0

0
0

文字

分享

0
0
0

不應存在的恆星

臺北天文館_96
・2011/09/07 ・1304字 ・閱讀時間約 2 分鐘 ・SR值 556 ・八年級

一組歐洲天文學家利用歐南天文台(ESO)超大望遠鏡(Very Large Telescope,VLT)在銀河系中發現一顆讓他們傷透腦筋的星星。這顆恆星幾乎完全由氫和氦所組成,只有少量的重元素(氫和氦以外的其他元素一律稱為重元素或稱金屬元素,metal)。聽起來很正常,但事實上,這類恆星通常是宇宙之初的初始恆星,在銀河系發現它,對天文學家來說相當不可思議,強烈衝擊現行恆星形成理論。相關論文發表在2011年9月1日出刊的自然(Nature)期刊中。
這顆編號SDSS J102915+172927的恆星位在獅子座方向,質量比太陽小,約0.8倍太陽質量左右,年齡可能已有130億歲了。德國海德堡大學與巴黎天文台的Elisabetta Caffau等人表示:現行恆星形成理論認為這種質量小且重金屬比例低到不行的恆星不應該存在,因為恆星從中形成的原始雲氣根本無法收縮凝聚;想形成SDSS J102915+172927這樣質量的恆星,得在重元素含量多到一定程度的雲區裡才能達成;換言之,重元素扮演了「冷媒(cooling agent)」的工作,尤其是碳和氧,協助氣體雲的熱量散發、冷卻,氣體雲才有機會向內聚縮而形成恆星。因此,首度發現這顆在現行恆星形成理論的「禁區」內的恆星,意味著現行恆星理論必定有需要修正之處。SDSS J102915+172927恆星編號表示是由史隆數位巡天計畫(Sloan Digital Sky Survey,SDSS)發現的恆星,數字部分代表這顆天體的赤經與赤緯座標。

Caffau等人分析以VLT上的X-shooter和UVES等光譜儀拍攝的資料,嘗試找出這顆恆星的性質,測量不同化學元素的豐度。結果發現SDSS J102915+172927含有的金屬比例,比太陽還低20,000倍以上。這顆星很昏暗,金屬比例又這麼低,初次觀測時,除了氫和氦之外的其他重元素,他們實際上只偵測到鈣而已。後來他們必須再申請其他ESO的望遠鏡觀測時間,試圖透過更長的曝光時間來取得更細的細節,才能一解疑惑。

宇宙論學者相信氫和氦這兩種最輕的化學元素,以及極少量的鋰,是大霹靂之後短暫時間內產生的,除此之外的其他元素幾乎都是經由恆星核心核融合反應而形成的;而超新星爆炸則負責製造鐵以上的重元素,並在爆炸過程中,將這些恆星物質拋向四周的星際介質中,增加重元素的豐度;下一代從這些星際介質中誕生的恆星所擁有的金屬豐度,自然會比老一代的恆星還多。因此,通常從恆星金屬豐度多寡,就可得知恆星到底有多老。

既然SDSS J102915+172927的金屬豐度如此之低,意味著它是宇宙非常早期的初始恆星,或許是迄今已知最老的恆星之一。然而,天文學家們也對它竟缺乏鋰元素感到苦惱。這麼老的恆星按理來說應該與宇宙誕生之初、大霹靂之後短暫時間內所製造的氫(75%)、氦(25%)和鋰(極少量)比例類似,然後再加上一點點其他的重元素;但SDSS J102915+172927的鋰豐度卻只有原本預期的50分之一以下。

而SDSS J102915+172927的碳豐度也比氣體雲要凝聚收縮所需的臨界含量還低許多,要靠碳當作冷媒使雲氣收縮也不太可能。對於大霹靂形成的鋰元素,究竟是如何在這顆恆星中被摧毀,沒碳等冷媒狀況下、雲氣又是怎麼收縮的,這些天文學家並無答案。

-----廣告,請繼續往下閱讀-----

不過,這顆恆星可能並不孤單。Caffau指出:他們已經發現數顆類似的貧金屬恆星,而且它們的金屬豐度可能比SDSS J102915+172927更低。確認這些恆星的性質,將是他們下一階段最重要的工作。

