0

0
0

文字

分享

0
0
0

【記錄】M.I.C. x 民視「科學再發現」:能源 II

羅紹桀
・2014/08/11 ・4917字 ・閱讀時間約 10 分鐘 ・SR值 529 ・七年級

10383011_749117508485929_4252818992086049904_n

「試論麻瓜為什麼要用電?」是霍格華滋麻瓜研究的必考考題,對於巫師來說,所謂的能源就是我們麻瓜社會用來代替魔法的東西,冷氣、電腦、智慧型手機,任何能行使神奇功能的東西都需要用到電,但當你在為你的智慧型魔杖充電的時候,你知道你的法力來源在哪裡,又為什麼有時候會失靈嗎?泛科學「M.I.C. x 民視科學再發現:能源 II」邀請到兩位講者,分別是工業技術研究院綠能所電能技術組的梁佩芳組長,還有財團法人船舶暨海洋產業研發中心海洋產業處的湛翔智工程師,談談能源的現在與未來。

淺談智慧電網

講者:梁佩芳|工業技術研究院 綠能所 電能技術組 組長

成功大學航空太空工程系博士,自1999年起在工研院服務,曾擔任航太中心/系統中心工程師/經理、能環所組務經理/副組長,現為能環所/綠能所組長,—主持能源局「智慧節能網路」至「智慧電網節能控制」系列計畫、—參與能源局「智慧型電表研究」及「智慧電網技術規劃研究」計畫,專長為綠色能源、電控系統。

電網是什麼?

電從哪裡來?電一定從電廠來的,電廠放電會用高壓送過來,因為這樣能量的流失才會比較少,有多高呢?大電廠出來是是三十四萬五千伏特,當然不能直接用,所以從電廠出來至少經過兩次電壓轉換會先經過一次變電站,電壓會低一點,又經過二次變電站,又再低一點,最後再送給不同的用戶,包括工廠、學校、家庭,進入家庭的通常還會經過一個桿上變壓器,因為家用電的電壓更低,比較大的單位貨大樓自己也有一個變電站,這就是電怎麼來的。

我們為什麼稱之為電網呢?是因為從供應端到需求端是需要一個網路傳下來,有點像一個網子,而北中南的用電量並不相同,所以需求和電廠的的分佈是不一樣的,北部需要比較多的電,所以有時南部電廠還要送電上去,電網和水管送水很不一樣的地方就是,當需求大於供應時,電壓就會往下拉,電就會送不出去,電壓的供需不平衡時,設備會出問題甚至燒掉,所以電的供需必須要隨時保持平衡,水與瓦斯供需不平衡頂多水少用一點或瓦斯少用一點,但電力供需不平衡就會整個垮掉。這就是為什麼要談智慧電網,就是讓它夠聰明不會垮。

用電需求並非一成不變

我們的用電需求並非一成不變。梁組長舉了100年八月十八號當天的用電量表,最底下紅色是核能,綠色是燃煤電廠,這張圖清楚地表示一天當中使用電的供需一直在變化,但供需要平衡怎麼辦,電力公司就會不時開關電廠,台電幾乎幾分鐘就會調整一次電廠,因此及時地調度就是供需平衡中很重要的課題。

如何降低平均停電時間?

我們看電廠穩不穩,有一個參數叫SAIDI(平均停電時間)台灣平均年一戶20分鐘,韓國和我們差不多,新加坡電網比較小好管理是一分鐘,歐洲一個小時。美國則到四個小時。

但要怎麼降低平均停電時間呢?一般來講,終端的供應線我們叫饋線(舉澎湖為例)圖上綠色是某一個饋線,藍色也是一個饋線,上面有看到一個符號就是電力的開關,這兩個饋線的終端是接在一起的,也就是有些用戶可以從藍色的饋線得到電力供應,也可以從綠得的饋線獲得,但在操作時通常是斷開,這時如果藍色線中間斷了,如果輸配線自動化做得好,它知道藍色線斷了,很快就可以從綠色線那邊供應過來,停電區域就能縮小。所以台灣為什麼輸配電做得不錯,就是因為輸配電自動化做得不錯。

