0

0
0

文字

分享

0
0
0

史上最嚴重!這次伊波拉疫情蔓延不止的5個原因

陸子鈞
・2014/08/18 ・2230字 ・閱讀時間約 4 分鐘 ・SR值 552 ・八年級

Ebola-victims_2962495b 今年三月在幾內亞爆發的伊波拉疫情,到現在已經成為史上最多人死亡的一次疫情,到8/11已經有1975人感染,其中1069人死亡 [1]。 伊波拉病毒已經被發現將近40年了,除了1976年首次爆發造成431人死亡,之後的疫情就沒有這麼多的死亡人數。以下是過去20年內感染伊波拉病毒死亡的人數以及病毒種類:

年代 死亡人數 病毒種
1994 31 EBOV
1995 250 EBOV
1996 22 EBOV
1997 45 EBOV
1998 0
1999 0
2000 224 SUDV
2001 96 EBOV
2002 128 EBOV
2003 157 EBOV
2004 7 SUDV
2005 9 EBOV
2006 0
2007 224 EBOV(187); BDBV(37)
2008 0
2009 14 EBOV
2010 0
2011 1 SUDV
2012 53 SUDV(17); BDBV(36)
2013 0
2014 1069 EBOV
整理自:List of Ebola outbreaks–Wikipedia、Ebola virus disease–WHO

互動國際數位英國分公司(ESRI UK)也將這40年來的伊波拉疫情繪製成互動式地圖,底下還有每次爆發事件的簡介,可以看出爆發地點、感染人數及死亡率。 為什麼這次的伊波拉疫情會成為史上最嚴重的一次?剛從幾內亞回到美國,參與疫情應變團隊的杜蘭大學(Tulane University)熱帶醫學專家包許(Daniel Bausch)在LiveScience的訪問中提到五個原因 [2]:

一、這次的病毒種類是致死率最高的一種

目前已知的五種伊波拉病毒都是以發現的地點為名:

  • Bundibugyo ebolavirus(BDBV)
  • Reston ebolavirus(RESTV)
  • Sudan ebolavirus(SUDV)
  • Taï Forest ebolavirus(TAFV)
  • Zaire ebolavirus(EBOV)

想知道這五種病毒的親緣關係可以參考這篇研究 [3]。五種病毒各自有不同感染的地區與致死率。包許說:「最致命的病毒卻在人類最無法提防它的地點出現。」 科學家原本以為這次在幾內亞的疫情可能是在鄰近出沒的塔伊伊波拉病毒(TAFV),沒想到卻是薩伊伊波拉病毒(EBOV) [4],是致死率最高的一種。這種伊波拉病毒過去只被發現在三個中非國家:剛果民主共和國、剛果、加彭。為什麼這次病毒擴及幾內亞?薩伊和幾內亞間的人口流動稀少,而且這次疫情爆發的原點蓋凱杜(Guéckédou)也人煙罕至。包許認為,「薩伊病毒從遙遠的地方進到幾內亞,很可能是蝙蝠帶來的。」 另一個可能是當地的蝙蝠帶有潛伏的病毒,或者有人感染了卻還沒被發現。從感染其他疾病病患身上採集到的血液樣本初步分析後發現,當地居民早已暴露在伊波拉病毒底下。過去也有研究發現,伊波拉病毒在當地感染的狀況超過原先的預期。

-----廣告,請繼續往下閱讀-----

二、疫區是世界上最貧窮的地區

雖然不只有幾內亞有蝙蝠出沒,但幾內亞卻是世界上最貧窮的國家之一。在聯合國開發計畫署(UNDP)公布的人類發展指標(Human Development Index, HDI)中,排名144,超過半數的幾內亞人生活低於國家貧窮線下。當地只有簡陋的設備可以應付爆發的疫情,而且國家間無法協同控管人口流動,也就無法有效控制疫情。

三、缺乏穩固的健康照護系統

貧窮的經濟狀況影響了健康照護系統,無法準備好因應突如其來爆發的疫情,也缺乏基礎醫療資源。當地的醫院普遍缺少醫療手套、口罩、乾淨針頭還有消毒劑。 將病患送入沒有妥善準備的醫療中心,只會讓醫療中心成為病毒集散地,加劇疫情擴散。

