1

0
1

文字

分享

1
0
1

吃多少,買多少,能不烤肉就別烤肉,過個減碳又健康的中秋吧!

葉綠舒
・2011/09/09 ・3088字 ・閱讀時間約 6 分鐘 ・SR值 460 ・五年級

中秋節又要到了,筆者在上週就開始陸續收到月餅,也聽到一些朋友說:啊!收到好多月餅喔!都吃不完耶!

筆者猶記得小時候物資缺乏的時代,過年當然是最盼望的節慶,可以有好多平常難得一吃的佳餚珍饈;除了過年以外,就是盼望端午節跟中秋節,當時家裡做生意,總會有人送月餅來,但是人送月餅給我們,我們也要送月餅給別人(食物鏈?),所以通常父母會把一些月餅轉送出去,只留下一兩盒,一方面是有客人來可以招待,另外也是留著中秋晚上賞月時食用。

到了中秋晚上,全家搬桌椅到屋頂上,桌上擺了月餅、柚子(文旦),一家人賞月聊天吃月餅,中秋節過得十分愜意。

隨著筆者姊妹長大,家裡的中秋開始有些變化;人少了、點心從月餅變為綠豆椪,但是中秋的味道是一樣的。

-----廣告,請繼續往下閱讀-----

直到筆者出國十年後返國任教時,很驚訝地發現,原來中秋已經不能只是單純的賞月、吃月餅、文旦,而是要生一爐火,在月光下烤肉,讓木炭的煙霧遮蔽了月光,而原該賞月的人已經不再把注意力放在天上那一輪明月上,而是注意著肉烤好了沒?火有沒有太大?雖然筆者的父母是不烤肉的,但由於中秋對筆者來說通常很難返鄉,都是在任教的地方過節,總是被朋友或同事招呼著要來烤肉;雖然國外的勞工節(Labor day)也會烤肉,但是好像沒有台灣這麼慘烈,從中秋的前一週就開始有人烤肉,到中秋當天幾乎是所有的人都在烤肉,而中秋節後一週內還是可以看到有人在烤肉…於是筆者的一雙兒女,由於在國外從來沒有看過這樣的事,很快的把中秋節改稱為「烤肉節」了。

而筆者由出國前的學生身份,在回國後轉變為社會人士以後,也發現除了中秋節變身為烤肉節外,每年中秋也都要為了好多盒月餅、鳳梨酥、蛋黃酥而傷腦筋,由於筆者的兒女是「假台灣人」,對於這類的食物幾乎都不屑一顧,筆者只能自己努力消化,也拜託學生幫忙消化,但是大家的消化能力有限而餅類卻源源不絕的駕臨,到最後就是過期、扔掉、丟掉。

好好的食物扔掉自然是覺得很可惜,可是實在是吃不完,雖說近年來因為金融海嘯造成經濟狀況不如以往,而後來的經濟好轉其實是無感復甦,但與三、四十年前相比仍好得多,在物資不虞匱乏的狀況下,其實大家對於隨假期而來的傳統美食並不會特別盼望;更何況大家都知道不論是月餅、綠豆椪、蛋黃酥、還是鳳梨酥其實都是高熱量的食物(3,5),在心臟疾病、腦血管疾病、高血壓性疾病長期盤據國人十大死因排行榜的狀況下(6),即使對這些美食再躍躍欲試也不敢放懷大嚼。

雖然大家不敢吃,但是送禮的行為並未停止,吃不完等到過期不得不丟掉,在每個人看來,可能就是覺得自己是丟掉一、兩個(盒?),但是否有思考過,整個中秋節全台灣丟掉多少月餅呢?

-----廣告,請繼續往下閱讀-----

筆者在去年就注意到這件事,雖然台灣沒有相關的數據,但是我們的鄰居、也是由華人組成的香港,他們去年統計的結果,發現2010年香港丟掉175萬個月餅(2)!