智慧電網

智慧電網在談兩個新的概念,整合新元素和強化功能。

整合新元素的部分,比方說電動車、再生能源、智慧電表、智慧用戶;強化功能例如輸配電自動化的加強,或是提升效率。

下圖是智慧電網典型的示意圖,傳統的智慧電網被理解成樹狀的結構,智慧電網則是像是幾個環串在一起,我們會覺得它不再是傳統一路上送下來,這個電網上有很多地方可以供電,電從哪裡流到哪裡不一定,所以有很多個環,圖中看到的小環表示環內電力可以獨立運作,我們稱它為「微電網」,如果其它電網掛掉的時候它們可以持續供電。智慧電網中有一些新的元素如再生能源、電動車等等,這些是缺乏智慧的電網比較難管理的能源。

梁佩芳:淺談智慧電網 - YouTube (4)

再生能源

再生能源現在看到比較多的是風力發電機或是太陽光電。但再生能源事實上是相對不穩定的能源,為什麼呢?下圖是在加拿大的某五個風機出力變化圖五天的變化。

梁佩芳:淺談智慧電網 - YouTube

我們可以看到每天的發電量變化不斷,我們可以看到,有些時候幾乎是罷工,有時只有一半的工作量,這代表我們很難控制它們的工作量,有風就有風,沒有風就沒有,風太大的時候也不能轉。舉台灣海峽為例,一年8640小時,台灣海峽滿發時數約4000小時,換句話說,它有一半的時間不太夠力或根本不轉。

太陽光電更慘,舉台灣南部的太陽光電廠為例,平均一天只有四個小時在發電,也就是只有六分之一的時間在發電。

所以再生能源目前有兩個主要的問題:1.長時間的不輸出2.短時間的不穩定

這就是為什麼我們還是需要火力發電廠和核能,我們需要備一些可控的電廠,舉火電廠為例,火電廠滿發時數是可控的,要整年在燒就整年燒,再生能源只有少數是可控的如地熱,但風力和太陽能就是典型不可控的再生能源。

智慧電表系統

智慧電網的電可能來自不同的來源,用戶我們都視為可以調度的,有時候叫用戶少用一點,有時叫用戶多用一點,但我們怎麼控制用戶,就要有一個溝通的管道,我們必須知道用戶有沒有在用電、用了多少,所以我們需要智慧電表的系統,讓用戶與電力公司雙向溝通,概念很簡單,就是家裡裝一個智慧電表,透過網路送回電力公司,就這樣,台電已經針對高壓用戶做了智慧電表。

智慧電表有什麼好處呢?我們可以利用智慧電表的資訊試圖阻止用電尖峰的產生,例如一些尖峰電價的措施,可能的操作的方式有三種:志願性、競標、直接控制。

志願性:電力公司可能說明天需要大家配合少用點電,可以配合的就上網去登記,可以做願意做的就上去登記,因為有智慧電表所以電力公司會知道你是不是真的有少用電,有真的做的人就能得到獎勵。

競標:比方說電不夠了,那下一個時段省一度電就給你十塊,有沒有人要?如果願意節電的人不夠,那就十五塊?再看看有多少人。

直接控制:例如和電力公司簽約之後,你家冷氣機就被直接控制了,如果電力不夠就直接把你的冷氣切掉。

總結

沒有能源是沒有成本的,風力發電也會影響到白海豚,太陽光板晶片的製造過程也會有汙染,所以最好的解套方法還是節省用電,而在使用再生能源時,傳統電力也不可能不備著,只是要備多少的問題。電網的「智慧」表現在我們資料的收集和決策的智慧上。

從臺灣探索地球內太空,海洋技術發展機會

講者:湛翔智|財團法人船舶暨海洋產業研發中心 海洋產業處 工程師

大學畢業前,開始對海洋科技產生興趣,碩士班就讀國立中山大學海下技術研究所,博士班就讀國立臺灣大學工程科學及海洋工程學研究所,從此展開探索地球的內太空—「海洋」。在2007年取得博士學位後,開始從事海洋科學與聲納技術的研究工作,在2012年至財團法人船舶暨海洋產業研發中心服務,開發離岸產業必備的海洋系統和水下技術。

