Loading [MathJax]/extensions/MathZoom.js

0

0
0

文字

分享

0
0
0

如何預測來年楓糖漿的產量?

葉綠舒
・2014/11/21 ・1613字 ・閱讀時間約 3 分鐘 ・SR值 440 ・四年級

-----廣告,請繼續往下閱讀-----

AFAF_Pancake_feed
圖片來源:wiki

隨著台灣的飲食日漸西化,相信吃過美式鬆餅(pancake)的朋友一定不少。鬆餅可以配果醬、奶油、巧克力醬,但是筆者最愛加了楓糖漿的鬆餅。

美洲大陸食用楓糖漿的歷史已經數不清了,從北美的印地安人(North American Indians)的口述歷史中可以得知,他們很早就懂得在春天來時,在糖楓(sugar maple)樹上鑽孔,收集樹汁(篩管韌皮部[phloem的]汁液)再加熱蒸發製成楓糖漿。

一般來說都是在春天來時製作,此時糖楓把儲存在根部的養分分解成為蔗糖(sucrose),經由篩管運輸到地上部分,提供樹木本身長出新芽與新葉使用。由於葉片是植物主要進行光合作用的器官,如糖楓這類落葉喬木,在秋天的時候會把葉片裡面的養分分解後運輸到根部儲存,接著開始落葉;因此,等到春天來時,在新芽尚未長成新葉時,便需要根部提供養分。所以,這時候樹汁的量是最多的,裡面的糖份也相對較高。

320px-Maple_syrup
楓糖漿。圖片來源:wiki

雖然糖楓可以生產到百歲,但是,因為每棵樹每季大約只能產出一公升的楓糖漿,因此,楓糖農夫們最關心的就是:到底明年的楓糖產量如何?要製成上面這樣一瓶甜蜜蜜的楓糖漿可不容易。糖楓包括了三種品種的楓樹:糖楓(the sugar maple,Acer saccharum), 黑楓樹(the black maple,A. nigrum)以及紅楓樹(the red maple,A. rubrum)。糖楓要長到三十到四十歲的才能開始採樹汁,每棵樹最多只能鑽三個孔。每棵樹每年春天只能產出35-50公升的樹汁,而這個樹汁還要加熱濃縮20-50倍,才成為我們看到的楓糖漿。真的是滴滴皆辛苦啊!

-----廣告,請繼續往下閱讀-----

楓糖的產量要從兩個角度去看,一個是樹汁的多寡,另外一個是樹汁的品質。由於楓樹的樹汁裡面只有2-3%是糖份,再濃縮是必需的手段,但是樹汁裡糖份的百分比也很重要。雖然百分之二跟百分之三好像只相差百分之一,但是在濃縮的過程中,含有百分之三糖份的樹汁,當然可以少濃縮很多囉。

過去,楓糖農夫們經常試著用今年的天氣來預測來年楓糖漿的產量。但是,最近哈佛大學的研究團隊,在收集了十七年的資料,分析以後發現:真正對楓糖漿產量影響最大的,不是天氣,而是糖楓的種子產量。

研究團隊收集了十七年來Vermont地區的氣候、楓糖漿產量,以及當地糖楓的種子產量。他們發現,在2000年、 2006年、與2011年這三個年份,糖楓樹們產生了大量的種子,而2001年、2007年、2012年楓糖樹汁的質與量都下降了。

糖楓大約每二到五年就會來一次種子大爆發(mast seedling event),由於楓樹的種子是靠風傳播,因此當種子大爆發時,就會看到滿天的迷你竹蜻蜓在飛翔。而滿天的迷你竹蜻蜓起飛之後,接著就是糖楓樹汁產量下降。

-----廣告,請繼續往下閱讀-----
Acer_saccharum_seeds
糖楓的種子。圖片來源:wiki

不過,雖然種子的產量是主要影響糖楓樹汁的產量的因素,天氣還是有些影響的。主要影響糖楓樹汁的產量的天氣因素包括當年三月的最低溫與最高溫,以及四月的最高溫。當研究團隊把種子的產量、三月最低溫與最高溫,以及四月的最高溫一起列入考慮時,大約可以預測79%的糖楓產量上的變數了。其實仔細想想,種子的產量影響來年樹汁的質與量,並不意外。怎麼說呢?因為形成種子的時候,植物一定會把大部分的養分都灌注到種子上,這樣在種子離開親本以後才能有足夠的養分對抗可能的逆境。而每年植物也只有一樣多的日子可以吸取養分、進行光合作用,所以當種子大爆發的時候,也就意味著大部分的養分都拿去結子了,當然留在根部用來形成來年的樹汁的部分就減少囉!