175萬個不是小數字,足以填滿40個標準籃球場,而這175萬個月餅大概都是因為過期(1)的關係被丟掉的,也就證明了筆者說的:吃不了、吃不完,最後就是壞掉、丟掉。可能有人會說,台灣人比較節儉(真的嗎?),會捨不得丟東西,但有時候也不是故意的,吃不完最後過期難道不扔嗎?而且根據資料發現,其實香港平均每戶丟掉1.25個月餅而已,說真的,丟一兩個沒有人會覺得多,連平日有時都會因為不小心買太多放到過期只能丟掉,但是全國累積起來就非常的驚人。

這175萬個月餅相當於多少公噸的二氧化碳呢?依據筆者查到的網頁資料(1),如果不算包裝,每個月餅的碳排放量大約是682克,175萬個月餅的碳排放量是119.35公噸!而香港目前的人口約為710萬8,100人(7),台灣2010年九月的人口數為2,314萬6,090人(8),約為香港的3.26倍,也就是說,我們去年丟掉的月餅產生的碳排放量,如果以香港為參考數值,應該是389公噸;如以戶數計算則數字更高,為6750公噸。

或許6750公噸相比於工業區的碳排放可能是小事,例如在2008年時就曾有環團批評六輕的年排碳量相當於10498個中秋節烤肉的碳排放量(4);但不可忽視的是背後資源的浪費,更不要說如果能夠把這些吃不完的美食轉贈給需要的人,能產生的意義是極大的!

-----廣告,請繼續往下閱讀-----

而烤肉所產生的碳排放量也相當驚人,即使不計算烤肉時還要用更多的水(水資源在目前也是相當珍貴的),光是烤肉用的木炭,環保署在2008年以一家四口烤肉使用1.2公斤木炭來算,一個中秋節產生的碳排放量是6,382公噸(4),如換算到2011年的戶數約為3年前的1.046倍(8),則我們今年中秋烤肉的碳排放量是6,675公噸!更不要提筆者看到的是,大家不是只在中秋節當天烤肉,中秋節前一週到後一週都可以看到民眾在烤肉,這些都還沒有列入計算呢!

雖說即使把這兩個數字相加,所產生的碳排放量(13,425公噸)相比於六輕的「年」排放量(6,700萬公噸)似乎是九牛一毛,但別忘了,6,700萬公噸是「年」排放量,而我們烤肉、丟月餅只是因為一個佳節:如果把六輕的「年」排放量除以365,則六輕一天的排放量是183,561公噸,我們一個中秋節產生的碳排放量至少是六輕的13.7天。但別忘了前面計算的月餅的碳排放量只有計算月餅本身,並沒有計算月餅的包裝,而烤肉也僅計算木炭,並沒有將水以及其他的資源的消耗計算進去。現在為求讓食品賣相更好,過度包裝是常有的現象,以筆者上週收到的月餅為例:

最外面有紙盒
最外面有紙盒
打開來,裡面有塑膠袋包著月餅。
打開來,裡面有塑膠袋包著月餅。
打開塑膠袋以後,月餅還放在塑膠盒裡面。
打開塑膠袋以後,月餅還放在塑膠盒裡面。
要把塑膠盒打開才可以看到月餅本尊。
要把塑膠盒打開才可以看到月餅本尊。

可以看到月餅遭到三重包裝(紙盒、塑膠袋、塑膠盒),但是這樣的包裝以目前市面上的月餅來說,已經不能算做過度包裝,筆者有見過四重包裝甚至五重包裝的,不管廠商再怎樣強調使用的是環保材質(這盒月餅筆者沒有檢查),過度包裝就是過度包裝,並不因為使用環保材質就可以合理化這個行為。如果將包裝算進去,產生的碳排放量會更驚人(1),如果這麼多的資源最後卻落到進垃圾桶,豈不是更大的浪費?

而烤肉除了碳排放以外,烤肉時所產生的致癌物質其實也是有害無益,近年來更發現肉類經高溫燒烤後,會產生一種稱為「糖化終產物」(Advanced glycation end-product, AGEs)的毒素,會導致糖尿病、血管和腎臟疾病,並且會加速老化,同時也與阿茲海默症有關(9,10)。中秋節原本應該是一家和樂融融團聚的節日,由於商人有意的炒作加上短視的政府總是推動一些吃吃喝喝的活動(看看過去這幾年層出不窮的美食節、名產節),讓中秋節淪為「烤肉節」,增加了碳排放,荼毒了健康,豈不悲哉?