資料來源:The Star That Should Not Exist

引用自 臺北天文館之網路天文館 網站

-----廣告,請繼續往下閱讀-----
文章難易度
臺北天文館_96
482 篇文章 ・ 43 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

1
0

文字

分享

0
1
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
211 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

4
3

文字

分享

0
4
3
哈伯也懂漂移?3D-DASH:哈伯太空望遠鏡最大的近紅外巡天計畫
Tiger Hsiao_96
・2022/07/10 ・2933字 ・閱讀時間約 6 分鐘

  • 文/蕭予揚 清大天文所碩士生,將於約翰・霍普金斯大學攻讀天文博士
      林彥興 清大天文所碩士生,EASY 天文地科團隊總編

若問當前軌道上最強的可見光太空望遠鏡是誰,那當然非哈伯太空望遠鏡莫屬。身處太空的它有著直徑 2.4 公尺的主鏡,可以在不受大氣層干擾的情況下,清晰地拍攝遙遠且黯淡的天體。然而,哈伯望遠鏡並非全能,雖然它在解析度(angular resolution)和靈敏度(sensitivity)上都無人能及,但也有不擅長的領域 ── 它的視野相當小。

哈伯太空望遠鏡。圖/NASA

即使是哈伯裝備的所有相機中視野最大的「先進巡天相機(ACS)」,其視野也只有 202 角秒 x 202 角秒而已,相當於滿月的 1.5%,或是一個十元硬幣在約 25 公尺外的大小。可以想見,想要用這麼小的視野拍攝廣大的區域,是相當緩慢而沒有效率的事。

直到最近幾年,天文學家發明了稱作「Drift And SHift (DASH)」的新型觀測模式,可以在不改變哈伯硬體設備的前提下,大大增加哈伯在近紅外線波段的拍攝效率。利用這項技術,來自多倫多大學的團隊展開名為 3D-DASH 的大型紅外線巡天計畫,其拍攝的天空範圍,是前一個紀錄保持人「CANDELS」的七倍之多。

不斷選擇「引導星」的傳統觀測模式

想了解為什麼 DASH 技術可以大大提升哈伯的觀測效率,就要先從哈伯原本是怎麼觀測的開始談起。

-----廣告,請繼續往下閱讀-----

不知道大家有沒有在黑夜中拍照的經驗呢?在低亮度的環境中,相機總需要比較長的時間進行曝光,才能拍出清楚的照片。而如果你在曝光的過程中不小心移動了相機,那拍出來的照片就會糊成一團。同理,由於天文學家想要拍攝的目標,大多是極其遙遠且黯淡的天體,所以天文觀測時單張照片的曝光時間,往往動輒數百秒以上。因此,專業天文望遠鏡常會配備「導星(Guiding)」系統,以確保望遠鏡能在數百秒的時間內,都精準的指向同一個位置。

導星的原理很簡單,就是在望遠鏡和相機觀測的同時,同時用另一套相機監測視野中星星的位置。一旦發現畫面中恆星的位置有任何小小的移動,導星系統就會命令望遠鏡調整指向(pointing),即時把誤差修正回來。在哈伯望遠鏡上,這個負責導星的相機叫作「精細導星感測器(FGS)」。而這個用來幫望遠鏡「導航」的星星,就被稱為「引導星(guide star)」。

哈伯在進行拍攝時,需要找一顆導星來隨時校正方向。圖/GIPHY

一般來說,在哈伯望遠鏡每指向一個新的目標,都需要先花費一段約十分鐘的時間選擇引導星,然後才能進行科學拍攝。然而,由於哈伯的軌道週期僅有 97 分鐘左右,因此在一次軌道中,哈伯基本上只能拍攝一或兩個固定的天區,不然就會有大量的觀測時間被浪費在尋找引導星的過程中。如此一來,天文學家若想透過哈伯來拍攝 800 個不同指向,就需要花費 800 次的軌道繞行時間才能結束這項任務。

花費很多時間有什麼問題呢?哈伯望遠鏡的觀測,是由美國「太空望遠鏡科學研究所(STScI)」向全世界天文學家公開徵求觀測企劃之後,再從中挑選出最具科學效益的企劃後實施。一個耗時 800 個軌道週期的觀測,很難在競爭激烈的觀測計劃書中脫穎而出。

-----廣告,請繼續往下閱讀-----

但如果,天文學家真的很需要用哈伯進行大面積的巡天,該怎麼辦呢?

