Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

不應存在的恆星

臺北天文館_96
・2011/09/07 ・1304字 ・閱讀時間約 2 分鐘 ・SR值 556 ・八年級

-----廣告,請繼續往下閱讀-----

一組歐洲天文學家利用歐南天文台(ESO)超大望遠鏡(Very Large Telescope,VLT)在銀河系中發現一顆讓他們傷透腦筋的星星。這顆恆星幾乎完全由氫和氦所組成,只有少量的重元素(氫和氦以外的其他元素一律稱為重元素或稱金屬元素,metal)。聽起來很正常,但事實上,這類恆星通常是宇宙之初的初始恆星,在銀河系發現它,對天文學家來說相當不可思議,強烈衝擊現行恆星形成理論。相關論文發表在2011年9月1日出刊的自然(Nature)期刊中。
這顆編號SDSS J102915+172927的恆星位在獅子座方向,質量比太陽小,約0.8倍太陽質量左右,年齡可能已有130億歲了。德國海德堡大學與巴黎天文台的Elisabetta Caffau等人表示:現行恆星形成理論認為這種質量小且重金屬比例低到不行的恆星不應該存在,因為恆星從中形成的原始雲氣根本無法收縮凝聚;想形成SDSS J102915+172927這樣質量的恆星,得在重元素含量多到一定程度的雲區裡才能達成;換言之,重元素扮演了「冷媒(cooling agent)」的工作,尤其是碳和氧,協助氣體雲的熱量散發、冷卻,氣體雲才有機會向內聚縮而形成恆星。因此,首度發現這顆在現行恆星形成理論的「禁區」內的恆星,意味著現行恆星理論必定有需要修正之處。SDSS J102915+172927恆星編號表示是由史隆數位巡天計畫(Sloan Digital Sky Survey,SDSS)發現的恆星,數字部分代表這顆天體的赤經與赤緯座標。

Caffau等人分析以VLT上的X-shooter和UVES等光譜儀拍攝的資料,嘗試找出這顆恆星的性質,測量不同化學元素的豐度。結果發現SDSS J102915+172927含有的金屬比例,比太陽還低20,000倍以上。這顆星很昏暗,金屬比例又這麼低,初次觀測時,除了氫和氦之外的其他重元素,他們實際上只偵測到鈣而已。後來他們必須再申請其他ESO的望遠鏡觀測時間,試圖透過更長的曝光時間來取得更細的細節,才能一解疑惑。

宇宙論學者相信氫和氦這兩種最輕的化學元素,以及極少量的鋰,是大霹靂之後短暫時間內產生的,除此之外的其他元素幾乎都是經由恆星核心核融合反應而形成的;而超新星爆炸則負責製造鐵以上的重元素,並在爆炸過程中,將這些恆星物質拋向四周的星際介質中,增加重元素的豐度;下一代從這些星際介質中誕生的恆星所擁有的金屬豐度,自然會比老一代的恆星還多。因此,通常從恆星金屬豐度多寡,就可得知恆星到底有多老。

既然SDSS J102915+172927的金屬豐度如此之低,意味著它是宇宙非常早期的初始恆星,或許是迄今已知最老的恆星之一。然而,天文學家們也對它竟缺乏鋰元素感到苦惱。這麼老的恆星按理來說應該與宇宙誕生之初、大霹靂之後短暫時間內所製造的氫(75%)、氦(25%)和鋰(極少量)比例類似,然後再加上一點點其他的重元素;但SDSS J102915+172927的鋰豐度卻只有原本預期的50分之一以下。

而SDSS J102915+172927的碳豐度也比氣體雲要凝聚收縮所需的臨界含量還低許多,要靠碳當作冷媒使雲氣收縮也不太可能。對於大霹靂形成的鋰元素,究竟是如何在這顆恆星中被摧毀,沒碳等冷媒狀況下、雲氣又是怎麼收縮的,這些天文學家並無答案。