-----廣告,請繼續往下閱讀-----

筆者在此呼籲:吃多少,買多少,多送不如少送,少送可能還不如不送,包裝務必回收,能不烤肉就不烤肉,過個減碳又健康的中秋吧!

參考資料;

1.「低碳中秋」十大行動
2. 世界新聞報. 2010. 香港每年扔掉175萬個月餅
3. 減肥補習班. 2008.9.4. 各式月餅熱量表
4. 自由電子報.2008.9.8. 六輕年排放量 等於1萬年中秋烤肉
5. 網路資料2010.9.10.鳳梨酥熱量高 等於一碗飯
6. 自由時報 2011.7.13. 新北十大死因 自殺仍入榜
7. 2011.8.11香港特別行政區政府新聞稿
8. 2011.7內政統計月報1.1
9. 快樂小藥師 2007.8.16. 美研究:吃烤肉易致癌 還加速老化
10. Wikipedia. 2011.8.26. Advanced glycation end-product.

本文原發表於Miscellaneous999[2011-09-08]

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
葉綠舒
262 篇文章 ・ 9 位粉絲
做人一定要讀書(主動學習),將來才會有出息。

0

0
0

文字

分享

0
0
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
211 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

3
2

文字

分享

0
3
2
減碳新招:二氧化碳再利用!光觸媒材料可以把二氧化碳還原成工業化學原料?——專訪中研院原分所陳貴賢特聘研究員
研之有物│中央研究院_96
・2023/11/03 ・5793字 ・閱讀時間約 12 分鐘

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文|簡克志
  • 責任編輯|簡克志
  • 美術設計|蔡宛潔

降低碳排還不夠,奈米材料幫你直接減少二氧化碳!

氣候變遷問題日益嚴重,2023 年 9 月成為全球有史以來最熱的月份,臺灣夏天飆破 38 ℃ 的頻率逐漸增加。為了避免地表升溫超過工業化前水準的 +1.5 ℃,世界各國訂出 2050 年淨零排放的目標,設法減少大氣中的溫室氣體。減碳解方除了低碳電力之外,直接減少二氧化碳也是一條路徑。中央研究院「研之有物」專訪院內原子與分子科學研究所陳貴賢特聘研究員,他的研究專長是奈米能源材料,我們將介紹一種複合光催化材料:硫化鋅(ZnS)/硫化銦鋅(ZnIn2S4,簡稱 ZIS),在太陽光照射下,此材料表面發生的氧化還原反應,會將二氧化碳還原成有用的工業化學原料!

為了避免全球升溫超過工業化前水準的 +1.5 ℃,我們需要減少碳排放與開發負碳技術,並盡量在 2050 年左右達到全球溫室氣體淨零排放量的目標。所謂的「工業化前水準」是指 1850-1900 年的平均溫度。
圖|iStock

地球「保冷」計畫——減碳是關鍵

我們每天排放多少二氧化碳?根據 Our World in Data 的人均二氧化碳排放數據,2021 年全球每人排放的二氧化碳為 4.69 噸,而燃燒 1 公升的汽油大概會產生 2.3 公斤的二氧化碳。換算一下,每人每天排放二氧化碳約為 12.8 公斤,相當於每人每天消耗 5.6 公升的汽油!

根據聯合國政府間氣候變化專門委員會(IPCC)的特別報告「全球暖化 1.5 ℃」,人類活動排放的溫室氣體,已經讓地球表面平均溫度上升了 1 ℃。若以人類目前經濟模式發展下去,碳排放量可預期將不斷上升,大量溫室氣體將讓暖化現象與極端天氣事件更加劇。

氣候科學家警示,地球表面平均溫度需控制在 +1.5 ℃ 以內 註 1,否則將有不可逆的後果,例如生物多樣性大幅度降低的風險。因此,世界各國有了 2050 年淨零排放的共同目標,並不是說都不排碳了,而是要設法讓溫室氣體的碳排放量和碳減少量相互抵消,達到「淨零」的目標。

-----廣告,請繼續往下閱讀-----

要達到淨零的目標,除了尋找與開發減碳電力之外,直接減少二氧化碳也是一個方法。想像一下,如果可以像植物一樣,只要照太陽光,就把二氧化碳變成有價值的碳氫化合物,聽起來不錯吧?但是二氧化碳做為燃燒後的產物已相當穩定,要如何以人工方式讓二氧化碳再次參與反應?