提升效率的新方法

如前述,一般來說哈伯每指向一個新目標,都需要花費十分鐘來進行捕捉引導星。但換個角度想,如果把導星功能關掉,不就可以省下這些時間了嗎?

計画通り!圖/GIPHY

還真是沒錯,哈伯的設計的確是可以關掉導星系統,利用其中的陀螺儀來進行控制。但陀螺儀的能提供的穩定性終究不如導星系統,一旦曝光時間過長,望遠鏡的微小移動還是會造成最後曝光出來的星星像塗抹花生醬一樣糊成一片,這樣的影像是很難用於科學分析的。

開導星耗時間,不開導星又沒辦法長曝,該怎麼辦呢?

-----廣告,請繼續往下閱讀-----

這時就輪到「Drift And SHift(DASH)」技術出場了!DASH 的核心概念很簡單:

  • 為了省時,我們就關掉導星。
  • 關導星不能長曝,那我們就拍很多短曝光時間的照片,降低每張照片的模糊程度,再把它們對齊之後疊起來。

以 3D-DASH 計劃來說,關掉導星會讓哈伯的指向以每秒 0.001 至 0.002 角秒的速度緩緩飄移。因此天文學家將每張照片的曝光時間壓縮到 25 秒以下,讓星點在畫面中的移動不超過一個像素(WFC-3 的像素大小為 0.129 角秒)。利用這樣的技術,天文學家就能在哈伯的一次軌道週期中,拍攝八個不同的指向,把觀測效率提升了八倍!

3D-DASH 的觀測天區和其他觀測計畫天區大小、深度(最暗可拍到的天體星等)的比對圖。圖/arxiv

拍這些照片有什麼用?3D-DASH 的科學意義

3D-DASH 計畫的觀測資料最近已於網路上公開,不過這龐大的資料量,觀測團隊以及其他科學家們還需要更多時間進行分析。不過,在公布這個計劃的論文中,團隊已經提出了一些值得分析的科學問題。

舉例來說,天文學家認為如今多數的橢圓星系(elliptical galaxy)們,都是由較小的星系合併而來。因此尋找合併中的星系,並測量它們的各項物理性質,是研究星系演化歷史的重要方法。但很多時候,地面望遠鏡可以大略看到一個光點可能是兩或多個相鄰的天體組成,卻沒有足夠的解析度可以研究它們的細節。但有了 3D-DASH 的資料,天文學家就可以清楚的看到星系們合併的細節,並研究其中細微的結構以及測量更多複雜的物理量。

-----廣告,請繼續往下閱讀-----
合併中的星系們。圖/NASA

不過這種大範圍的巡天計畫也不是完美的。為了拍攝廣大的天區,每個天區分配到的平均觀測時間就會比較少,因此比起 CANDELS 等前輩們,3D-DASH 只能看到相對亮的星系們。雖然如此,3D-DASH 這種相對廣而淺的觀測,不僅可以提供更大量的星系樣本,幫助天文學家使用強大的統計方法進行分析;也可以讓天文學家先大概了解這片天區裡有些什麼,如果發現了有趣的目標,就可以使用哈伯或韋伯等其它強大的望遠鏡們進行更深入的觀測!