-----廣告,請繼續往下閱讀-----

不過,這顆恆星可能並不孤單。Caffau指出:他們已經發現數顆類似的貧金屬恆星,而且它們的金屬豐度可能比SDSS J102915+172927更低。確認這些恆星的性質,將是他們下一階段最重要的工作。

資料來源:The Star That Should Not Exist

引用自 臺北天文館之網路天文館 網站

-----廣告,請繼續往下閱讀-----
文章難易度
臺北天文館_96
482 篇文章 ・ 44 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

0
0

文字

分享

0
0
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

4
3

文字

分享

0
4
3
哈伯也懂漂移?3D-DASH:哈伯太空望遠鏡最大的近紅外巡天計畫
Tiger Hsiao_96
・2022/07/10 ・2933字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

  • 文/蕭予揚 清大天文所碩士生,將於約翰・霍普金斯大學攻讀天文博士
      林彥興 清大天文所碩士生,EASY 天文地科團隊總編

若問當前軌道上最強的可見光太空望遠鏡是誰,那當然非哈伯太空望遠鏡莫屬。身處太空的它有著直徑 2.4 公尺的主鏡,可以在不受大氣層干擾的情況下,清晰地拍攝遙遠且黯淡的天體。然而,哈伯望遠鏡並非全能,雖然它在解析度(angular resolution)和靈敏度(sensitivity)上都無人能及,但也有不擅長的領域 ── 它的視野相當小。

哈伯太空望遠鏡。圖/NASA

即使是哈伯裝備的所有相機中視野最大的「先進巡天相機(ACS)」,其視野也只有 202 角秒 x 202 角秒而已,相當於滿月的 1.5%,或是一個十元硬幣在約 25 公尺外的大小。可以想見,想要用這麼小的視野拍攝廣大的區域,是相當緩慢而沒有效率的事。

直到最近幾年,天文學家發明了稱作「Drift And SHift (DASH)」的新型觀測模式,可以在不改變哈伯硬體設備的前提下,大大增加哈伯在近紅外線波段的拍攝效率。利用這項技術,來自多倫多大學的團隊展開名為 3D-DASH 的大型紅外線巡天計畫,其拍攝的天空範圍,是前一個紀錄保持人「CANDELS」的七倍之多。

不斷選擇「引導星」的傳統觀測模式

想了解為什麼 DASH 技術可以大大提升哈伯的觀測效率,就要先從哈伯原本是怎麼觀測的開始談起。

-----廣告,請繼續往下閱讀-----

不知道大家有沒有在黑夜中拍照的經驗呢?在低亮度的環境中,相機總需要比較長的時間進行曝光,才能拍出清楚的照片。而如果你在曝光的過程中不小心移動了相機,那拍出來的照片就會糊成一團。同理,由於天文學家想要拍攝的目標,大多是極其遙遠且黯淡的天體,所以天文觀測時單張照片的曝光時間,往往動輒數百秒以上。因此,專業天文望遠鏡常會配備「導星(Guiding)」系統,以確保望遠鏡能在數百秒的時間內,都精準的指向同一個位置。

導星的原理很簡單,就是在望遠鏡和相機觀測的同時,同時用另一套相機監測視野中星星的位置。一旦發現畫面中恆星的位置有任何小小的移動,導星系統就會命令望遠鏡調整指向(pointing),即時把誤差修正回來。在哈伯望遠鏡上,這個負責導星的相機叫作「精細導星感測器(FGS)」。而這個用來幫望遠鏡「導航」的星星,就被稱為「引導星(guide star)」。

哈伯在進行拍攝時,需要找一顆導星來隨時校正方向。圖/GIPHY

一般來說,在哈伯望遠鏡每指向一個新的目標,都需要先花費一段約十分鐘的時間選擇引導星,然後才能進行科學拍攝。然而,由於哈伯的軌道週期僅有 97 分鐘左右,因此在一次軌道中,哈伯基本上只能拍攝一或兩個固定的天區,不然就會有大量的觀測時間被浪費在尋找引導星的過程中。如此一來,天文學家若想透過哈伯來拍攝 800 個不同指向,就需要花費 800 次的軌道繞行時間才能結束這項任務。

花費很多時間有什麼問題呢?哈伯望遠鏡的觀測,是由美國「太空望遠鏡科學研究所(STScI)」向全世界天文學家公開徵求觀測企劃之後,再從中挑選出最具科學效益的企劃後實施。一個耗時 800 個軌道週期的觀測,很難在競爭激烈的觀測計劃書中脫穎而出。

-----廣告,請繼續往下閱讀-----

但如果,天文學家真的很需要用哈伯進行大面積的巡天,該怎麼辦呢?

