網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策

1

0
0

文字

分享

1
0
0

物理學家打造出第一個單光子路由器

only-perception
・2011/08/27 ・1440字 ・閱讀時間約 3 分鐘 ・SR值 590 ・九年級

藉由展示,內嵌在一條傳輸線(transmission line)中的人造原子能將單一光子自輸入埠路由(route)到二個輸出埠(output 1、output 2)的其中一個,物理學家建立出第一個在單光子層次上運作的路由器。單光子路由器有朝一日能在量子資訊網路中成為一種量子節點,能夠提供基本的資料處理以 及路由。

這些科學家,由來自瑞典 Goteborg,Chalmers 科技大學的 Per Delsing 與 Chris Wilson 所領導,以及來自西班牙馬德里,Spanish National Research Council 的共同作者,將他們的研究發表在最近一期的 Physical Review Letters 上。

如科學家的解釋,控制與引導光子比控制與引導電子(其為今日絕大多數路由器所用)更加困難。困難根源於這項事實:光子不像電子,彼此並不會強烈地 交互作用。然而,量子通道最重要的需求之一是,能將資訊散播到很遠的距離。因為光子比起其他量子系統,例如原子,能前後一致地傳播非常遠的距離,所以把當 光子當成量子資訊網路中的資訊載體,別具意義。

為了建立他們的單光子路由器,科學家把某種超導量子位元當成「人造原子(artificial atom)」使用(儘管 qubit 實際上是由數個原子構成,不過那像一個真正的原子,具有離散的能態)。這些科學家接著將 qubit 耦合到一維的傳輸線,微波光子藉此可行進。接下來,他們採用一道微弱的、連續的光子探針,有時還增加一道較強的控制脈衝。沒有這道強控制脈衝 (strong control pulse),人造原子會將入射光子反射回去,那會行進到 output 1。當強控制脈衝開啟,那會導致電磁誘發通透(electromagnetically induced transparency,EIT)的現象。EIT 導致原子對於弱探針射束(weak probe beam)而言是「透明的」,導致光子行進通過原子,抵達 output 2。透過這種方式,科學家能將入射光子引導至二個輸出埠的其中一個。

「基於單個原子的電磁誘發通透,已在(可見)光域(optical domain)中被證明,不過其激發效率相當低,” Delsing 表示。”在微波域中,某個日本小組已獲得 90% 的效率,不過那並不是被設置成路由器。因此,你可以說,這是第一個在單光子層次上運作的路由器。此外,其效率高達 99%,而且它相當快。」

研究者在激發效率上達成一個數量級的增加(達到 99.6%),那顯示,光子有效率地耦合到人造原子,使得光子能獲得更好的控制。該裝置的切換時間(switching time,將入射光子從其中一個輸出埠切換到另一個所花的時間)只有幾奈秒。

科學家也提到,這個路由器能輕易地擴展成多重輸出埠,如果要當成量子節點使用,這將是必須的。

“我們心裡已盤算幾個新實驗,其中之一是實作我們在論文中描述的多重輸出路由器,” Delsing 說。”其他可能的實驗包括,在相同傳輸線中使用多個人造原子並增加與光子互動的「原子」數量。我們正朝向「大規模量子物件整合」移動。”

對於量子通道中的應用,科學家解釋,使用可見光光子會比微波光子(那在本研究中使用)好。該裝置在研究中也能有重要的應用。

“路由器在研究中能非常有用,例如,來自單光子源的光子,可藉此散布到數個在同一晶片上的實驗,” Delsing 說。”那因而將允許利用微波光子進行更加密實且整合度更高的實驗。”

“光子是理想的量子資訊載體,” 他補充道。”利用這個路由器,我們能散播與路由攜帶量子資訊的微波光子。在未來的量子電腦中,能在不同的量子電腦內或量子電腦間通訊,將非常有用。在較遠 的未來,你可以想像一下,有時被指稱為「量子網際網路(quantum interne)」的東西。然而,你將需要額外的裝置,例如在可見光光子與微波光子之間的量子界面,以及所謂的量子中繼器(quantum repeaters)。”

※ 相關報導:

* Demonstration of a Single-Photon Router in the Microwave Regime
http://link.aps.org/doi/10.1103/PhysRevLett.107.073601
Io-Chun Hoi, C. M. Wilson, Goran Johansson, Tauno Palomaki,
Borja Peropadre, and Per Delsing
Phys. Rev. Lett. 107, 073601 (2011) [5 pages]
doi: 10.1103/PhysRevLett.107.073601

資料來源:PHYORG.com: Physicists build first single-photon router [August 22, 2011]

原發表於 Only Perception

文章難易度
所有討論 1
only-perception
153 篇文章 ・ 1 位粉絲
妳/你好,我是來自火星的火星人,畢業於火星人理工大學(不是地球上的 MIT,請勿混淆 :p),名字裡有條魚,雖然跟魚一點關係也沒有,不過沒有關係,反正妳/你只要知道我不是地球人就行了... :D


0

13
5

文字

分享

0
13
5

揭開人體的基因密碼!——「基因定序」是實現精準醫療的關鍵工具

科技魅癮_96
・2021/11/16 ・1998字 ・閱讀時間約 4 分鐘

為什麼有些人吃不胖,有些人沒抽菸卻得肺癌,有些人只是吃個感冒藥就全身皮膚紅腫發癢?這一切都跟我們的基因有關!無論是想探究生命的起源、物種間的差異,乃至於罹患疾病、用藥的風險,都必須從了解基因密碼著手,而揭開基因密碼的關鍵工具就是「基因定序」技術。