湛翔智:從臺灣探索地球內太空,海洋技術發展機會 - YouTube (2)

海洋的重要性

當我們去探索海洋的環境、資源的時候,我們很習慣把它形容是地球的內太空,所以今天的這個題目定為:「從臺灣探索地球內太空,海洋技術發展機會」關於海洋的重要性,和能源與資源有關的議題我們分成幾個點來介紹:

漁業:因為過去對於食物上的需求,有過漁(過度捕魚)的現象,因為過漁現象導致我們現在淺海抓不到魚,現在我們吃的魚大多是人工飼養或遠洋漁業,這是資源失衡的現象之一。

船運:在台灣的船運是很明顯的經濟價值,談到能源我們知道台灣百分之九十的能源從船運而來,包含石油、天然氣等等,所以談到能源和糧食,台灣船運是屬於不可或缺的一環。

製造氧氣吸收二氧化碳:海中浮游物種製造地球超過一半的氧氣,吸收二氧化碳。

調節溫度:海洋可調節溫度,減緩氣候的變化。

水循環:海水為水循環中的一部分。

海洋的探測技術與面臨的問題

湛翔智:從臺灣探索地球內太空,海洋技術發展機會 - YouTube

在海洋中不同深度的探測,你所使用的載具和探測的工具是不同的,也要面對不同的問題,列舉如下:

水壓:每潛十公尺水深增加一大氣壓。

電力供應:海中的系統電力供應非常有限,只能靠船上的電纜送電到海面下或是靠本身載具的電池,需要足夠的電力下去又上來。

通訊:電磁波在水下難以到達,比須使用水下聲波作探測,但聲波和電磁波的傳輸速度差很大,所以資訊的速度和量都比較少。

海洋浮標

海洋浮標是一種現代化的海洋觀測設施,它浮於海面上並錨定在指定位置,用來收集海洋環境資料,並能實現數據的自動採集、自動標示和自動發送,它提供給船隻在進出港時安全的訊息,例如風浪過大時不宜進出港口。

大型海洋觀測站

美國布放相當多海洋觀測站,因為美國冷戰時期在海灣設置許多監聽潛艦的聲納系統,冷戰結束後就轉換成海洋觀測站,可以搜集很多海洋裡的資訊包含海流、溫度變化、海中植物等等,所以這些系統的再利用也產生了更多的海洋研究的議題,這樣的系統後來在歐洲發展出更龐大的系統,因為歐盟所訂出來對環境保護的規章遠勝於美國,台灣交通部建設局也有一套,在早期他們的規劃是希望監測東部海嘯的海底地震和海嘯,所以是科學研究旱防災建設的用途。

海洋技術發展機會

在海洋中最大的能源來自於鑽油平台,因為陸地上的石油大多已經挖乾了,所以轉而在海上挖石油,現在全世界有一些很大的鑽油平台,包括美國墨西哥灣、巴西、歐洲北海都有很大的海上油田,這些油田都需要很多的海洋技術,為什麼他們肯投入這麼多的資金做海洋技術呢?因為鑽油平台只要不鑽油幾天,他們就會損失龐大,因為鑽油是不能停的,如果有意外會慘賠,所以寧可投資更多海洋技術確保海上的鑽油平台是安全的。

再生能源的部分則要講到海上離岸風電,下圖所示是全球離岸風電的統計資料:

湛翔智:從臺灣探索地球內太空,海洋技術發展機會 - YouTube (1)

顏色綠色到深藍色的變化代表風速的大小,風速大小代表能截取能源的高低,其中有一個成本的問題,就是離用戶越遠,發電成本就越高,設置風機點的水深越深技術成本也越高,離岸風電有兩個比較熱門的點,一個是北歐已經發展了二十年,另一個在台灣海峽事實上是個新興的市場,但台灣還沒有蓋起來,除了台灣,日本在這一兩年也已經成功建設幾座離岸的風力發電機。