我們可運用「陽光」與「光催化材料」(又稱光觸媒,photocatalyst),不僅可以減碳,還能產生有價值的碳氫化合物,是一種「一舉兩得」的方法!

光觸媒(光催化)材料是什麼?

在談到光催化材料之前,先複習一下「催化劑」這個概念,催化劑不參與化學反應,但是它讓原先不可能的化學反應變得可行!陳貴賢分享,這就像過去從臺北到宜蘭需要翻過雪山,經過九彎十八拐的北宜公路;但如今有了「雪山隧道」之後,就大大降低臺北到宜蘭的時間與難度。「雪山隧道」就是臺北通往宜蘭的催化劑。

除此之外,催化劑也可以說是推進人類歷史發展的重要角色!在過去,農作物施肥只有天然氮肥可以使用,產量有限。而肥料意味著糧食增加與生產力增加,《巫師與先知》這本書就提到位於秘魯的鳥糞島嶼成為各家跨國公司必爭之地。另一方面,波斯人也在各地建造供鳥類休息的高塔,用來收集當肥料用的鳥糞。

-----廣告,請繼續往下閱讀-----

到了近代,陳貴賢提到在 20 世紀初,德國科學家哈伯(Fritz Haber)透過催化劑,在高溫高壓的條件下,以鐵粉做為催化劑,讓氮氣和氫氣轉換成氨。這讓人工固氮成為可能,人類不用再依賴緩慢的生物固氮反應就可以合成化學氮肥,農作物產量也大幅提昇。

本文主角「光催化材料」,顧名思義就是協助光化學反應的催化劑,但光催化材料與一般催化劑不同的地方在於,其化學反應通常發生在固態的表面環境,目標反應物、光子和電子都有參與反應。

比起光催化材料,你可能更常聽到它的同義詞「光觸媒」,例如某某產品宣稱具有「奈米光觸媒消毒」的功能,其實就是照射足夠的光,讓材料表面的氧化還原反應把細菌分解。而之所以光觸媒需要做到奈米尺寸,這是因為奈米小顆粒可以改變物質的電子能量結構,且大幅增加反應的表面積,讓光催化反應更有效率。

陳貴賢:「一個高表面積的奈米粉末,它的表面積可能是薄膜的一萬倍,甚至於十萬倍。」

給你電子,還你原形!光催化材料上的氧化還原反應是怎麼發生的?

光催化材料之所以能夠減少二氧化碳,是因為照光後材料表面發生「氧化還原反應」,氧化反應會失去電子,還原反應會得到電子。陳貴賢與團隊開發的複合光催化材料:硫化鋅(ZnS)/硫化銦鋅(ZnIn2S4,簡稱 ZIS),可以讓二氧化碳還原成甲醇(CH3OH)和乙醛(CH3CHO),這兩種產物都是工業常用的化學原料。反應式如下:

-----廣告,請繼續往下閱讀-----

要持續減少二氧化碳,就要持續發生上述還原反應,持續供給電子。不過,我們要怎麼讓電子快速又順利的補充到材料表面?這裡就開始涉及到半導體的核心問題:電子與電洞的產生、分離和傳輸

陳貴賢與團隊開發的複合光催化材料:ZnS/ZIS,是結合兩種奈米半導體材料,透過水熱法合成,將 0 維的 ZnS 奈米顆粒沉積在 2 維的 ZIS 奈米片之上,形成 0D-2D 結構的 ZnS/ZIS 複合物,就像製作巧克力豆餅乾,不過要複雜得多。