最後,哈佛的團隊也告訴大家,今年Vermont的糖楓們種子產量並不多,因此只要天氣沒有太大的變化,明年對糖楓農夫們來說,應該會是個好年頭。

參考文獻:

原刊載於作者部落格 老葉的植物王國

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
葉綠舒
262 篇文章 ・ 9 位粉絲
做人一定要讀書(主動學習),將來才會有出息。

0

1
1

文字

分享

0
1
1
伺服器過熱危機!液冷與 3D VC 技術如何拯救高效運算?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/11 ・3194字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 高柏科技 合作,泛科學企劃執行。

當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。

 2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。 

不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。

-----廣告,請繼續往下閱讀-----

但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!

運算=發熱?為何電腦必然會發熱?

為什麼電腦在運算時溫度會升高呢? 圖/unsplash

這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。

換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。

要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。

-----廣告,請繼續往下閱讀-----

散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。

「導熱介面材料(TIM)」:提升散熱效率的關鍵角色

在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。

現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。

為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。

-----廣告,請繼續往下閱讀-----

那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。

典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。

為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。

OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?

-----廣告,請繼續往下閱讀-----

液冷與 3D VC 散熱技術:未來高效散熱方案解析

除了風扇之外,目前還有哪些方法可以幫助電腦快速散熱呢?圖/unsplash

傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。

其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。

3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。

在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。

-----廣告,請繼續往下閱讀-----

整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。

從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。

隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。

然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。

-----廣告,請繼續往下閱讀-----

另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。

高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
224 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

14
3

文字

分享

0
14
3
鬆餅好朋友!你知道甜滋滋楓糖漿怎麼來的嗎?
活躍星系核_96
・2020/09/23 ・2217字 ・閱讀時間約 4 分鐘 ・SR值 453 ・五年級

-----廣告,請繼續往下閱讀-----

  • 文/Carol Hsu|生科系畢業,目前工作與臨床試驗相關。喜歡植物,想要小丑魚。

今早,我想來點麥當勞的美式煎餅配咖啡?

等等,你是不是忘記給我楓糖漿。

鬆餅與楓糖。圖/Pexels

其實,楓糖漿( Maple Syrup )可不只是搭配美式煎餅的小角色。在加拿大,人們更加楓糖漿視為國寶,楓糖漿更有著「液體黃金」的響亮稱號。

楓糖漿不只擁有甜而不膩的好滋味,更是富含維生素以及胺基酸等養分,且具有高營養價值,有益於身體健康;此外,相較於其他糖類,楓糖漿的熱量也較低,因此食用時較不會為身體帶來過多的負擔。

-----廣告,請繼續往下閱讀-----

那麼,楓糖漿究竟是如何製成的?又是從何而來的呢?

鑿開楓糖樹幹收集汁液,甜滋滋糖水就此攻佔餐桌

早在 17 世紀時,居住在北美大陸的印地安人,就已經開始食用楓糖漿。

在印第安語中,楓糖叫做「Sinzibuckwud」,意思是「汲取自樹木」 (Drawn from the wood )。在春天來臨時,他們會將糖楓樹(sugar maple)剖開或是鑿洞,藉此收集樹幹的汁液,並且將其加熱蒸煮,蒸發掉多餘的水分,熬製成我們所熟知的楓糖漿。

圖/Pexels

楓糖漿主要成分是蔗糖(sucrose),但是楓樹的汁液,是含有葡萄糖、有機鹽類、胺基酸、酵素等有機物質。楓糖漿嘗起來有著不同風味,除了因為來自不同樹種、地區之外,還有在於這些成分比例上的不同。

-----廣告,請繼續往下閱讀-----

那麼,這甜甜的楓樹汁液又是如何形成的呢?