北歐為什麼適合發展離岸風電呢?因為他們本身具有一些鑽油平台,因此有很多現成的海上工程的結構和技術,很順其自然的可以順便發展離岸風電。

台灣的離岸風電

基本上經濟部有一些規劃,但目前還是缺乏大部分的技術,再者就是因為台灣西海岸有很多是出海口,會有很多鬆軟的泥沙堆積在出海口,造成它有很多鬆軟的海床,但很多機具需要立在海床上,加上台灣颱風多、地震多,這些種種的問題是台灣特別要關切的,而離岸風機真正的考驗是要維持,不要蓋了就倒。目前中樣氣象局的海洋浮標都是在近岸,但我們希望將來能有更多離岸觀測站,才能提供更多的安全的資訊,確保海上技術的安全。


【關於 M. I. C.】

M. I. C.(Micro Idea Collider,M. I. C.)微型點子對撞機是 PanSci 定期舉辦的小規模科學聚會,約一個月一場,為便於交流討論,人數設定於三十人上下,活動的主要形式是找兩位來自不同領域的講者,針對同一主題,各自在 14 分鐘內與大家分享相關科學知識或有趣的想法,並讓所有人都能參與討論,加速對撞激盪出好點子。請務必認知:參加者被(推入火坑)邀請成為之後場次講者的機率非常的高!

「M.I.C. x 民視科學再發現」系列活動指導單位為科技部,協辦單位為民視文化、PanSci 泛科學。

有任何疑問,歡迎透過聯絡表單電子郵件、或於上班時段撥打 (02)3322-1768(台灣數位文化協會)聯繫。

文章難易度
羅紹桀
18 篇文章 ・ 3 位粉絲
目前在美國一家數位行銷公司當SEO分析師,特別愛Google的What People Also Ask功能所以還特地開了一個Youtube頻道專門分享各種關鍵字會觸發什麼PAA。 影片皆有中文字幕歡迎訂閱:https://www.youtube.com/channel/UClgRDretD9XNp3ydod8TIlA/videos

0

1
0

文字

分享

0
1
0
用這劑補好新冠預防保護力!防疫新解方:長效型單株抗體適用於「免疫低下族群預防」及「高風險族群輕症治療」
鳥苷三磷酸 (PanSci Promo)_96
・2023/01/19 ・2874字 ・閱讀時間約 5 分鐘

本文由 台灣感染症醫學會 合作,泛科學企劃執行。

  • 審稿醫生/ 台灣感染症醫學會理事長 王復德

「好想飛出國~」這句話在長達近 3 年的「鎖國」後終於實現,然而隨著各國陸續解封、確診消息頻傳,讓民眾再度興起可能染疫的恐慌,特別是一群本身自體免疫力就比正常人差的病友。

全球約有 2% 的免疫功能低下病友,包括血癌、接受化放療、器官移植、接受免疫抑制劑治療、HIV 及先天性免疫不全的患者…等,由於自身免疫問題,即便施打新冠疫苗,所產生的抗體和保護力仍比一般人低。即使施打疫苗,這群病人一旦確診,因免疫力低難清除病毒,重症與死亡風險較高,加護病房 (ICU) 使用率是 1.5 倍,死亡率則是 2 倍。

進一步來看,部分免疫低下病患因服用免疫抑制劑,使得免疫功能與疫苗保護力下降,這些藥物包括高劑量類固醇、特定免疫抑制之生物製劑,或器官移植後預防免疫排斥的藥物。國外臨床研究顯示,部分病友打完疫苗後的抗體生成情況遠低於常人,以器官移植病患來說,僅有31%能產生抗體反應。