電子顯微鏡下的伊波拉病毒。
電子顯微鏡下的伊波拉病毒。

四、貧困逼迫人們進入叢林

即使病毒可能潛伏在野生動物中,但人類不多機會接觸到野生動物,除非人們進入到叢林深處。然而,當地貧窮的人為了謀生就很常出入叢林,像是為了取得木柴,或者採礦。這些活動都增加了伊波拉病毒跨物種感染的風險。

五、極端乾旱引發病毒爆發

這波疫情的首次出現在2013年12月,是幾內亞乾季的開始。伊波拉病毒通常爆發於雨季進入乾季之際,當環境突然變得乾燥的時候。這可能是因為乾燥影響了感染伊波拉病毒的蝙蝠比例,或者影響人們接觸蝙蝠的機會。 雖然還需要更深入分析幾內亞今天的氣象資料才能得到更多資訊,不過包許提到,根據當地居民表示,今年的乾季異常地乾燥,而且時間也比較長。這很可能是過去十年來,當地森林過度被破壞所導致的。 參考資料:

-----廣告,請繼續往下閱讀-----
  1. Ebola virus disease update – west Africa. WHO Disease outbreak news [13 August 2014 ]
  2. How the Ebola Outbreak Became Deadliest in History. livescience [July 31, 2014]
  3. Towner, Jonathan S., et al. “Newly discovered ebola virus associated with hemorrhagic fever outbreak in Uganda.PLoS pathogens 4.11 (2008): e1000212.
  4. Baize S, Pannetier D, Oestereich L, Rieger T, Koivogui L, Magassouba N, Soropogui B, Sow MS, Keïta S, De Clerck H, Tiffany A, Dominguez G, Loua M, Traoré A, Kolié M, Malano ER, Heleze E, Bocquin A, Mély S, Raoul H, Caro V, Cadar D, Gabriel M, Pahlmann M, Tappe D, Schmidt-Chanasit J, Impouma B, Diallo AK, Formenty P, Van Herp M, Günther S. Emergence of Zaire Ebola Virus Disease in Guinea – Preliminary Report. N Engl J Med. 2014 Apr 16. PubMed PMID:24738640.
文章難易度
陸子鈞
294 篇文章 ・ 4 位粉絲
Z編|台灣大學昆蟲所畢業,興趣廣泛,自認和貓一樣兼具宅氣和無窮的好奇心。喜歡在早上喝咖啡配RSS,克制不了跟別人分享生物故事的衝動,就連吃飯也會忍不住將桌上的食物作生物分類。

0

2
2

文字

分享

0
2
2
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 54 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

2

1
1

文字

分享

2
1
1
經濟重要還是環境重要?明朝末年發生了什麼事?氣候如何影響國家?——《價崩》導讀
衛城出版_96
・2024/05/07 ・4105字 ・閱讀時間約 8 分鐘

眼皮底下的事實:環境史研究者看《價崩》

洪廣冀(臺灣大學地理環境資源學系副教授)

著名的漢學家卜正民以如下段落為《價崩:氣候危機與大明王朝的終結》一書定調:

生活在這個時代,我們彷彿逃不出莫測變幻的手掌心。變化讓人這麼痛苦、氣餒,為了安慰自我,我們便告訴自己:當代的生活特徵就是接連不斷的變化,正是這種不穩定,讓世界變得比以往更複雜。

他告訴我們,作為一個「長壽之人」,「過去十年來,氣候變遷、物價通膨,以及政治豪奪的速度與規模」,他認為也是前所未見。只是,作為一個歷史學者,他還是想問,若我們放大時空的尺度,當代人在過去十年來經歷的變化,真的是前所未見嗎?他的答案是否定的。在一六四○年代早期的中國,也就是明朝末期的中國,是一個連「生存條件都被剝奪,平安度日的尊嚴都被否定的時代」,因為「大規模的氣候寒化、疫情與軍事入侵,奪走數以百萬計的人命」。

在一六四○年代早期的中國,也就是明朝末期的中國,是一個連「生存條件都被剝奪,平安度日的尊嚴都被否定的時代」,因為「大規模的氣候寒化、疫情與軍事入侵,奪走數以百萬計的人命」。
圖/unsplash

藏在眼皮下的事實是什麼?小冰期如何發生?