提升效率的新方法

如前述,一般來說哈伯每指向一個新目標,都需要花費十分鐘來進行捕捉引導星。但換個角度想,如果把導星功能關掉,不就可以省下這些時間了嗎?

計画通り!圖/GIPHY

還真是沒錯,哈伯的設計的確是可以關掉導星系統,利用其中的陀螺儀來進行控制。但陀螺儀的能提供的穩定性終究不如導星系統,一旦曝光時間過長,望遠鏡的微小移動還是會造成最後曝光出來的星星像塗抹花生醬一樣糊成一片,這樣的影像是很難用於科學分析的。

開導星耗時間,不開導星又沒辦法長曝,該怎麼辦呢?

-----廣告,請繼續往下閱讀-----

這時就輪到「Drift And SHift(DASH)」技術出場了!DASH 的核心概念很簡單:

  • 為了省時,我們就關掉導星。
  • 關導星不能長曝,那我們就拍很多短曝光時間的照片,降低每張照片的模糊程度,再把它們對齊之後疊起來。

以 3D-DASH 計劃來說,關掉導星會讓哈伯的指向以每秒 0.001 至 0.002 角秒的速度緩緩飄移。因此天文學家將每張照片的曝光時間壓縮到 25 秒以下,讓星點在畫面中的移動不超過一個像素(WFC-3 的像素大小為 0.129 角秒)。利用這樣的技術,天文學家就能在哈伯的一次軌道週期中,拍攝八個不同的指向,把觀測效率提升了八倍!

3D-DASH 的觀測天區和其他觀測計畫天區大小、深度(最暗可拍到的天體星等)的比對圖。圖/arxiv

拍這些照片有什麼用?3D-DASH 的科學意義

3D-DASH 計畫的觀測資料最近已於網路上公開,不過這龐大的資料量,觀測團隊以及其他科學家們還需要更多時間進行分析。不過,在公布這個計劃的論文中,團隊已經提出了一些值得分析的科學問題。

舉例來說,天文學家認為如今多數的橢圓星系(elliptical galaxy)們,都是由較小的星系合併而來。因此尋找合併中的星系,並測量它們的各項物理性質,是研究星系演化歷史的重要方法。但很多時候,地面望遠鏡可以大略看到一個光點可能是兩或多個相鄰的天體組成,卻沒有足夠的解析度可以研究它們的細節。但有了 3D-DASH 的資料,天文學家就可以清楚的看到星系們合併的細節,並研究其中細微的結構以及測量更多複雜的物理量。

-----廣告,請繼續往下閱讀-----
合併中的星系們。圖/NASA

不過這種大範圍的巡天計畫也不是完美的。為了拍攝廣大的天區,每個天區分配到的平均觀測時間就會比較少,因此比起 CANDELS 等前輩們,3D-DASH 只能看到相對亮的星系們。雖然如此,3D-DASH 這種相對廣而淺的觀測,不僅可以提供更大量的星系樣本,幫助天文學家使用強大的統計方法進行分析;也可以讓天文學家先大概了解這片天區裡有些什麼,如果發現了有趣的目標,就可以使用哈伯或韋伯等其它強大的望遠鏡們進行更深入的觀測!