3D-DASH 的所涵蓋的天區,以及其超高的解析度。圖/arxiv

參考資料

延伸閱讀

-----廣告,請繼續往下閱讀-----
Tiger Hsiao_96
2 篇文章 ・ 13 位粉絲
現於哈佛大學天文系撰寫博士論文。

0

7
5

文字

分享

0
7
5
宇宙「新」光──新星、超新星與千級新星
全國大學天文社聯盟
・2022/03/30 ・4272字 ・閱讀時間約 8 分鐘

  • 文/語星葉,與一隻米克斯黑狗簡單地生活在新竹,正在努力成為天文學家。

看星星,是大多數人接觸天文的契機。現今,看見滿天星斗對於被光害荼毒的都市人而言是一種奢侈,相較於古時夜無燈火,總有許多靜謐無光的夜晚,能讓人們一同仰望星空,思索空中的奧秘。多數星星安靜地閃爍,被人類賦予神話故事,成了現在為人所知的「星座」。另外,有少數幾顆不安分地移動著,它們的移動方式看似有規則,有時候卻會逆行,這些在天空中漫遊的星星,我們就稱之為「行星」 。

在極少數的情況,我們會發現過去未曾注意到的星點,猶如初來乍到的旅客,古時中國稱之為「客星」 [註一]。現在我們知道,這些看似新生的星,實則氣數已盡。利用強大的各波段望遠鏡,人類偵測到大量「新」光,並提出多種機制來解釋星光快速且劇烈改變的現象。

本文將介紹 3+1 種天文現象,分別為「新星(Nova)」、「超新星(Supernova)」和「極亮超新星(Superluminous supernova / Hypernova)」,以及「千級新星(Kilonova)」。前兩者的觀測歷史源遠流長,後兩者則歸功於現代發達的觀測技術,才讓我們得以一探究竟。

蟹狀星雲,古時中國稱之為天關客星,為西元 1054 年的超新星爆炸殘骸。圖/NASA, ESA, J. Hester and A. Loll (Arizona State University)

新星:我可一點都不年輕!

新星(Nova)來自拉丁文,有 「new」 之意。過去,人們仰望寧靜無波(一成不變)的星空時,若是偶然發現從未見過的星星,便稱之為「新星」。但如今我們知道,新星其實不是剛誕生的星,而是古老的小質量恆星,會在它們的生命終章──白矮星時期,突然變得異常明亮。

-----廣告,請繼續往下閱讀-----

白矮星是小質量恆星死亡後的產物,緻密、溫度高,但亮度低,平常不易觀測。一般而言,白矮星是非常穩定的天體,但如果身邊有個伴,情況就不同了。若是白矮星和伴星互繞的距離過近,使得伴星的氫被吸向白矮星表面,並在其表面點燃核融合反應,產生劇烈的光度變化,讓白矮星成為用肉眼可見的「新星」。

近年,天文學家發現,新星的出現經常伴隨強烈的伽瑪射線,推測是來自新星爆發時產生的衝擊波。後續研究指出,新星的高光度也是以衝擊波作用為主,而不是來自表面的核融合反應,打破了以往既有的觀點。

藝術家繪製的假想圖。右側的白矮星吸走左側伴星的氫,成為亮度極高的新星。圖/NASA/M.Weiss

超新星──宇宙中的燦爛花火

超新星(Supernova)顧名思義是新星的 Super 版,比「新星」更亮的星星──天文名詞總是取得如此淺顯易懂。超新星的光度遠超越新星,其形成機制也有所不同。

目前科學界認為超新星有兩種不同的形成機制,分別為「熱核超新星(Thermonuclear supernova)」與「核心塌縮超新星(Core-collapse supernova)」。

「熱核超新星(Thermonuclear supernova)」前身和新星一樣是白矮星,差別在於熱核超新星爆炸極具毀滅性。當白矮星的質量增加到「錢德拉賽卡極限(Chanfrasekhar limit)」,也就是臨界值時,引爆其核心的碳元素將劇烈爆炸,將使白矮星灰飛湮滅。質量增加是因為白矮星身邊有個伴,可能是兩個白矮星白頭偕老、最終合併,也可能和新星一樣是老少配,然後白矮星吸走年輕伴星的表面物質。但究竟是哪種配對導致熱核超新星爆炸,天文學家還在熱議。