一六四○年代初期的中國發生什麼事?這便是卜正民試圖回答的問題。他反對傳統史學的兩大見解:一者是訴諸人禍,即訴諸當時宮廷內的派系鬥爭,統治階層道德淪喪,導致民不聊生;二者是訴諸十六至十七全球的白銀貿易,即當時從美洲與日本湧入中國的白銀,造成物價波動與社會不安。卜正民認為,訴諸人禍與貿易會讓我們看不見「藏在眼皮底下的事實」:小冰河時期(簡稱小冰期)。

-----廣告,請繼續往下閱讀-----

廣義地說,小冰期是從十四世紀至十九世紀初期的地球寒化現象,氣溫平均掉了攝氏兩度。乍看之下,攝氏兩度的溫差或許微小,但對作物而言,這樣的溫差已經足夠讓作物減少一次收成,或根本無法收成。再者,必須注意,兩度的溫差是「平均」,即可能是極熱與極寒的氣溫交錯變化造就此兩度溫差。這確實也是在小冰期中發生的事。

地球科學家推測,寒冷的氣候讓兩極的冰山範圍擴張,讓海水變得更鹹,也就是變得更重,影響洋流的流動方式,從而牽引了大氣與洋流間的循環。影響所及,所謂「聖嬰-南方震盪現象」(El Niño-Southern Oscillation, ENSO,即傳統上所說的「聖嬰現象」加「反聖嬰現象」)變得格外激烈,乾旱、水災等極端氣候頻傳。不僅如此,地球科學家也指出,小冰河期也是火山活動格外頻繁的時期。火山噴出的煙塵,遮蔽了太陽輻射,更加速了地球的寒化。

地球科學家推測,寒冷的氣候讓兩極的冰山範圍擴張,讓海水變得更鹹,也就是變得更重,影響洋流的流動方式,從而牽引了大氣與洋流間的循環。
圖/unsplash

小冰期的起因為何?目前普遍接受的見解是太陽活動改變。此外,也有研究者指出,這與所謂歐洲人「發現」新大陸有關。受到所謂「哥倫布大交換」的衝擊,美洲原住民大量消失,森林擴張,吸收大量二氧化碳。眾所周知,二氧化碳是溫室氣體;二氧化碳濃度的減低,讓大氣保溫的能力下降,與前述太陽活動與火山噴發的效果耦合,讓寒化成為不可逆的過程。總之,我們現在已經知道,地球是個混沌系統,牽一髮不只動全身,甚至整個身體都會分崩離析。

回到《價崩》這本書。卜正民指出,明朝的存續時間(一三六八至一六四四年)即落在小冰期,並成為明朝覆亡的主因。他將小冰期之於明朝的影響分為六個泥沼期:一、永樂泥淖期(一四○三年至一四○六年)。二、景泰泥淖期(一四五○年至一四五六年)。三、嘉靖泥淖期(一五四四年至一五四五年)。四、萬曆一號泥淖期(一五八六年至一五八九年)。五、萬曆二號泥淖期(一六一五年至一六二○年)。六、崇禎泥淖期(一六三八年至一六四四年)。

-----廣告,請繼續往下閱讀-----

永樂泥淖期欠缺災荒記載,景泰泥淖期以饑荒收尾,嘉靖泥淖期氣候異常乾冷,萬曆一號泥淖期爆發饑荒、洪水、蝗災與大疫,「人民相食,枕籍死亡」;萬曆二號泥淖期的乾旱與水災頻繁,饑荒再度爆發,「朝廷賑濟的請願如潮水湧來」。崇禎泥淖期是明代乃至於「整個千年期間最慘痛的七年」,「米粟踊貴,餓殍載道」。一六四四年四月末,闖王李自成兵臨北京,致書要求崇禎帝歸順。崇禎不從,在命皇后、貴妃與女兒自盡後,他爬上皇居後的煤山,自縊身亡。李自成稱帝後,滿人入關,將中國納入大清國版圖。

不可忽視的幽靈?拔除合理征服者的解釋,明朝滅亡原因還有哪些?

如此的歷史解釋是否會流於環境決定論?卜正民的回答是:「如果環境決定論的幽靈就在門外徘徊,我也不會在分析時將其拒於門外。」那麼,是什麼讓寫出《縱樂的困惑》、《維梅爾的帽子》等名著的歷史學者相信環境的決定作用?答案就是糧價。

卜正民先生像。
圖/wikipedia

以他的話來說,「太陽能與人類需求的關係,是透過糧價調節的。從景泰年間到崇禎年間,糧價在五次環境泥淖其中激增,每一次都把價格多往上推一截,這樣的事實也說服我必須採用氣候史的大框架。」卜正民表示,「一旦經濟體仰賴太陽輻射為能源來源,那麼無論大自然是幽而不顯還是顯而易見,都必然是社會或國家生命力的決定因素。」