3D-DASH 的所涵蓋的天區,以及其超高的解析度。圖/arxiv

參考資料

延伸閱讀

-----廣告,請繼續往下閱讀-----
Tiger Hsiao_96
2 篇文章 ・ 13 位粉絲
現於哈佛大學天文系撰寫博士論文。

0

7
5

文字

分享

0
7
5
宇宙「新」光──新星、超新星與千級新星
全國大學天文社聯盟
・2022/03/30 ・4272字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

  • 文/語星葉,與一隻米克斯黑狗簡單地生活在新竹,正在努力成為天文學家。

看星星,是大多數人接觸天文的契機。現今,看見滿天星斗對於被光害荼毒的都市人而言是一種奢侈,相較於古時夜無燈火,總有許多靜謐無光的夜晚,能讓人們一同仰望星空,思索空中的奧秘。多數星星安靜地閃爍,被人類賦予神話故事,成了現在為人所知的「星座」。另外,有少數幾顆不安分地移動著,它們的移動方式看似有規則,有時候卻會逆行,這些在天空中漫遊的星星,我們就稱之為「行星」 。

在極少數的情況,我們會發現過去未曾注意到的星點,猶如初來乍到的旅客,古時中國稱之為「客星」 [註一]。現在我們知道,這些看似新生的星,實則氣數已盡。利用強大的各波段望遠鏡,人類偵測到大量「新」光,並提出多種機制來解釋星光快速且劇烈改變的現象。

本文將介紹 3+1 種天文現象,分別為「新星(Nova)」、「超新星(Supernova)」和「極亮超新星(Superluminous supernova / Hypernova)」,以及「千級新星(Kilonova)」。前兩者的觀測歷史源遠流長,後兩者則歸功於現代發達的觀測技術,才讓我們得以一探究竟。

蟹狀星雲,古時中國稱之為天關客星,為西元 1054 年的超新星爆炸殘骸。圖/NASA, ESA, J. Hester and A. Loll (Arizona State University)

新星:我可一點都不年輕!

新星(Nova)來自拉丁文,有 「new」 之意。過去,人們仰望寧靜無波(一成不變)的星空時,若是偶然發現從未見過的星星,便稱之為「新星」。但如今我們知道,新星其實不是剛誕生的星,而是古老的小質量恆星,會在它們的生命終章──白矮星時期,突然變得異常明亮。

-----廣告,請繼續往下閱讀-----

白矮星是小質量恆星死亡後的產物,緻密、溫度高,但亮度低,平常不易觀測。一般而言,白矮星是非常穩定的天體,但如果身邊有個伴,情況就不同了。若是白矮星和伴星互繞的距離過近,使得伴星的氫被吸向白矮星表面,並在其表面點燃核融合反應,產生劇烈的光度變化,讓白矮星成為用肉眼可見的「新星」。

近年,天文學家發現,新星的出現經常伴隨強烈的伽瑪射線,推測是來自新星爆發時產生的衝擊波。後續研究指出,新星的高光度也是以衝擊波作用為主,而不是來自表面的核融合反應,打破了以往既有的觀點。

藝術家繪製的假想圖。右側的白矮星吸走左側伴星的氫,成為亮度極高的新星。圖/NASA/M.Weiss

超新星──宇宙中的燦爛花火

超新星(Supernova)顧名思義是新星的 Super 版,比「新星」更亮的星星──天文名詞總是取得如此淺顯易懂。超新星的光度遠超越新星,其形成機制也有所不同。

目前科學界認為超新星有兩種不同的形成機制,分別為「熱核超新星(Thermonuclear supernova)」與「核心塌縮超新星(Core-collapse supernova)」。

「熱核超新星(Thermonuclear supernova)」前身和新星一樣是白矮星,差別在於熱核超新星爆炸極具毀滅性。當白矮星的質量增加到「錢德拉賽卡極限(Chanfrasekhar limit)」,也就是臨界值時,引爆其核心的碳元素將劇烈爆炸,將使白矮星灰飛湮滅。質量增加是因為白矮星身邊有個伴,可能是兩個白矮星白頭偕老、最終合併,也可能和新星一樣是老少配,然後白矮星吸走年輕伴星的表面物質。但究竟是哪種配對導致熱核超新星爆炸,天文學家還在熱議。

