼續往下閱讀-----

至於在頭頂上、複眼之間則具有排列成三角形的三個小單眼,其最外層的透明表皮覆蓋在同樣透明的真皮細胞上,因此光線可以透過去並到達由許多感桿組成的網膜細胞上,然而由於進入單眼的光線聚焦在感桿之後,所以視網膜只能接收到模糊的影像

單眼主要會整合大視野範圍的光線,對低強度的光或光的細微改變相當敏感,但並不具有高解析力,故通常作為飛行時控制上下左右搖擺的水平儀,和記錄與白晝行為節律相關的光強度週期變化。

女王大人高高在上

真社會性 (Eusociality) 高度發展的蜜蜂蜂群中通常會有蜂后 (queen)、工蜂 (worker)、雄蜂 (drone) 三個角色。蜂后與工蜂皆為雌性,蜂后體型較大,能夠產卵甚至抑制其他工蜂的生殖能力;而工蜂則負責建造蜂巢蜂室、搜尋獵物、守衛蜂巢與餵食幼蟲,至於雄蜂則會與蜂后交配,提供精子,由於其交尾器會在交尾後撕裂,雄蜂便會因而死亡。

圖/IRISH BEEKEEPERS ASSOCIATION CLG, after Winston, 1987

-----廣告,請繼續往下閱讀-----

誰知盤中飧,蜜蜜皆辛苦

外出的工蜂會採集花蜜,並將其收集在腸胃 (proventriculus or honey stomach) 當中。當工蜂回巢後,便會將花蜜吐出 (regurgitate) 並傳給內勤的工蜂,接著內勤的工蜂便會將花蜜消化並反覆的吸入再吐出,製造泡泡來增加表面積,好讓原先花蜜中高達 70~80% 的水分能夠慢慢蒸發,並藉由消化酵素將蔗醣水解為葡萄醣與果醣,同時分解掉其他澱粉與蛋白質,增加酸度。之後便會將蜂蜜存於巢中,藉由巢中的高溫與搧風,使得水分降低至 18% 左右,讓糖份濃度過飽和而能避免發酵 (fermentation) 後,便會以蜂蠟封存起來。

圖/Pixabay

除了上述以外,Google Doodle 還提供了更多有關蜜蜂本身的知識,以及蜜蜂對自然生態的不可或缺,像是全世界有三分之二的農作與 85% 的開花植物都需要仰賴他們授粉,以及蜜蜂被科學家視為關鍵物種 (keystone species),如果沒有他們的存在則可能整個生態系統將徹底崩潰等等,可見其無可取代的重要性。

那麼,在世界地球日 50 周年的今天,你對維持生態的蜜蜂們更加了解了嗎?

-----廣告,請繼續往下閱讀-----

資料來源

-----廣告,請繼續往下閱讀-----

0

0
0

文字

分享

0
0
0
知識大圖解:拆解全片幅數位單眼相機
知識大圖解_96
・2015/01/12 ・639字 ・閱讀時間約 1 分鐘 ・SR值 541 ・八年級

5051
(點擊看大圖)

我們打開Nikon D600,檢查其內部組件

D600是Nikon出產的全片幅數位單眼反射式相機(DSLR),旨在提供消費者一台具備專業性能但價格平易近人的相機。

拜大小為35.9×24公釐的CMOS感光元件所賜,它的畫素高達2430萬像素。與D600價位相近的款式通常感光元件只有其一半或四分之一大,這是由於傳統的全片幅感光元件成本相當高,導致每一片矽晶片可生產的感光元件數量較少。

-----廣告,請繼續往下閱讀-----

以全片幅感光元件擷取的圖像由EXPEED 3成像引擎處理。EXPEED 3是內含多中央處理器(CPU)的媒體處理器,可以執行多重任務,例如色彩再現、灰階處理、影像銳化、伽馬校正和壓縮等。由於有多CPU,EXPEED 3成像引擎能夠平行執行多項任務,因此相機連拍速率可每秒高達5.5張。

與其他同樣高級的全片幅相機相較,D600最重要的特點是它輕便的設計──體積為14.2×11.2×8.1公分,重量也輕。而輕便背後的奧祕在於整合雙SD卡插槽,並選用體積較小的內部晶片和電板。

何謂全片幅?