疫苗保護力較一般人低,靠「被動免疫」補充抗新冠保護力

為什麼免疫低下族群打疫苗無法產生足夠的抗體?主因為疫苗抗體產生的機轉,是仰賴身體正常免疫功能、自行激化主動產生抗體,這即為「主動免疫」,一般民眾接種新冠疫苗即屬於此。相比之下,免疫低下病患因自身免疫功能不足,難以經由疫苗主動激化免疫功能來保護自身,因此可採「被動免疫」方式,藉由外界輔助直接投以免疫低下病患抗體,給予保護力。

外力介入能達到「被動免疫」的有長效型單株抗體,可改善免疫低下病患因原有治療而無法接種疫苗,或接種疫苗後保護力較差的困境,有效降低確診後的重症風險,保護力可持續長達 6 個月。另須注意,單株抗體不可取代疫苗接種,完成單株抗體注射後仍需維持其他防疫措施。

長效型單株抗體緊急授權予免疫低下患者使用 有望降低感染與重症風險

2022年歐盟、英、法、澳等多國緊急使用授權用於 COVID-19 免疫低下族群暴露前預防,台灣也在去年 9 月通過緊急授權,免疫低下患者專用的單株抗體,在接種疫苗以外多一層保護,能降低感染、重症與死亡風險。

從臨床數據來看,長效型單株抗體對免疫功能嚴重不足的族群,接種後六個月內可降低 83% 感染風險,效力與安全性已通過臨床試驗證實,證據也顯示針對台灣主流病毒株 BA.5 及 BA.2.75 具保護力。

六大類人可公費施打 醫界呼籲民眾積極防禦

台灣提供對 COVID-19 疫苗接種反應不佳之免疫功能低下者以降低其染疫風險,根據 2022 年 11 月疾管署公布的最新領用方案,符合施打的條件包含:

一、成人或 ≥ 12 歲且體重 ≥ 40 公斤,且;
二、六個月內無感染 SARS-CoV-2,且;
三、一周內與 SARS-CoV-2 感染者無已知的接觸史,且;
四、且符合下列條件任一者:

(一)曾在一年內接受實體器官或血液幹細胞移植
(二)接受實體器官或血液幹細胞移植後任何時間有急性排斥現象
(三)曾在一年內接受 CAR-T 治療或 B 細胞清除治療 (B cell depletion therapy)
(四)具有效重大傷病卡之嚴重先天性免疫不全病患
(五)具有效重大傷病卡之血液腫瘤病患(淋巴肉瘤、何杰金氏、淋巴及組織其他惡性瘤、白血病)
(六)感染HIV且最近一次 CD4 < 200 cells/mm3 者 。

符合上述條件之病友,可主動諮詢醫師。多數病友施打後沒有特別的不適感,少數病友會有些微噁心或疲倦感,為即時處理發生率極低的過敏性休克或輸注反應,需於輸注時持續監測並於輸注後於醫療單位觀察至少 1 小時。

目前藥品存放醫療院所部分如下,完整名單請見公費COVID-19複合式單株抗體領用方案

  • 北部

台大醫院(含台大癌症醫院)、台北榮總、三軍總醫院、振興醫院、馬偕醫院、萬芳醫院、雙和醫院、和信治癌醫院、亞東醫院、台北慈濟醫院、耕莘醫院、陽明交通大學附設醫院、林口長庚醫院、新竹馬偕醫院

  • 中部

         大千醫院、中國醫藥大學附設醫院、台中榮總、彰化基督教醫療財團法人彰化基督教醫院

  • 南部/東部

台大雲林醫院、成功大學附設醫院、奇美醫院、高雄長庚醫院、高雄榮總、義大醫院、高雄醫學大學附設醫院、花蓮慈濟

除了預防 也可用於治療確診者

長效型單株抗體不但可以增加免疫低下者的保護力,還可以用來治療「具重症風險因子且不需用氧」的輕症病患。根據臨床數據顯示,只要在出現症狀後的 5 天內投藥,可有效降低近七成 (67%) 的住院或死亡風險;如果是3天內投藥,則可大幅減少到近九成 (88%) 的住院或死亡風險,所以把握黃金時間盡早治療是關鍵。