-----廣告,請繼續往下閱讀-----

「核心塌縮超新星(Core-collapse supernova)」則來自大質量恆星核心塌縮後造成的熱壓爆炸。當大質量恆星的核心燃料用罄,無法支撐極強的重力而塌縮時,就會產生巨量的熱能,並向外爆發。整個過程僅以秒計。爆發後,周圍形成漂亮的超新星殘骸,核心則塌縮成中子星或黑洞。

值得一提的是,超新星是少數能夠串聯古今天文學的研究領域。歷史上數個著名的超新星爆發事件,在世界各地的文明史料中皆能發現記錄。目前推測人類文明見過最亮的超新星事件是 SN1006(西元 1006 年),最亮時甚至比啟明更亮 [註二],即使在白天仍可用肉眼看見,而且持續長達數星期。著名的梅西爾天體 M1(蟹狀星雲)也是超新星爆炸後的殘骸,自 1054 年的超新星爆發中產生,相關記錄散見史冊,而且至今仍是天文界炙手可熱的研究對象。

蟹狀星雲之心。 圖/NASA and ESA

+1 的部分:極亮超新星

現代觀測技術的進步使超新星事件變得常見,有多部自動望遠鏡凝視著宇宙虛空,在星際間搜尋著超新星的亮光,這類計畫稱為巡天(Survey)計畫。在眾多的觀測數據中,天文學家注意到一類特別明亮的「極亮超新星」(令人不禁想吐槽天文學家如此單純的命名邏輯),這些超新星比一般情況亮了 2 個數量級以上,並且非常罕見。

到 2017 年止,人類僅觀測到約 100 顆極亮超新星。由於數據過少,天文學家對其形成機制的想像可謂瞎子摸象、暫無定論,目前仍歸類為超新星。那麼,極亮超新星究竟是超新星的超級版,抑或是來自不同的形成機制,唯有持續探向更遙遠無垠的古老宇宙,才有機會揭發這個謎團了。

-----廣告,請繼續往下閱讀-----

千級新星──看見宇宙之音

「千級新星」是非常新的天文研究領域,研究過程也極具戲劇性。故事得從科學家研究重力波開始說起。

重力波是重力作用產生的時空漣漪。百年前,愛因斯坦的理論便預測其存在,但重力波非常微弱,連愛因斯坦本人都不相信人類有朝一日能偵測到重力波。直到 2015 年,人類才首次「聽」到兩顆黑洞合併產生的重力波 [註三]。不過,重力波的訊號指向性不佳,難以「聽音辨位」,也就是用重力波訊號回推事件發生地點。若我們能同時「看」到電磁輻射訊號(該事件發出的電磁波),便可蒐集更多更精確的數據,以了解究竟是在宇宙何處發生了什麼事。

令人難過的是,兩顆黑洞合併幾乎不會產生電磁輻射,因此無法用上述的方法獲得更多資訊。

後來,科學家發現,當兩顆中子星合併、或一顆中子星與一顆黑洞合併時,發出的重力波訊號雖較兩顆黑洞合併更弱、也更難偵測,但這兩種事件不只會產生重力波,也會發出電磁輻射,因此是重力波干涉儀的重要偵測目標。2010 年,天文物理學家探討了這兩種合併事件可能的電磁輻射樣態,得出的結論是和新星事件一樣會有劇烈的光度改變,而且最大亮度約是新星的千倍,於是命名為「千級新星(Kilonova)」。

藝術家以動畫展示兩顆中子星通過重力波合併,然後爆炸成千級新星的過程。影/ESO/L. Calçada.

千級新星的發光機制和超新星不同:超新星的光度主要來自爆炸產生的放射性鎳元素衰變,而千級新星則主要來自兩顆中子星,或中子星與黑洞碰撞合併時,大量發生的核反應——「中子捕獲作用」,此類核反應僅在極端物理環境下產生,是形成金、銀、鉛等重元素的重要機制。過去科學家認為宇宙中重元素的生產者是超新星,然而超新星爆炸的觀測數據卻發現,超新星事件發生的中子捕獲作用的「產能」並不足以支撐現有的重金屬比例,因此千級新星便躍上研究舞台,被認為是重元素的主要產地。

-----廣告,請繼續往下閱讀-----

2017 年,LIGO 及 VIRGO 重力波干涉儀共同偵測到人類史上第一場雙中子星合併事件 GW170817。當時,世界各地的望遠鏡幾乎都暫時放下常規任務,爭相投入這場觀測馬拉松。最終的成果令人振奮,不但同時偵測到重力波與相應的電磁波源,分析結果也與千級新星理論預測的訊號相符,這代表我們首次觀測到了千級新星!