-----廣告,請繼續往下閱讀-----

「核心塌縮超新星(Core-collapse supernova)」則來自大質量恆星核心塌縮後造成的熱壓爆炸。當大質量恆星的核心燃料用罄,無法支撐極強的重力而塌縮時,就會產生巨量的熱能,並向外爆發。整個過程僅以秒計。爆發後,周圍形成漂亮的超新星殘骸,核心則塌縮成中子星或黑洞。

值得一提的是,超新星是少數能夠串聯古今天文學的研究領域。歷史上數個著名的超新星爆發事件,在世界各地的文明史料中皆能發現記錄。目前推測人類文明見過最亮的超新星事件是 SN1006(西元 1006 年),最亮時甚至比啟明更亮 [註二],即使在白天仍可用肉眼看見,而且持續長達數星期。著名的梅西爾天體 M1(蟹狀星雲)也是超新星爆炸後的殘骸,自 1054 年的超新星爆發中產生,相關記錄散見史冊,而且至今仍是天文界炙手可熱的研究對象。

蟹狀星雲之心。 圖/NASA and ESA

+1 的部分:極亮超新星

現代觀測技術的進步使超新星事件變得常見,有多部自動望遠鏡凝視著宇宙虛空,在星際間搜尋著超新星的亮光,這類計畫稱為巡天(Survey)計畫。在眾多的觀測數據中,天文學家注意到一類特別明亮的「極亮超新星」(令人不禁想吐槽天文學家如此單純的命名邏輯),這些超新星比一般情況亮了 2 個數量級以上,並且非常罕見。

到 2017 年止,人類僅觀測到約 100 顆極亮超新星。由於數據過少,天文學家對其形成機制的想像可謂瞎子摸象、暫無定論,目前仍歸類為超新星。那麼,極亮超新星究竟是超新星的超級版,抑或是來自不同的形成機制,唯有持續探向更遙遠無垠的古老宇宙,才有機會揭發這個謎團了。

-----廣告,請繼續往下閱讀-----

千級新星──看見宇宙之音

「千級新星」是非常新的天文研究領域,研究過程也極具戲劇性。故事得從科學家研究重力波開始說起。

重力波是重力作用產生的時空漣漪。百年前,愛因斯坦的理論便預測其存在,但重力波非常微弱,連愛因斯坦本人都不相信人類有朝一日能偵測到重力波。直到 2015 年,人類才首次「聽」到兩顆黑洞合併產生的重力波 [註三]。不過,重力波的訊號指向性不佳,難以「聽音辨位」,也就是用重力波訊號回推事件發生地點。若我們能同時「看」到電磁輻射訊號(該事件發出的電磁波),便可蒐集更多更精確的數據,以了解究竟是在宇宙何處發生了什麼事。

令人難過的是,兩顆黑洞合併幾乎不會產生電磁輻射,因此無法用上述的方法獲得更多資訊。

後來,科學家發現,當兩顆中子星合併、或一顆中子星與一顆黑洞合併時,發出的重力波訊號雖較兩顆黑洞合併更弱、也更難偵測,但這兩種事件不只會產生重力波,也會發出電磁輻射,因此是重力波干涉儀的重要偵測目標。2010 年,天文物理學家探討了這兩種合併事件可能的電磁輻射樣態,得出的結論是和新星事件一樣會有劇烈的光度改變,而且最大亮度約是新星的千倍,於是命名為「千級新星(Kilonova)」。

藝術家以動畫展示兩顆中子星通過重力波合併,然後爆炸成千級新星的過程。影/ESO/L. Calçada.

千級新星的發光機制和超新星不同:超新星的光度主要來自爆炸產生的放射性鎳元素衰變,而千級新星則主要來自兩顆中子星,或中子星與黑洞碰撞合併時,大量發生的核反應——「中子捕獲作用」,此類核反應僅在極端物理環境下產生,是形成金、銀、鉛等重元素的重要機制。過去科學家認為宇宙中重元素的生產者是超新星,然而超新星爆炸的觀測數據卻發現,超新星事件發生的中子捕獲作用的「產能」並不足以支撐現有的重金屬比例,因此千級新星便躍上研究舞台,被認為是重元素的主要產地。

-----廣告,請繼續往下閱讀-----

2017 年,LIGO 及 VIRGO 重力波干涉儀共同偵測到人類史上第一場雙中子星合併事件 GW170817。當時,世界各地的望遠鏡幾乎都暫時放下常規任務,爭相投入這場觀測馬拉松。最終的成果令人振奮,不但同時偵測到重力波與相應的電磁波源,分析結果也與千級新星理論預測的訊號相符,這代表我們首次觀測到了千級新星!