陳貴賢團隊將 0 維的 ZnS 奈米顆粒沉積在 2 維的 ZIS 奈米片之上,就好像做巧克力豆餅乾一樣,形成複合的異質半導體,做為光催化材料用途。左圖是示意圖,右圖是電子顯微鏡下的照片,Zn:In 比例為 1:0.46。
圖|研之有物(資料來源|Nano Energy

既然 ZnS/ZIS 是半導體,當受到光照之後,原來的價帶(valence band)電子會被光激發成導帶(conduction band)電子,原本價帶電子佔據的位置則留下一個空位,就是電洞。電子和電洞的遷移,就是半導體形成電流的原因,因此電子和電洞都稱為「載子」(charge carrier)

還記得上面的還原反應嗎?

-----廣告,請繼續往下閱讀-----

對光催化材料來說,為了在光照環境下把二氧化碳還原成乙醛和甲醇,必須獲得穩定的電子來源,材料內部要迅速補充電子到表面,因此:

照光產生的電荷載子數量越多越好;產生的電子和電洞要傾向分離,分得越遠越好;電子和電洞越快移動到表面參與反應越好。

載子輸送要快速穩定,首先照光產生的載子要多,就有更多電子和電洞參與反應。分離載子是為了避免復合,照光產生的電子和電洞很容易復合,一旦復合,等同於減少載子。再來是載子越快移動到表面越好,可以讓每次的氧化還原反應都是最佳效率。

尋找最有效的光催化材料

陳貴賢團隊總共做了 4 種不同比例的 ZnS/ZIS 光催化材料,依照 Zn:In 比例 1:0.12、1:0.26、1:0.46 和 1:0.99,分別標記為 ZnS/ZIS-1、ZnS/ZIS-2、ZnS/ZIS-3 和 ZnS/ZIS-4。其中,ZnS/ZIS-3 的光催化效果最好,可以有效減少二氧化碳,產生最多的乙醛和甲醇(如下圖)。

水熱法製備的 ZnS/ZIS-3 光催化效果最好,可以有效減少二氧化碳,產生最多的乙醛和甲醇。最右邊是將 ZnS 和 ZIS 簡單物理混合的對照組,沒有介面效應的輔助,催化效果不佳。
圖|研之有物(資料來源|Nano Energy

為了驗證光催化材料產生有效載子的效率,陳貴賢團隊計算了 ZnS/ZIS-3 的總 AEQ 值(apparent quantum efficiency),用來評估「照到光催化材料上的每顆光子數量,產生了多少實際參與催化反應的電子數」。測量之後,ZnS/ZIS-3 的 AEQ 值為 0.8%,量子效率比單獨的 ZnS 材料提高了將近 200 倍!

-----廣告,請繼續往下閱讀-----

這也是為什麼陳貴賢團隊要使用兩種不同的材料結合,因為單一半導體材料照光產生的電子和電洞有很高的復合機率,選擇兩種不同的半導體材料組合,讓兩種材料形成特殊的「能量階梯」就可以有效分離電子和電洞,並且把電子送到它該去的材料表面。

此外,使用兩種半導體材料的好處還有「二次激發電子到更高能階」,以符合光催化反應的能量門檻,自由電子掙脫 ZnS 的束縛之後,繼續往 ZIS 跑,光的能量會繼續把電子往上送到更高能級的材料表面,還原二氧化碳的反應在此發生。

Z 字形跑比較快!控制材料之間的微應變提升氧化還原效率

關於光催化材料的二次激發,陳貴賢提到:「材料低能階,然後光子進來後,把電子激發到高能階去做反應,太陽能電池也是這樣。但是呢,有時候沒那麼剛好,例如激發後的能階不夠高,雖然激發上去了,但電子沒有辦法跟二氧化碳做反應。那我把兩個材料拼在一起,電子上去以後又下來,然後再吸收第二個光子上去,那就變得很高了,高了以後它的反應效率就提升很多。」

如果我們把光催化材料的二次激發過程畫成示意圖,如下圖所示,電子在 ZnS 束縛區受到第一次光子的激發,變成自由電子,接著經過設計完善的材料介面,先降到較低的 ZIS 束縛區,受到第二次光子的激發,再次變成自由電子,跑到光催化材料的表面,和二氧化碳發生還原反應,將二氧化碳變成可再利用的乙醛和甲醇。