夜晚結凍、白天融化,溫差大讓楓樹汁液被擠出

有別於普遍認知中,植物輸導組織中的木質部(xylem)是負責運輸水分及礦物質,韌皮部(phloem)負責運送養分。這含有蔗糖的楓樹汁液,是源自於楓樹木質部的汁液(sap)。

在北美大陸,冬季與春季的交替之時早晚溫差很大,溫暖的白天與凍結的夜晚週期地更替,此時,楓樹中的水分正處於凍融循環之中,不斷地結冰、融化,然後再結冰。

圖/Pexels

當午夜來臨,環境溫度降低,此時楓樹中木質部的水氣遇冷結凍成冰;到了白天,溫度漸漸升高,夜晚形成的冰融化,進而導致樹幹中的氣體膨脹,對於外壁產生壓力,這壓力會將楓樹汁液從根部推向莖頂,然後從最近的出口離開樹幹。因此,在收集糖楓樹汁液時,若是對糖楓樹施加壓力,可是能獲得正常產量的三倍以上的楓樹汁液呢!

-----廣告,請繼續往下閱讀-----

可不是所有的楓樹都能用來製作糖漿。在眾多種類的楓樹種中,糖楓、紅楓以及黑楓最常被拿來製作楓糖漿,其樹幹枝葉的含糖量平均有 2~3%;以糖楓樹為例,其汁液的含糖量大多落在 2 至 3 %,含糖量較高的樹汁液還可以達到 5 至 6%甚至 10%。

那影響楓糖漿的產量及甜度的因素是什麼呢?

天氣因素、種子產量,都會影響楓糖甜度與產量

影響楓糖汁液含糖量的因素,除了樹種間的差異,另一因素則是取決於楓樹冬季時儲存多少的糖。楓樹枝液的糖分,主要是來自於秋冬時儲存於根部的養分,楓樹在秋季時落葉及儲備養分,待春季時,再將養份分解,提供給初生的新芽。

像楓樹這種耐蔭樹種,會傾向在冬季貯藏較多的糖。只要照射到足夠的陽光及擁有充足的水分和養分,楓樹就可不斷地行光合作用,製造出更多的糖。這糖份的產量,是遠比自身生長所需的量來的更多,因此才能在樹蔭遮蔽的貧瘠時提,維持基本生命所需。

-----廣告,請繼續往下閱讀-----

此外,楓樹汁液在樹幹中的流動也會受到夜晚結凍與白天溶融的溫度差所影響,對於楓糖漿生產者而言,出太陽的時候,是收集楓糖汁液的好日子,因此,3、4月時的最高溫與最低溫溫差,會影響楓樹汁液的產量。

圖/Pexels

不只有天氣因素會影響楓糖產量,近期研究指出,楓樹種子的散播量,在楓糖漿產量預測上扮演著重要的角色。

研究團隊收集了過去 17 年來佛蒙特州 28 個站點,楓糖漿的產量以及糖楓樹總種子含量,結果發現,當楓樹的種子產量爆發時,隔年的楓糖漿的產量都會下降,因此可知,楓糖漿的產量會隨著糖楓樹種子的產量增加而降低。

楓樹汁液所含的糖以及種子需要的養分,都是由楓樹中的碳水化合物合成,因此樹木生產大量種子的時候,其所能生產的楓糖的量就大幅降低。

-----廣告,請繼續往下閱讀-----

雖然楓樹種子產量明顯影響楓糖漿的產量,天氣對於楓樹汁液的影響仍是不容小覷的。因此,如果把種子的產量、天氣以及溫度都一起列入考慮的話,或許就能更準確預測明年楓糖漿的產量囉!

對了,楓樹喜歡寒冷的環境,太過炙熱的環境,對於楓樹的生長以楓糖漿的產量都會造成衝擊。在享用楓糖漿帶來的美味同時,也別忘了好好愛護地球,一起減緩全球暖化的速度。

  1. Rapp, J. M., & Crone, E. E. (2015). Maple syrup production declines following masting. Forest Ecology and Management335, 249-254.
  2. Duchesne, L., Houle, D., Côté, M. A., & Logan, T. (2009). Modelling the effect of climate on maple syrup production in Québec, Canada. Forest ecology and management258(12), 2683-2689.
  3. Pallardy, S. (2008). Physiology of woody plants Third edition.
  4. http://susan-plant-kingdom.blogspot.com/2014/11/maple-syrup.html
  5. https://www.sciencedaily.com/releases/2014/11/141103102440.htm
  6. https://botanistinthekitchen.blog/2013/03/18/maple-syrup-mechanics/

你是國中生或家有國中生或正在教國中生?
科學生跟著課程進度每週更新科學文章並搭配測驗。來科學生陪你一起唸科學!

-----廣告,請繼續往下閱讀-----
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia