網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策

0

0
0

文字

分享

0
0
0

《能源大探索》李高佛與他的核子海軍

時報出版_96
・2014/11/07 ・2308字 ・閱讀時間約 4 分鐘 ・SR值 542 ・八年級

5287c08c965ea971e9d15e5b8ba3f05d.jpg

二次大戰後,李高佛雖然招惹很多人的厭惡,卻在最後一刻,列入派往田納西州橡樹嶺秘密原子能研究城市的海軍軍官名單中。他們的任務是學習核能的秘密,了解核能用在和平的發電用途中,可能扮演什麼角色。

李高佛很快就看出核子海軍的戰略潛力,此後一直致力推動海軍核子化。他特別了解核子潛艇的航程和戰力,遠超過二次大戰期間的柴油潛艇。核能可以為困擾傳統潛艇的一個棘手問題,提供絕佳的解決之道,這個問題就是傳統電池受到限制,潛水艇在水下高速巡航的時間因此受到限制的問題。相形之下,一般認為,核子潛艇應該可以在水下全速巡航很多小時、很多天,甚至很多個月。

李高佛負起雙重任務,負責海軍和新設原子能委員會的核子動力計畫。這種兼職協助他克服艱巨的工程和官僚阻力,造出核子潛艇。據說他會寫信給自己,然後回信,確保海軍和原子能委員會的流程立刻可以結束。一九四九年,蘇聯進行第一次原子彈試爆,使美國的這個計畫迫切性更為增加。

製造原子彈是一回事,利用和控制核分裂連鎖反應發電,是大不相同的另一回事。包括科技、工程和知識在內,有太多的東西,必須從頭開始發明和發展。選擇壓水式輕水反應爐作為動力系統,是李高佛所做的決定。他也為「核能工業或除了他所主管機關以外的政府部門,制定了前所未聞的工程與技術紀律。」為了達成目標,李高佛培養了一批技術高超、訓練優異的核子海軍軍官,還不斷的督促他們根據最高標準行動。如果這樣表示他要擔任監工和監察官,他的確是身兼這兩種身分。即使是小小的疏忽,或稍微背離李高佛非常高的標準,都可能表示這樣的軍官會遭到「去核化」,意思是趕出核子海軍部隊。

李高佛甄選核子海軍成員時,為了讓來口試的人意外和考驗他們,會讓他們坐在兩隻前腿削短的椅子上,同時讓他們坐在陽光可以透過特別調整的活動百葉窗、直接照射接受口試人員眼睛的位置上。他解釋說,這樣「會在他們從椅子上往下滑的時候保持頭腦清醒。」

有一次,有一位年輕的潛艇軍官申請加入核子海軍,他驕傲的告訴李高佛,說他在海軍官校八百二十位同學的畢業班中,成績排名第五十九。李高佛尖銳的問他,是否盡了最大的力量。這位名叫詹姆斯.卡特的軍官嚇了一跳,猶豫片刻後,承認自己沒有盡到最大的力量。

「為什麼沒有?」李高佛問。

這個問題—為什麼沒有盡力?—幾十年後,變成卡特競選總統時競選自傳的書名。

李高佛孜孜不倦的製造核子潛艇、破除官僚阻力之際,讓很多上司十分惱火,以至於兩次錯過升為海軍上將的機會,要等到國會插手干預,才終於升為海軍上將。

李高佛的做法成果優異,核子潛艇科技的發展、工程和建造,全都在創紀錄的時間內完成。

美國的第一艘核子潛艇鸚鵡螺號從一九五四年起開始服役。整個任務在七年內完成,而不是像別人所預測的二十五年。一九五八年,鸚鵡螺號在北極和極地冰帽下,潛航二千二百多公里,完成轟動一時、極為艱巨、又的確令人難以置信的任務,潛航期間,除了短暫困在龐大冰帽和淺海海底之間外,中途毫無停留。鸚鵡螺號返航後,艇長受邀到白宮,參加歡迎儀式,為製造鸚鵡螺號負最後責任的李高佛因為討人厭,遭到刻意排除,沒有參加典禮。

鸚鵡螺號艇長在另一次儀式中,送給李高佛一塊小心保存在潛艇冰箱裡的北極寒冰,李高佛終於露出下屬難得一見的笑容。到一九八六年李高佛終於退伍時,四○%的美國主要作戰艦艇都是核子動力艦艇。

鸚鵡螺號是核能第一次運用在船舶動力上的例子。然而,一九五四年夏天,蘇聯廣播電台宣布「蘇聯科學」的另一個「第一」:世界第一個民用反應爐在莫斯科南方的科學城歐布寧斯克啟用,蘇聯新聞機構塔斯通訊社宣布,蘇聯「在原子能的發展上已經躍進,超越英美。」

但是歐布寧斯克反應爐很小,只能對當地集體農場、工廠和幾千位居民供電。這種反應爐也是蘇聯壓力管式石墨慢化沸水式反應爐,不幸的是,幾十年後,這種反應爐會變得聲名狼藉。

便宜到無法計算電費

鸚鵡螺號服役前,美國已經開始發展民用核能反應爐,民用反應爐的發展也由李高佛牢牢控制,是以海軍的設計為基礎,設計中具有潛水艇用反應爐的不少特性,但其中增加了中間的步驟。航空母艦用反應爐開始發展後,艾森豪政府認定這個計畫費用太高,斷定獲得核能的最快方法,是消除航空母艦核動力計畫中明顯的海軍特色,變成民用反應爐的基礎。

各界對原子能委員會宣布民用核能計畫的反應很熱烈,《時代雜誌》稱之為原子時代的「新階段」;《紐約時報》更進一步,宣布原子能電力時代已經來臨。這時各界表現出一片樂觀氣氛,原子能委員會主委路易斯.史特勞斯一九五四年的話更是如此,他所說核電在十五年內,送出的電會「便宜到無法計算電費」的說法,變成了著名的預言。

美國的第一座核能電廠建在賓州裝運港,從一九五七年開始發電,只比鸚鵡螺號服役晚三年。英國凱德府核能電廠較早完工,一九五六年由英國女王主持落成啟用典禮,是世界第一座商用核電廠。但是凱德府核能電廠規模相當小,所用的設計現在已經過時。

相形之下,裝運港核電廠是「世界第一座規模完整的原子能發電廠」,設計和建造正是由李高佛負責,隨後的二十五年裡,他也負責這座電廠的營運監督。這座反應爐雖然是從航空母艦用反應爐的設計升級,但是為了發電,卻經過重新思考和重新設計,功能遠超過表定設計,營運期間幾乎沒有出過差錯,這點要歸功於李高佛一絲不苟的堅定信念和他召集的團隊。

商用核能發電真正的轉捩點在一九六三年出現,當時紐澤西州一家電力公司訂購一座商用核電廠,準備蓋在蠔溪,這座反應爐也是以李高佛監督、發展出來的設計為基礎。

摘自 《能源大探索》,時報出版

文章難易度
時報出版_96
141 篇文章 ・ 21 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。


0

4
0

文字

分享

0
4
0

如何從茫茫大海中,找到戰爭遺留的深水炸彈?——海底掃雷行動

Else Production
・2022/01/19 ・2597字 ・閱讀時間約 5 分鐘

對於年輕人來說,我相信「深水炸彈」一詞並不會陌生,因為這近乎是每一個狂歡派對裡的必需品。但對於埋藏在深海裡的炸彈,大家又有沒有想過我們如何找出來?

這些未爆炸的軍備,我們稱之為 Unexploded Ordnance(簡稱 UXO),有可能是水雷,有可能是深水炸彈,也有可能是導彈。它們多數是第一次或第二次世界大戰遺留下來的產品,受到多年來沉積(即水流在流速減慢時,所挾帶的砂石、塵土等沉淀堆積起來)的影響,令它們埋藏在海床以下的地方。跟據 Euronews 的估計,單單在波羅的海亦有超過 30 萬的 UXO 埋在那裡。

二戰期間,桑德蘭水上飛機掛載的深水炸彈,圖/維基百科

你也許會問,既然都已經埋藏了,何況我們仍然要處理他們?這是因為我們會在海底裡鋪設電欖、水管、天然氣輸送管等輸送系統,假如鑽探過程中不小心觸碰了它們已產生意外,或是在完成工程某一天突然爆炸而令輸電系統中斷,後果可真是不堪設想。因此,最理想的方法便是把他們全部找出來並繞道而行,或是安排專家把他們處理。

真正的大海撈針:用磁場把 UXO 吸出來!

要找到這些 UXO,最容易的方法便是使用金屬探測的方法,但由於普遍的金屬探測器的探測範圍是不超過 2 公尺的,我們很難把探測器貼近凹凸不平的水底前行(這大大增加了磨損探測器的風險),因此我們會選擇較間接的方法:磁強計(Magnetometer)。由於大部份的彈藥外層是用鐵形成的,而鐵是對磁非常敏感的,因此我們能夠在較遠的範圍便能察覺他們的存在。當在外勤工作,我們會以兩個磁強計為一組去作探測,令我們更準備知道其實際位置及大小。讓我們看看以下例子:

圖 1:磁強計的探測結果

在圖 1 裡,假設我們知道標記「1」是一個 UXO 的位置,上圖的平行線為磁強計由左至右的移動路線,下圖為磁場沿路的變化。我們可以看見,當若果沒有任何金屬物件存在的話,兩個磁強計量度的數是相近的,亦即是該環境本身的磁場。但在 UXO 的附近,我們可以看到明顯的變化。藍色線代表航行路線的左方磁強計的量度值,燈色線代表右方,由於磁場強度會隨著距離而減少,因此很明顯這一個 UXO 的位置更接近藍色線,亦即是航線的上方。

我們可以透過兩者的差距估計其位置及大小,但為了確保其真實性,我們亦會在附近再次航行,假如也有磁場變異,這便是一個不會移動的金屬物品(撇除了船、飄浮中的海洋垃圾等的可能性)。

排除法:用側掃聲納窺探看不見的海底!