-----廣告,請繼續往下閱讀-----

看看電子走過的路,如果向左歪著頭看,是不是就是一個 Z 字呢?科學家把這個過程稱為「直接 Z 方案」(Direct Z-scheme)。「直接」的意思是,電子從 ZnS 跑到 ZIS 的過程,不需要再經過一個中間地帶,降低電子和電洞復合的機會。

為了將二氧化碳轉換成可用化學原料,電子在材料內部能階走 Z 字路徑,過程中受到光的二次激發,最後到達材料表面。電子參與還原反應,將二氧化碳變成乙醛和甲醇。電洞參與氧化反應,將水變成氧氣。
圖|研之有物(資料來源|Nano Energy

為什麼陳貴賢團隊設計的「直接 Z 方案」光催化材料,電子可以不需要中間的「轉接站」,直接轉移到另一個材料上呢?這裡也有一個巧思:不同材料之間的「微應變」

不同材料的晶體排列規律是不一樣的,當兩種材料接在一起時,接面處會發生「晶格不匹配」,也就是兩種材料的原子會互相卡到、晶格微微變形。但是,如果我們可以控制微應變(Strain)的程度,就可以控制兩種材料「能量階梯」的相對位置,微應變可以讓材料接面自動帶有「轉接站」的功能,進而形成一個內部電場,讓電子和電洞更能快速分離,提高光催化效率。

總之,陳貴賢團隊開發的這套材料組合,是有微應變誘導的直接 Z 方案光催化材料,可做為未來量產光催化材料的研發設計參考,同時也是減碳的解方之一。

-----廣告,請繼續往下閱讀-----
ZnS 奈米顆粒接在 ZIS 奈米片上,兩邊的晶格排列方式不一樣,發生「晶格不匹配」,接面處晶格會微微變形。如果控制微應變(Strain)的程度,就可以微調材料能階的相對位置,微應變可以讓接面帶有「轉接站」的功能,形成一個內部電場,讓電子和電洞更能快速分離,提高光催化效率。
圖|研之有物(資料來源|Nano Energy
ZnS 奈米顆粒接在 ZIS 奈米片上,兩邊的晶格排列方式不一樣,發生「晶格不匹配」,接面處晶格會微微變形。如果控制微應變(Strain)的程度,就可以微調材料能階的相對位置,微應變可以讓接面帶有「轉接站」的功能,形成一個內部電場,讓電子和電洞更能快速分離,提高光催化效率。
圖|研之有物(資料來源|Nano Energy

綠能趨勢——光催化材料未來可期

陳貴賢表示,目前表面科學和材料是中研院原分所的主要研究領域,他的實驗室選擇能源材料作為研究主軸,有太陽能電池和熱電材料,同時團隊也專注研究可還原二氧化碳的光催化材料,以及與燃料電池相關的催化劑。

陳貴賢看好將來能源材料的發展,因為在 2050 淨零排放之前,有愈來愈多企業紛紛加入「RE100 倡議」的行列,企業必須承諾最晚於 2030 年前使用 100% 再生能源。最著名案例是科技巨頭蘋果Google 和微軟等公司都已宣布其全球供應鏈將符合 RE100 的要求。其中,台積電為蘋果主要供應商,2020 年也加入 RE100,目前為臺灣再生能源的主要買家

可以預見,將來風能、太陽能與燃料電池的相關材料有其市場需求,而能夠減少二氧化碳的光催化材料,也將成為全球減碳的利器。陳貴賢提到,當前光催化材料還在基礎研究階段,目前的人工光合作用效率約 1%,接近大自然效率,而團隊希望提升到至少 5% 到 10% 以上,方能有其實用價值。

陳貴賢進一步強調,未來效率提高之後,能夠轉化二氧化碳的光催化材料就會有很大的經濟價值,不僅轉化後的燃料可以賣錢,處置二氧化碳原料亦可以收取負碳費用,是一種前所未有的概念。