  • 新冠治療藥物比較表:
藥名Evusheld
長效型單株抗體
Molnupiravir
莫納皮拉韋
Paxlovid
倍拉維
Remdesivir
瑞德西韋
作用原理結合至病毒的棘蛋白受體結合區域,抑制病毒進入人體細胞干擾病毒的基因序列,導致複製錯亂突變蛋白酵素抑制劑,阻斷病毒繁殖抑制病毒複製所需之酵素的活性,從而抑制病毒增生
治療方式單次肌肉注射(施打後留觀1小時)口服5天口服5天靜脈注射3天
適用對象發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人(18歲以上)的輕症病患。發病7天內、具有重症風險因子、未使用氧氣之成人與孩童(年齡大於28天且體重3公斤以上)的輕症病患。
*Remdesivir用於重症之適用條件和使用天數有所不同
注意事項病毒變異株藥物交互作用孕婦哺乳禁用輸注反應

免疫低下病友需有更多重的防疫保護,除了戴口罩、保持社交距離、勤洗手、減少到公共場所等非藥物性防護措施外,按時接種COVID-19疫苗,仍是最具效益之傳染病預防介入措施。若有符合施打長效型單株抗體資格的病患,應主動諮詢醫師,經醫師評估用藥效益與施打必要性。

文章難易度
鳥苷三磷酸 (PanSci Promo)_96
161 篇文章 ・ 270 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

3
2

文字

分享

0
3
2
若風力、太陽能變成主要能源,如何不被無風陰天弄得全國大停電?──《牛津通識課|再生能源:尋找未來新動能》
日出出版
・2022/07/20 ・3299字 ・閱讀時間約 6 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

電網:將電力輸送到各地的網路系統

在十九世紀,電力是在靠近電力需求的地方生產的,但到了二十世紀,規模經濟催生出集中式發電廠、長距離傳輸線和地方的變電站。現在,世界上大多數國家的電力都是透過電網來提供。

電網,就是用來傳輸電力的網路,像是電廠、變電廠、配電系統等等,都是電網的一環。圖/Pixabay

這套系統是為了滿足供電需求──最低需求稱為基本負載(baseload)──所設計的,由最便宜的發電機來滿足。

直到最近,發電方式通常是以燃煤為主(也有國家是以核電或水力發電為主),而且大部分的時間都在運作。會搭配其他發電廠(通常是循環燃氣渦輪發電機)來支援,以滿足每天的負載量變化,也會有可快速運作的小型燃氣渦輪或柴油發電機來應對激增的需求或是發電廠停擺等故障問題。

發電廠和變電站間的輸配電系統很重要,這可確保即使有單一線路或發電廠出現問題,仍舊能夠維持電力供應。電網有辦法將電力輸送到偏遠社區,也能獲得偏遠地區的發電。

再生能源進場後,該如何和傳統電廠互相配合?

現在,太陽光電場和風場在許多電網上提供的電力占比日益升高,這正在改變對發電廠的要求。在一般情況下,一天之中混合使用再生能源和傳統發電廠的發電方式最為經濟,而不是完全使用大型的傳統發電機。

風場和太陽光電場容易受到天氣的影響,現階段該如何讓再生能源電場與一般傳統電廠配合,也是能源議題中的一大考驗。圖/Pixabay

除了提供潔淨的電力外,風場和太陽光電場的營運成本最低──這稱為邊際成本(marginal costs)──因為它們沒有燃料成本,並且會首先調用。

為了讓風場和太陽光電場達到最大使用效能,最好是搭配能夠因應電力供需變化而快速反應的其他發電廠;而且理想上,這些電廠的運作也應該符合經濟效應,運作時消耗的用電量僅占其最大負載量的一小部分。

一般來說,燃煤電廠和核電廠的數量並不會有快速的增減,而燃氣和再生能源電廠則是更好的選項。根據地點的不同,水力發電、生質能、地熱和聚光太陽能(搭配蓄熱儲能)都可以擔任靈活發電的功能。

化石燃料發電廠可以儲存燃料並因應需求來提供電力。風場和太陽光電場與這些可以隨時供電──稱為可調度或固定供應──的發電廠不同,這兩者的運作都取決於天氣這項變數。

運用 AI 技術,擺脫「天氣」這個天生弱點!