揭開基因密碼的關鍵工具就是「基因定序」技術。圖/科技魅癮提供

基因定序對人類生命健康的意義

在歷史上,DNA 解碼從 1953 年的華生(James Watson)與克里克(Francis Crick)兩位科學家確立 DNA 的雙螺旋結構,闡述 DNA 是以 4 個鹼基(A、T、C、G)的配對方式來傳遞遺傳訊息,並逐步發展出許多新的研究工具;1990 年,美國政府推動人類基因體計畫,接著英國、日本、法國、德國、中國、印度等陸續加入,到了 2003 年,人體基因體密碼全數解碼完成,不僅是人類探索生命的重大里程碑,也成為推動醫學、生命科學領域大躍進的關鍵。原本這項計畫預計在 2005 年才能完成,卻因為基因定序技術的突飛猛進,使得科學家得以提前完成這項壯舉。

提到基因定序技術的發展,早期科學家只能測量 DNA 跟 RNA 的結構單位,但無法排序;直到 1977 年,科學家桑格(Frederick Sanger)發明了第一代的基因定序技術,以生物化學的方式,讓 DNA 形成不同長度的片段,以判讀測量物的基因序列,成為日後定序技術的基礎。為了因應更快速、資料量更大的基因定序需求,出現了次世代定序技術(NGS),將 DNA 打成碎片,並擴增碎片到可偵測的濃度,再透過電腦大量讀取資料並拼裝序列。不僅更快速,且成本更低,讓科學家得以在短時間內讀取數百萬個鹼基對,解碼許多物種的基因序列、追蹤病毒的變化行蹤,也能用於疾病的檢測、預防及個人化醫療等等。

在疾病檢測方面,儘管目前 NGS 並不能找出全部遺傳性疾病的原因,但對於改善個體健康仍有積極的意義,例如:若透過基因檢測,得知將來罹患糖尿病機率比別人高,就可以透過健康諮詢,改變飲食習慣、生活型態等,降低發病機率。又如癌症基因檢測,可分為遺傳性的癌症檢測及癌症組織檢測:前者可偵測是否有單一基因的變異,導致罹癌風險增加;後者則針對是否有藥物易感性的基因變異,做為臨床用藥的參考,也是目前精準醫療的重要應用項目之一。再者,基因檢測後續的生物資訊分析,包含基因序列的註解、變異位點的篩選及人工智慧評估變異點與疾病之間的關聯性等,對臨床醫療工作都有極大的助益。

基因定序有助於精準醫療的實現。圖/科技魅癮提供

建立屬於臺灣華人的基因庫

每個人的基因背景都不同,而不同族群之間更存在著基因差異,使得歐美國家基因庫的資料,幾乎不能直接應用於亞洲人身上,這也是我國自 2012 年發起「臺灣人體生物資料庫」(Taiwan biobank),希望建立臺灣人乃至亞洲人的基因資料庫的主因。而 2018 年起,中央研究院與全臺各大醫院共同發起的「臺灣精準醫療計畫」(TPMI),希望建立臺灣華人專屬的基因數據庫,促進臺灣民眾常見疾病的研究,並開發專屬華人的基因型鑑定晶片,促進我國精準醫療及生醫產業的發展。

目前招募了 20 萬名臺灣人,這些民眾在入組時沒有被診斷為癌症患者,超過 99% 是來自中國不同省分的漢族移民人口,其中少數是臺灣原住民。這是東亞血統個體最大且可公開獲得的遺傳數據庫,其中,漢族的全部遺傳變異中,有 21.2% 的人攜帶遺傳疾病的隱性基因;3.1% 的人有癌症易感基因,比一般人罹癌風險更高;87.3% 的人有藥物過敏的基因標誌。這些訊息對臨床診斷與治療都相當具實用性,例如:若患者具有某些藥物不良反應的特殊基因型,醫生在開藥時就能使用替代藥物,避免病人服藥後產生嚴重的不良反應。

基因時代大挑戰:個資保護與遺傳諮詢

雖然高科技與大數據分析的應用在生醫領域相當熱門,但有醫師對於研究結果能否運用在臨床上,存在著道德倫理的考量,例如:研究用途的資料是否能放在病歷中?個人資料是否受到法規保護?而且技術上各醫院之間的資料如何串流?這些都需要資通訊科技(ICT)產業的協助,而醫師本身相關知識的訓練也需與時俱進。對醫院端而言,建議患者做基因檢測是因為出現症狀,希望找到原因,但是如何解釋以及病歷上如何註解,則是另一項重要議題。

從人性觀點來看,在技術更迭演進的同時,對於受測者及其家人的心理支持及社會資源是否相應產生?回到了解病因的初衷,在知道自己體內可能有遺傳疾病的基因變異時,家庭成員之間的情感衝擊如何解決、是否有對應的治療方式等,都是值得深思的議題,也是目前遺傳諮詢門診中會詳細解說的部分。科技的初衷是為了讓人類的生活變得更好,因此,基因檢測如何搭配專業的遺傳諮詢系統,以及法規如何在科學發展與個資保護之間取得平衡,將是下一個基因時代的挑戰。

更多內容,請見「科技魅癮」:https://charmingscitech.pse.is/3q66cw

文章難易度
科技魅癮_96
115 篇文章 ・ 253 位粉絲
《科技魅癮》的前身為1973年初登場的《科學發展》月刊,每期都精選1個國際關注的科技議題,邀請1位國內資深學者擔任客座編輯,並訪談多位來自相關領域的科研菁英,探討該領域在臺灣及全球的研發現況及未來發展,盼可藉此增進國內研發能量。 擋不住的魅力,戒不了的讀癮,盡在《科技魅癮》