在結語「氣候與歷史」中,卜正民再次反駁那些把明朝覆滅推給「失德」的見解。他認為,這種論調是「合理化明清兩朝遞嬗的過程」,且「編出這種敘事並為之背書的,就是征服者」。他強調,「明朝的滅亡固然不能推給災荒糧價,但講述崇禎末年重大危機時不把氣候因素納入考慮,那簡直就像莎士比亞所言,宛如癡人說夢,充滿著喧譁與騷動,卻沒有任何意義。」

-----廣告,請繼續往下閱讀-----

然而,不至於將環境決定論「拒於門外」是一回事,認為社會變遷就此被環境「決定」,又是另一回事。卜正民並不認為,面對氣候因素帶來的種種挑戰,明朝各級官員只能雙手一攤,感嘆天要亡我,不做任何努力。就如其他生活在小冰期的人們一般,卜正民認為,明朝人建設基礎設施、育種、建立制度、開發新科技與控制生育力等;但問題是,一六三○年代晚期的種種災害,並未催出社會的適應力,反倒是摧毀其適應力。

拜此時勃發的火山活動與激烈的聖嬰-南方震盪現象「之賜」,不論是政府還是市場,都變不出糧食。卜正民認為,至少在前五個泥淖期,明朝人還是表現出相當的韌性,努力予以調適。然而,進入崇禎泥淖期後,春夏乾冷,田地龜裂,運河無水。當每公斤的米得需要兩千五百公升的水,而老天爺就是不願意降下一滴雨時,糧食供應體系就此崩潰,連帶把物價與政治體系拖下去陪葬。

是誰忽略了眼皮底下的事實?這段歷史帶給我們什麼警訊?

回到卜正民所稱的「眼皮底下的事實」。我們要問,是誰忽略了這項事實?誰是這對眼皮的擁有者?卜正民的答案有二。一則是以研究社會、政治與環境變遷的人文社會科學研究者。以小冰期的相關研究為例,他表示,當他開始研究明代中國糧價變異與氣候變化之關係時,驚訝地發現,「其他地方的環境史對糧價幾乎不提」。與之對照,精通糧價的歷史研究者,如不是太快地把糧價理解為「公平交易」的指標,便是視之為社會關係的一環,忽略了糧食必得是在特定的環境條件下孕育出來的。

另一個忽略氣候或環境此事實者便是卜正民的同代人,也就是在閱讀這本書的你我。現代人對物價飛漲的關注程度遠比全球暖化、極端氣候與環境破壞來得高;畢竟,前者是切身之痛,後者則相當遙遠,是北極熊與紅毛猩猩的事。
圖/unsplash

另一個忽略氣候或環境此事實者便是卜正民的同代人,也就是在閱讀這本書的你我。現代人對物價飛漲的關注程度遠比全球暖化、極端氣候與環境破壞來得高;畢竟,前者是切身之痛,後者則相當遙遠,是北極熊與紅毛猩猩的事。然而,卜正民的分析告訴我們,即便明代中國離現在相當遙遠,所謂的小冰期至少也是一百五十年以上的事,但物價恐怕還是可作為某種氣候指標。換言之,若人們以關心物價的熱誠來關心環境,面對當代的環境危機,說不定人們多少可找出個解方。

-----廣告,請繼續往下閱讀-----

此外,讓人心生警惕的是,卜正民告訴我們,小冰期多少是個漫長的地球系統變化。小冰期本身並未造成明朝衰亡,是相伴的極端氣候摧毀了明代社會的韌性與調適。他也認為,面對小冰期、火山噴發與聖嬰-南方震盪現象誘發的極端氣候,從後見之明來看,明朝人也做了他們可以做的,但也只多苟延殘喘了七年,且還是生存條件都被剝奪、生活尊嚴都被否定的七年。

那麼,當人類誘發的氣候變遷可能已加劇了聖嬰-南方震盪現象,讓去年(二○二三年)夏天成為有紀錄以來地球最熱的夏天,而極端氣候彷彿成為日常,人類還有多少時間可以調適?如果說明朝多少是被地球系統的正常運作摧毀,當今地球系統的異常,是人類自己造成的,數百年後的歷史學家,在回顧這段歷史時,恐怕無法如卜正民對待明朝人一樣地寬厚,只能說這是咎由自取。諸如此類的思考,都讓《價崩》有了跨越時代的現實意義。