全片幅單眼相機的感光元件相當於35mm底片的大小,主要優點是以全片幅感光元件拍攝的影像範圍較一般感光元件來得大,因此畫面不會被裁切,拍攝到的角度也更寬廣。舉例而言,一個24mm的鏡頭若是裝在全片幅相機上,則可拍攝到視角84度的影像,而焦距轉換率為1.5的一般相機則只有62度。除此之外,全片幅相機能應用於較大的感光點,進而取得更寬廣的動態範圍與更低的雜訊,因此影像即使過曝仍能保留細節。

-----廣告,請繼續往下閱讀-----

本文節錄自《How It Works知識大圖解 國際中文版》第04期(2015年1月號)

更多精彩內容請上知識大圖解

-----廣告,請繼續往下閱讀-----
文章難易度
知識大圖解_96
76 篇文章 ・ 12 位粉絲
How It Works擅長將複雜的知識轉化為活潑有趣的圖解知識,編輯方式以圖像化百科呈現,精簡易懂、精采動人、深入淺出的圖文編排,讓各年齡層的讀者們都能輕鬆閱讀。

0

0
1

文字

分享

0
0
1
比噴射戰鬥機更快的極音速飛機就要誕生!?SABRE 將把人類送往更遠的天際──《知識大圖解》
知識大圖解_96
・2020/01/01 ・1000字 ・閱讀時間約 2 分鐘 ・SR值 592 ・九年級

自萊特兄弟於 1903 年完成史上首次的動力飛行以來,人類已在空中與更高的空域取得了驚人進展……

此後的數十年間,人類開發出噴射引擎,進而徹底改變全球運輸。

我們突破了音障,客機與戰機能以超音速飛行。在掌握火箭技術下,登月、探險車漫遊火星、人造衛星繞行地球因此成真,這些火箭則能在平安返航後重複使用。

在掌握火箭技術後,登月、探險車漫遊火星、人造衛星繞行地球都因此成真。圖/Pixabay

能將人類送往更遠天邊的科技

然而,英國航太系統公司與反應發動機公司 (Reaction Engines) 攜手合作,希冀以「同步吸氣式火箭引擎」(簡稱 SABRE)將人類送往更遠的天際。

-----廣告,請繼續往下閱讀-----

一旦造好,SABRE 的妙處就在於一體適用的設計。相形之下,前段列出的里程碑則有賴各種獨立的科技,才得以實現。

利用空氣的噴射引擎最適合讓飛機從跑道起飛,並賦予極佳的機動性。然而,在推動飛機的速度上,噴射引擎卻有所不足。相反地,火箭引擎雖然推進速度驚人,卻犧牲了飛行時的掌控力,且極耗燃料。

SABRE 則會採用混合動力設計,結合前述兩種引擎的動力技術,讓飛機能像噴射機般起飛、在空中巡航,且有足夠的動力飛進太空。

SABRE 的發展不僅能為航空業帶來持續進步的希望,新科技還可讓我們的基本知識更臻完善,有助於解答其他領域的問題。

-----廣告,請繼續往下閱讀-----

本專題會進一步探討 SABRE 的核心:預冷式熱交換器 (precooling heat-exchanger),可急速冷卻移動中的粒子。

SABRE將克服高速噴射引擎所帶來的挑戰。(點圖放大)圖/知識大圖解

這項技術可望被廣泛應用,好比空調與冰箱的效能改善、車輛的熱回收機制更佳,以及核電廠冷卻系統升級。

一旦 SABRE 開始在天空中驅動飛機,在陸上的各種應用亦指日可待。

-----廣告,請繼續往下閱讀-----

 

——文章出自《知識大圖解國際中文版》2019 年 11 月號,由希伯崙股份有限公司 (LiveABC) 出版

 

——訂閱優惠與更多有趣的內容都在《知識大圖解國際中文版》

 

-----廣告,請繼續往下閱讀-----
知識大圖解_96
76 篇文章 ・ 12 位粉絲
How It Works擅長將複雜的知識轉化為活潑有趣的圖解知識,編輯方式以圖像化百科呈現,精簡易懂、精采動人、深入淺出的圖文編排,讓各年齡層的讀者們都能輕鬆閱讀。