正如上文提要,磁場變異所告訴我們的,只是金屬物品的位置,但它亦有可能不是炸彈,也有可能不是埋在海床下,因此我們也會使用其他科學方法去驗證。其中一個便是側掃聲納(Side Scan Sonar) ,透過聲波反射的原理,我們可以看到海床的影像。假如海床是乾淨的,聲波傳送及接收的時間是一樣的,因此我們可以看到連續的晝面。但假如有異物在水中間或海床上,聲波便會被折射而形成黑影。讓我們看看以下例子:

圖2: 側掃聲納 圖片,紅色箭咀範圍代表沒有反射的區域,綠色箭頭範圖代表船與海底的距離 (圖片來源:Grothues et al., 2017)

看看圖 2。燈色的部份是海床的晝面,中間白色的部份是船的航道,亦是側掃聲納的盲點,而黑色的部份則是有物件在海床上方而形成的聲波折射,讓我們能夠清楚看見它們的形狀。有時候我們亦會看到一些海洋垃圾,如車胎、單車等,而在上圖的左上方,我們相信是一些棄置的工業廢料。

當然你也可以爭論,在圖左上方的物件有機會不是死物,而是一種未知海洋生物,因此我們也會進行多次的側掃聲納,如果在同一位置並不能再看到它,那麼這是生物的機率便很高。假如在磁場異變的位置側掃聲納沒有探測到任何物件,這進一步證明其 UXO 的可能性。但假如有黑影在上方,我們也會透過黑影分析其大小是否吻合,並會憑經驗分析該物品會否存在金屬。

此外,在看側掃聲納,我們也很重視在磁場異變的位置附近有沒有刮痕,因為形成刮痕的原因多數是船上作業頻繁的地方,有機會是漁船拖網的地點,也有機會是大船拋錨起錨的地方,而這些動作均有機會接觸或移動了這些潛在的 UXO,產生危機。因此,這些地方都會是我們首要處理的地方。

筆者按:假如大家想看看其他用側掃聲納發現的東西,如沉船、飛機等,可以到這裡觀看

萬無一失:Mission Completed !

當然,在取得數據時,我們也要儘可能減低人為因素而形成的影響。舉個例子,我們要確保磁強計遠離測量船,以免船上的儀器影響了磁強計。因此,我們並不會把磁強計綁在船底,而是把它們用纜索綁在船尾數十米以外的地方拖行。

另外,我們也要確保測量船要以均速航行,以確保所有數據都是一致的。最後,我們也要確保船上的 GPS 系統準確無誤,否則所有有可能是 UXO 的位置都是錯誤的。

完成以上的工序後,我們便會製作磁梯度圖(Magnetic Gradient Map),把剩餘下來的磁場變置點用其強度及大小表示出來,正如圖 3,再交給拆彈專家們處理。他們便會跟據他們的專業知識,加上該海岸的戰爭歷史,對比當時有可能參戰的國家、使用的武器及其金屬含量以找出存在的炸彈來處理。

要知道這些 UXO,單單在 2015 年在世界各地亦奪去了超過 6000 人的性命,因此這個科學命題可真是不容忽視!

圖 3:磁梯度圖。左邊是潛在 UXO 的位置而右邊則是它們的磁場強度的改變。(圖片來源:Salem et al., 2005)

延伸閱讀:

參考資料:

  1. Salem, A., Hamada, T., Asahina, J. K., & Ushijima, K. (2005). Detection of unexploded ordnance (UXO) using marine magnetic gradiometer data. Exploration Geophysics, 36(1), 97–103.  
  2. Han, S., Rong, X., Bian, L., Zhong, M., & Zhang, L. (2019). The application of magnetometers and electromagnetic induction sensors in UXO detection. E3S Web of Conferences, 131, 01045.
  3. Image scans gallery. EdgeTech. (n.d.). Retrieved January 5, 2022, from https://www.edgetech.com/underwater-technology-gallery/ 
  4. Grothues, T. M., Newhall, A. E., Lynch, J. F., Vogel, K. S., & Gawarkiewicz, G. G. (2017). High-frequency side-scan sonar fish reconnaissance by autonomous underwater vehicles. Canadian Journal of Fisheries and Aquatic Sciences, 74(2), 240–255.

本文亦刊載於作者部落格 Else Production ,歡迎查閱及留言

Else Production
2 篇文章 ・ 2 位粉絲
馬朗生,見習地球物理工程師,英國材料與礦冶學會成員,主力擔任海上測量工作,包括海床勘探、泥土分析、聲波探測等。