畢竟,明朝人不是外星人,他們跟我們都生活在同一個地球上。

——本文摘自《價崩:氣候危機與大明王朝的終結》,2024 年 05 月,城出版出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
所有討論 2
衛城出版_96
4 篇文章 ・ 4 位粉絲
"每個人心中都有一座城。每個人在心裡攜帶著文明的種子。 守衛讀者心中之城,與文明的生命力。"

1

0
0

文字

分享

1
0
0
批評反而促成發展?科學化中醫和宋朝佛儒交融類似?——《非驢非馬》
左岸文化_96
・2024/04/26 ・3068字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

「雜種醫」的挑戰

余巖在一九三二年出版《醫學革命論文選》第二版之時,新版序的開場白就敘述了朋友對他的氣憤埋怨。他們說:

近年外面半新半舊非驢非馬的醫說,橫行得了不得。這點狡獪都是你教訓他們的。你若不去向他們攻擊,他們永遠不會變遷。舊的索性舊,新的索性新,倒是界限分明,容易解決。⋯⋯你拚命攻擊舊醫,結果是教訓他們尋出一條生路。

余巖先生像。
圖/wikipedia

在一九二九年的衝突之後,許多批判中醫的人都注意到一個令他們毛骨悚然的現象:一夕之間,出現了一種「非驢非馬」的雜種醫。在很短的時間裡,雜種醫就在醫界大行其道,而之前這種混種現象只盛行於商業界的藥品市場而已。雖然抱持第一與第三立場的人對於中醫科學化的意見相反,但他們都把陸淵雷與譚次仲的方案抨擊為「非驢非馬」。

為何被譯為「雜種醫」?

在此,我想清楚說明為什麼把「非驢非馬醫」翻譯為「雜種醫」(mongrel medicine),而不是聽起來比較正面的「混種醫」(hybrid medicine)。第一,兩者間有一個重要的不同之處,就在於「雜種醫」是當年的歷史行動者所使用的概念。當年批判中醫的人士把「非驢非馬醫」等同於「雜種醫」,因爲他們想強調這種醫療是一個背叛了父母的雜種,是對兩個純種醫學傳統的雙重背叛。

這樣強烈的負面意涵便引出我的第二個論點:作為歷史行動者的概念而言,當年沒有任何中醫師會自我標榜為「非驢非馬」,「非驢非馬」是中醫批評者強加在他們身上的一種貶抑性的標籤。相較於「雜種」與「非驢非馬」所帶有的強烈的負面意涵,「混種性」(hybridity)這個後殖民概念的功能剛好相反,它強調「後殖民文化的混種性是一個優點,而不是弱點。」我想傳達的訊息卻正是混種的負面意涵:對於那些企圖匯通中西醫的人而言,他們必須承受對手加諸己身的羞辱與限制,被對手定義為「雜種」。為了傳達「非驢非馬」一詞的貶抑與羞辱,我決定將其意譯為「雜種醫」。

-----廣告,請繼續往下閱讀-----
對於那些企圖匯通中西醫的人而言,他們必須承受對手加諸己身的羞辱與限制,被對手定義為「雜種」。為了傳達「非驢非馬」一詞的貶抑與羞辱,我決定將其意譯為「雜種醫」。
圖/unsplash

備受罵名,仍要追求中醫科學化的原因為何?

面對來自雙方的攻擊,陸淵雷決定在那份備受爭議的中醫科學化提案當中,將接納雜種醫列為五項前提之一:「故整理國醫藥學術,引用科學原理時,不任受破壞國粹之名。」在此陸淵雷清楚表示不認同將中醫視為「國粹」而保存其本真性(authenticity)。

這是一項重要的證據,顯示至少對陸淵雷而言,國醫運動不當被等同為一種文化民族主義運動。他特別提及儒學與佛教在宋朝(九六○ — 一二七八)成功融合的例子,而主張中醫科學化是性質接近的事業,是以一種大膽而富有創意的方式來融合中國與外國文化。就這個意義上而言,像陸淵雷這樣的人士不僅發動了中醫科學化方案,更心甘情願地承受論敵貼在他們身上的貶抑性標籤,因為他們追求的目標不是保存中醫既有的樣貌,而是要發展出國醫館所揭示的那種新生的混種醫。