儘管有時會出現風力弱和陰天的日子,然而,與一些人想像的剛好相反,擁有大量風力發電和太陽光電的電網其實能夠在需要時提供電力。

透過人工智慧(artificial intelligence,AI)來獲取良好的天氣預報,太陽光電場和風場的輸出變化通常是可以預期的,因此可得到最佳結果。

透過人工智慧的協助,可以更有效的運用電力。圖Envato Elements

當再生能源供應達到總電力需求的 30% 時,這些變化可以輕易透過裝配在電網上的快速反應發電廠來填補,以滿足供電需求的變化。

當一處 1000 兆瓦的大型發電廠意外跳電(可能是設備故障或過載),處理起來可能遠比風力發電或太陽光電的電力突然下降更具挑戰性。備用儲電站必須迅速上線,而風場和太陽光電場若是尚未達到滿載,還可以在有風和晴天的天氣迅速提高其發電量,提供額外的寶貴備用電。

再生能源成為主要來源後,怎麼讓電供保持穩定?

為了提供潔淨、安全和價格低廉的電力,並且在本世紀中葉大幅減少碳排放,避免氣候變遷演變到危及生靈的程度,全球的供電必須以再生能源為主。透過增加再生能源的輸出、地理分布以及與其他電網的連結,再生能源的供電占比將可望提高到電網的 50% 左右。

在一定程度上,增加這類綠電的發電能力可以彌補天氣條件惡劣的情況,而連接大範圍的太陽光電場和風場則可以提供更平穩可靠的電力。

在歐洲,丹麥已經與挪威、瑞典或德國等國進行電力交易,以此來平衡電力供需:在他們自己的風力發電量高時出口電力,而在發電量低時則進口電力。

然而,建立洲際再生電網並非易事。過去曾經有一項 DESERTEC(沙漠科技基金會)的提案,計畫要將北非的太陽能傳送到歐洲,但由於政治不穩定,再加上不同地區和國家對規畫中的電網各有所圖,產生相互衝突的反對意見,因此難以具體實現提案。

增加太陽能板的面積、建立跨國、洲際再生電網,都是維持電力供應穩定的做法。圖/Pixabay

此外,由於太陽能板的成本急劇下降,因此日照多的優勢變得不那麼重要,因為可以靠增加太陽能板的大小來彌補日照少的缺憾,這比支付長距離傳輸費用更為經濟。能夠在地方發電也等於是提供了一份供電的安全保障,不必依賴化石燃料進口。然而,廣泛架設的電網確實對於供需平衡有極大的幫助。

若是能配合供電來調整電力需求,就可降低對儲能廠的需求──這稱為「需量反應(demand response)」──或許可成為一個更便宜的選項,因為那些用來支援電力尖峰的快速反應發電廠的運作成本最高。

智慧電網:更聰明、更彈性的調整電力供應!

使用智慧電網可以讓電網營運商和用戶間進行雙向溝通,調整電力負載量,使其與供電端相等,這樣就能確定出需要從電網中取用的的需求量,或是添加量。

出現短時間停電或減少電力供應時,許多運作仍有可能繼續維持,好比那些具有熱慣性的操作──像是保持鐵或瀝青、熔融物或超市冰箱冷藏食物的溫度;或是建築物的溫度調節──或是在將零件組裝成產品前,先製造出充足的零件備量。

智慧電網最重要的就是雙向的溝通來進行調整。圖/Envato Elements

同樣地,可以透過啟動電爐、大型電解槽或海水淡化廠(以幫助應對氣候變遷造成的乾旱)來增加需求量。在數位化科技的推動下,我們正處於智慧電網革命的開端,這將會對電力負載量造成重大變化,將會讓邁向再生能源的這段過渡期更為容易,並且為客戶帶來更低的成本。