重力波 GW170817的可見光訊號。圖/Soares-Santos et al. and DES Collaboration

這場盛會更昭示了「多信使天文學」時代的來臨 [註四]。重力波探測與多波段電磁觀測的結合,替人類的宇宙探索之旅翻開嶄新的一頁。今日,科學家們正期待著下一對共舞的緻密天體搖響精密儀器的銀鈴,讓更多未解之謎得以撥雲見日。

藝術家繪製的 GW170817 雙中子星合併事件想像圖。圖/LIGO-Virgo/Frank Elavsky/Northwestern University

宇宙看似恆常不變,然而在無盡好奇的驅使下,人類以最新科技突破既有的感官極限。我們洞見宇宙深邃瞬變的幽光,聆聽時空悠遠微弱的呢喃。宇宙「新」光的無盡奧秘,還有待來日的勤奮深掘。

註解

註一:客星指新出現的星,意義上包含彗星等在太陽系內遊走的天體,惟不在本文範疇。

註二:金星是地球的夜空中最明亮的星,清晨及黃昏也可見。古時稱金星出現於黃昏為「太白」、「長庚」,出現於清晨為「啟明」。

-----廣告,請繼續往下閱讀-----

註三:人類聽見的聲音主要來自空氣分子的震盪,只要震盪頻率在 20~20000 Hz 的範圍,並且經由介質傳遞使耳膜震動,我們就能聽見。雖然重力波是時空震盪,無法直接以耳朵聽見,但概念上類似,因此常見到科學家將重力波訊號轉換成「音訊」,方便人們感受。

註四:多信使天文學(Multi-messenger astronomy)指利用多種訊號探索宇宙的現象。不同於早期僅以可見光探看宇宙,人類如今能夠探測光子、電磁波、微中子、重力波和宇宙射線等高能帶電粒子。透過這些訊號,可以傳達不同面向的資訊,協助我們拼湊出單一宇宙現象更細緻的原貌。GW170817 事件除了以重力波和電磁輻射觀測,亦有微中子觀測站參與,只是沒有找到相關聯的微中子訊號,因此理論在這方面尚未證實,有待解惑。

延伸閱讀

參考資料

  1. Li, KL., Metzger, B.D., Chomiuk, L. et al. (2017). A nova outburst powered by shocks. Nat Astron 1, 697–702. https://doi.org/10.1038/s41550-017-0222-1
  2. Aydi, E., Sokolovsky, K.V., Chomiuk, L. et al. Direct evidence for shock-powered optical emission in a nova. Nat Astron 4, 776–780 (2020). https://doi.org/10.1038/s41550-020-1070-y
  3. Gal-Yam, A. (2019). The most luminous supernova. Annual Review of Astronomy and Astrophysics, 57, 305–333. https://doi.org/10.1146/annurev-astro-081817-051819
  4. Metzger, B.D., Martínez-Pinedo, G., Darbha, S., Quataert, E., Arcones, A., Kasen, D., Thomas, R., Nugent, P., Panov, I.V., Zinner, N.T.. (2010). Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei. Monthly Notices of the Royal Astronomical Society, 406(4), 2650–2662. https://doi.org/10.1111/j.1365-2966.2010.16864.x
  5. Smartt, S., Chen, TW., Jerkstrand, A. et al. (2017). A kilonova as the electromagnetic counterpart to a gravitational-wave source. Nature 55175–79 . https://doi.org/10.1038/nature24303
-----廣告,請繼續往下閱讀-----
全國大學天文社聯盟
7 篇文章 ・ 19 位粉絲