陸淵雷提及儒學與佛教在宋朝成功融合的例子,而主張中醫科學化是性質接近的事業,是以一種大膽而富有創意的方式來融合中國與外國文化。
圖/ wikipedia

余巖的友人責怪余巖協助創造了這種雜種醫。他們是對的。雜種醫之所以會興起,就是為了回應余巖和其他中醫批評者所倡議的醫學革命。這並不是說在余巖對中醫提出抨擊之前,不曾有人試圖融合這兩種醫學型態──唐宗海就是一個明顯的先例。重點是,雜種醫之所以突然間變地那麼值得追求、那麼引人痛毀極詆、那麼危機四伏,這一切都源於人們堅持要以科學方法整理中醫──換句話說,就是中醫科學化。有史以來第一次,當中醫師想像中醫與西醫的關係之時,他們無可逃避地必須共同直面科學的概念。

雜種醫與中醫科學化的關係?

雜種醫與中醫科學化之間,有一種相互建構與壓制的辯證關係。這兩者的關係具有相互建構性,因為中醫師會想追求雜種醫這種古怪的東西,完全是因為國民黨國家提倡中醫科學化,並強迫抗爭雙方以其作為停戰條件。正是這個科學化的目標,迫使中醫師在改革中醫時認真看待科學的概念以及相關的現代性論述──例如余巖對於中醫的三分法。就這個意義上而言,他們的改革體現現代性的特徵,因此截然不同於由唐宗海為代表的那種前現代式的匯通中西醫。

-----廣告,請繼續往下閱讀-----

另一方面,這兩者之間的關係也具有壓抑性,因為正是科學的概念使人難以想像中醫與生物醫學之間能夠經由跨種雜交而產生有意義的成果。單純想像把兩種醫學型態混合起來,或許不需要擔心會產生怪物。但若是想像將科學與異己的他者進行跨種雜交,感覺上幾乎是褻瀆神聖。由於大家都覺得這是一個無法想像的作法,無怪乎批評者將這種新式醫學描述為「非驢非馬」。

中醫師會想追求雜種醫這種古怪的東西,完全是因為國民黨國家提倡中醫科學化,並強迫抗爭雙方以其作為停戰條件。正是這個科學化的目標,迫使中醫師在改革中醫時認真看待科學的概念以及相關的現代性論述。
圖/pexels

就像那無法繁殖後代的騾,雜種醫雖然表面上看來充滿活力,卻絕對不可能長久存續,無法成為一個富有生命力的活著的傳統(living tradition)。正因為這種醫學廣受大眾歡迎,反對者覺得必須利用雜種醫這個貶抑性的概念,以提醒眾人逾越界線的危險,使人們產生強烈的負面情緒。總而言之,就是因為論爭雙方都接納中醫科學化方案,是以雜種醫才會變成一個廣受中醫師支持的、值得追求的、卻又沒有希望成功的方案;另一方面,也變成西醫師眼中巨大的威脅。

結論

西醫師為何強烈地偏好「中醫科學化」這句口號,而不是「以科學方法整理中醫」?關鍵就在防止雜種醫。由於這句口號包含了「科學化」這個在地發明的概念,因此也就把我們帶回了本章一開頭提出的那個問題:在一九三○年代初期的中西醫論爭中,中醫科學化方案做為一股關鍵歷史力量,究竟發揮了什麼樣的功能?最直白的答案就是,將科學轉化為一個動詞(科學化),其實是最有效的方式來展示世界上存在著一種同質性的實體叫做科學。

如果科學不能被理解為一種同質性的單一實體,那便難以想像將某個東西「科學化」究竟是什麼意思。更重要的是,當人們習以為常、不假思索地使用「科學化」這個動詞時,大家的行為便預設並且強化了一個想法:科學及其對反(中醫)是兩個可以清楚辨識的實體,就像具體的物品一樣真實。

-----廣告,請繼續往下閱讀-----

——本文摘自《非驢非馬:中醫、西醫與現代中國的相互形塑》,2024 年 02 月,左岸文化出版,未經同意請勿轉載。

所有討論 1
左岸文化_96
39 篇文章 ・ 11 位粉絲
左岸的出版旨趣側重歷史(文明史、政治史、戰爭史、人物史、物質史、醫療史、科學史)、政治時事(中國因素及其周邊,以及左岸專長的獨裁者)、社會學與人類學田野(大賣場、國會、工廠、清潔隊、農漁村、部落、精神病院,哪裡都可以去)、科學普通讀物(數學和演化生物學在這裡,心理諮商和精神分析也在這裡)。