陳貴賢強調,未來效率提高之後,能夠轉化二氧化碳的光催化材料就會有很大的經濟價值。
圖|研之有物

註解

  1. 根據 IPCC 的資料,如果要將全球暖化幅度控制在 +1.5 °C 以內,必須在 2050 年左右達到二氧化碳的淨零排放目標,同時也要大幅度降低非二氧化碳的溫室氣體排放,特別是甲烷。
-----廣告,請繼續往下閱讀-----
研之有物│中央研究院_96
296 篇文章 ・ 3620 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

4
3

文字

分享

0
4
3
有可能透過節能,提高低碳電力的比例嗎?全球有一個國家做到了
低碳力LowCarbonPower_96
・2022/11/04 ・2687字 ・閱讀時間約 5 分鐘

為了達成 2050 淨零排放的目標,各國必須想辦法提高低碳電力的比例,逐步淘汰化石燃料。各式各樣提高低碳電力的方法出現,其中就有個我們從小就耳熟能詳的方法:節能省電。

但這個方法可行嗎?我們觀察了世界各國的發電結構,還真的找到實現了這個方法的國家:北韓。

北韓的電力結構在 1989 年間發生反轉。 圖/lowcarbonpower

在 1990 年以前,北韓的發電結構是以化石燃料為主(57.1%),水力發電為輔(42.9%)運作。1990 年後,水力發電的佔比瞬間飆升至 56.3%,截至 2020 年,低碳電力佔比已經達到了 85.53% 的亮眼成績。

同時,北韓的用電量從 35TWh(1989 年)減少至 14.6TWh(2020 年),可以推測出北韓低碳電力佔比提高的原因很可能就是因為用電量減少所致。

-----廣告,請繼續往下閱讀-----

用電量降低,低碳電力提高,這聽起來是件好事對吧?但這恐怕不是北韓(人民)願意看見的結果。

到底北韓發生了什麼事?為什麼會出現這樣的情況?

蘇聯解體,重創北韓經濟

北韓過去在蘇聯的資助下,積極發展重工業,甚至在 1970 年成功讓供電網覆蓋全北韓境內的村子和家庭。然而蘇聯解體後,北韓經濟受到重大打擊,失去了從蘇聯進口的石油,導致北韓發電量急遽減少,水力發電因此成為北韓最主要的發電能源。

另外,根據南韓公共媒體 KBS 報導,北韓的火力發電廠設備老舊,經常發生故障,能源效率和發電量都很低。相較之下,北韓更看好水力發電不用燃料的優勢,進而提高了水力發電的佔比。

-----廣告,請繼續往下閱讀-----

缺電的北韓

目前北韓人均用電量只有 658 度,對比台灣的人均用電量(11,933 度),相差 18 倍!這不是因為北韓人民超會省電,而是沒電可用。

根據數據統計,北韓將近一半的人沒電可用。由於北韓電網年久失修,以及冬天河川凍結無法使用水力發電,即使在較多精英階層居住的平壤也經常停電。因此北韓的有錢家庭通常會設置太陽能板,以滿足自家用電需求。

低碳電力比例高,所以北韓其實很環保?

答案是,其實不然。

首先,經常斷電導致人民尋求其他的方法,像是太陽能板、柴油發電機,或是自製油燈滿足照明需求,而這些方法往往能源效率極低,還會造成其他威脅(像是更不環保或是對人體有害等);其次,電力只是眾多能源的一種,對電力的需求很可能轉嫁到其他非電力能源上(例如,沒電使用電燈,因此改用油燈)。

但北韓的確證實了一種可能性:減少用電量可以提高低碳電力比例。只是其他國家有可能利用這種方法減碳嗎?