重力波 GW170817的可見光訊號。圖/Soares-Santos et al. and DES Collaboration

這場盛會更昭示了「多信使天文學」時代的來臨 [註四]。重力波探測與多波段電磁觀測的結合,替人類的宇宙探索之旅翻開嶄新的一頁。今日,科學家們正期待著下一對共舞的緻密天體搖響精密儀器的銀鈴,讓更多未解之謎得以撥雲見日。

藝術家繪製的 GW170817 雙中子星合併事件想像圖。圖/LIGO-Virgo/Frank Elavsky/Northwestern University

宇宙看似恆常不變,然而在無盡好奇的驅使下,人類以最新科技突破既有的感官極限。我們洞見宇宙深邃瞬變的幽光,聆聽時空悠遠微弱的呢喃。宇宙「新」光的無盡奧秘,還有待來日的勤奮深掘。

註解

註一:客星指新出現的星,意義上包含彗星等在太陽系內遊走的天體,惟不在本文範疇。

註二:金星是地球的夜空中最明亮的星,清晨及黃昏也可見。古時稱金星出現於黃昏為「太白」、「長庚」,出現於清晨為「啟明」。

-----廣告,請繼續往下閱讀-----

註三:人類聽見的聲音主要來自空氣分子的震盪,只要震盪頻率在 20~20000 Hz 的範圍,並且經由介質傳遞使耳膜震動,我們就能聽見。雖然重力波是時空震盪,無法直接以耳朵聽見,但概念上類似,因此常見到科學家將重力波訊號轉換成「音訊」,方便人們感受。

註四:多信使天文學(Multi-messenger astronomy)指利用多種訊號探索宇宙的現象。不同於早期僅以可見光探看宇宙,人類如今能夠探測光子、電磁波、微中子、重力波和宇宙射線等高能帶電粒子。透過這些訊號,可以傳達不同面向的資訊,協助我們拼湊出單一宇宙現象更細緻的原貌。GW170817 事件除了以重力波和電磁輻射觀測,亦有微中子觀測站參與,只是沒有找到相關聯的微中子訊號,因此理論在這方面尚未證實,有待解惑。

延伸閱讀

  1. Li, KL., Metzger, B.D., Chomiuk, L. et al. (2017). A nova outburst powered by shocks. Nat Astron 1, 697–702. https://doi.org/10.1038/s41550-017-0222-1
  2. Aydi, E., Sokolovsky, K.V., Chomiuk, L. et al. Direct evidence for shock-powered optical emission in a nova. Nat Astron 4, 776–780 (2020). https://doi.org/10.1038/s41550-020-1070-y
  3. Gal-Yam, A. (2019). The most luminous supernova. Annual Review of Astronomy and Astrophysics, 57, 305–333. https://doi.org/10.1146/annurev-astro-081817-051819
  4. Metzger, B.D., Martínez-Pinedo, G., Darbha, S., Quataert, E., Arcones, A., Kasen, D., Thomas, R., Nugent, P., Panov, I.V., Zinner, N.T.. (2010). Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei. Monthly Notices of the Royal Astronomical Society, 406(4), 2650–2662. https://doi.org/10.1111/j.1365-2966.2010.16864.x
  5. Smartt, S., Chen, TW., Jerkstrand, A. et al. (2017). A kilonova as the electromagnetic counterpart to a gravitational-wave source. Nature 55175–79 . https://doi.org/10.1038/nature24303
-----廣告,請繼續往下閱讀-----
全國大學天文社聯盟
7 篇文章 ・ 19 位粉絲