-----廣告,請繼續往下閱讀-----

回答這個問題之前,不知道大家有沒有聽過「卡爾達肖夫指數(Kardashev Scale)」。

卡爾達肖夫指數是根據一個文明能夠利用的能源量級,來為該文明劃分等級的分級法,像是:第一型是能夠利用整個行星的能源;第二型是可以駕馭整顆恆星能源的文明……。

美國物理學家弗里曼.戴森(Freeman John Dyson)也認為任何科技文明對能源的需求會穩定增長,只要存活夠久,總有一天會需要利用到其母恆星「全部」的能量輸出,因此有必要建立一個可以收集母恆星所發出的全部能量的裝置——戴森球。

也就是說,隨著文明的科技進步程度越高,需要消耗的能源就越多。

-----廣告,請繼續往下閱讀-----

事實上,自工業革命(1760)以來,我們對能源的需求就不斷地增長,想要僅依靠省電減碳就意味著我們需要在科技進步和節能減碳之間做出選擇,但我們仍然可以試著去估計,人類是否可能在不犧牲科技進步下依靠省電減碳?

以台灣為例,1980 年台灣相繼成立竹科、南科、中科等科學園區,從此走向 IT 大國之路,每年用電量也在快速增長。2021 年台灣總用電量高達 2830 億度,是近 10 年來最高,工業用電量和成長幅度也創下新高,佔總用電量的 57.1%。其中台積電用電就佔了近 6%。

當然,「護國神山」不能倒,科技發展不能停。那我們試試看計算個人節省用電是否能夠提高低碳電力的比例。

台積電位於新竹科學園區的晶圓十二廠。圖/維基百科

一個人可以省多少的電?對台灣有幫助嗎?

一樣採用台灣 2021 年的用電量來看,假設去年是因為疫情進入三級緊戒,所以家庭住宅用電量比 2020 年多了 5%,佔總用電量的 18.6%。也就是說,在扣除非民生用電之下,去年台灣每戶家庭的年均用電量約為 5846 度。

-----廣告,請繼續往下閱讀-----

採用國際能源署(IEA)的對每戶家庭最低供電程度的簡單定義,即每戶家庭有足夠的電力來為每天打開 5 小時的四個燈泡、一個冰箱、一個每天運轉 6 小時的風扇、一個手機充電器和一台每天使用 4 小時的電視供電,相當於每戶每年用電量為 1250 度。

如果台灣每戶家庭都超省,堅持一年只使用最低限度的電,可以為台灣省下 413.8 億度電,相當於總用電量的 14.6%,似乎就能達到目的。

但是,如果要是我們將科技進步納入考量後,就會發現這不是一個合理的策略了。

用於製造世界最先進半導體的機器「極紫外光微影」(EUVs)每台的耗電量高達 1 百萬瓦,目前台積電約有 80 幾台,預計 2025 年台積電用電量就會佔全台用電量的 12.5%。

-----廣告,請繼續往下閱讀-----

試著想想,當你為了省電費勁心思,犧牲生活品質所打出的成績卻是「效果甚微」,心裡該有多累。

但減碳從來都不只有一種方法。像是丹麥、法國等國家就投資低碳技術取代化石燃料,也可以選擇電動車取代汽油車等,減少碳排放。我們只有更積極的思考永續發展的解方,人類文明才有可能繼續延續下去。

參考資料

  1. 北韓低碳電力比例
  2. 用電再破紀錄!住宅用電攀升,去年工業用電更達「史上新高」
  3. 護國神山變吃電怪獸?台積電用電量恐占全台12% 再生能源發展迫在眉睫
  4. 北韩的电力状况
  5. 1990年代數十萬人死於饑荒,北韓再度出現糧食危機!
  6. 供電不足 北韓人民嚴冬中過日
  7. Defining energy access: 2020 methodology
  8. North Korea: Energy Country Profile
  9. https://zh.wikipedia.org/zh-tw/戴森球
  10. https://zh.m.wikipedia.org/zh-tw/卡尔达肖夫指数
  11. https://zh.m.wikipedia.org/zh-tw/中華民國科技
  12. https://www.hk01.com/港學堂/85673/這一秒的歷史-北韓危機的根源-蘇聯解體
-----廣告,請繼續往下閱讀-----
低碳力LowCarbonPower_96
1 篇文章 ・ 0 位粉絲
淨零碳排不僅是台灣的事,更是全球的共同目標! 我們致力分享各國各地的減碳策略,一同找出最適合台灣的減碳方式。