另外,可以用價格差異來鼓勵客戶改變他們的電力需求。在義大利,有推行一個簡單的計畫,是以固定費用(取決於所使用的最大功率)和每度電的價格來回收發電廠的資本和配電成本以及發電成本。

以限制電力需求的方式(讓消費端的電價變得更便宜),白天必須間隔使用電熱水壺、洗衣機和烤箱等電器;如果一次全部使用,就會跳電。

這樣便可降低發電成本中最高的尖峰用電。而在離峰期(例如夜間)提供便宜電價也是一種方式。不過要達到有效調整,需要同時使用智慧電網和智慧電錶。這樣用戶端可以看到他們的消費細節,並選擇僅在低電價或優惠價格時段才使用某些電器設備。

儲能設備對於提高再生能源的發電占比非常有幫助。以太陽光電場和風場這樣的組合來供應夜間用電,往往會有白天過度生產,導致電價下跌的情況。若是沒有儲能設備,必須盡可能出口過剩電力,或是以減少供電來降低損失。短期儲能可以將部分電力從下午轉移到晚上,因此小容量即可以滿足日常需求。

隨著電池成本的急劇下降,這種儲能的可用性變得越來越高,而且也開始取代那些用來補強綠電不足時的快速反應化石燃料電廠。

——本文摘自《【牛津通識課02】再生能源:尋找未來新動能》,2022 年 6 月,日出出版,未經同意請勿轉載。

0

2
1

文字

分享

0
2
1
每年有一千萬公頃的森林消失!把樹種回去,就可以解決問題了嗎?──《牛津通識課|再生能源:尋找未來新動能》
日出出版
・2022/07/19 ・1997字 ・閱讀時間約 4 分鐘

碳捕捉:把電廠排出來的二氧化碳再抓回去!

一九九〇年代,尚未開發出風能和太陽能,當時對氣候變遷的擔憂日益增加,因此有人建議捕捉和儲存那些從化石燃料發電廠排放出來的二氧化碳,如此就可將其轉變成一種低碳電力。

碳捕捉主要是透過化學反應將煙道氣(flue gas)中的二氧化碳分離出來,然後再將其壓縮液化,泵入地下洞穴,例如含水層或是廢棄的油氣田。

同時要針對傳統的發電機開收排放二氧化碳的費用。這將鼓勵電廠採用碳捕捉技術,不過前提是碳價要夠高,超過捕捉和封存二氧化碳的成本。

然而,即使在龐大的歐盟市場,碳的價格也從未高到足以讓碳捕捉在電力生產中具有競爭力,而且真正在運作的碳捕捉工廠很少。

碳捕捉將煙道氣(flue gas)中的二氧化碳分離出來,然後再加工處理。圖/Envato

即使如此,捕捉二氧化碳排放依舊可望成為一種脫碳方法,在未來某些產能製程中合乎成本效益。一個例子是將天然氣轉化為氫氣,這還能用於加熱和製造燃料電池,或用於生產水泥以及甲醇和氨等重要工業化學品。

碳捕捉的各種可行性:直接從空氣抓?多種一點樹?

也有人認真思考過直接從空氣中捕捉二氧化碳的可行性,因為目前我們所面對的現實非常危險,即二氧化碳排放量下降的速度恐怕來不及讓上升溫度控制在攝氏 1.5 度內。

種植更多的樹木可能是最簡單也最便宜的方法,但首先必須遏止每年大量的伐林問題。

每年約有一千萬公頃的森林遭到砍伐,用於種植大豆、棕櫚油和其他作物,以及放牧牲畜。這樣的伐林導致全球每年約 10% 的二氧化碳排放量和生物多樣性的重大損失。

目前二氧化碳排放量下降的速度沒辦法使上升的溫度控制在 1.5°C 內,再加上樹木被大量的砍伐,導致全球每年約 10% 的二氧化碳排放量和生物多樣性的重大損失。圖/Envato

此外,封存大量二氧化碳所需的樹林面積也相當大──約要美國國土面積的四分之一,需要超過六年,甚至幾十年的時間才能讓樹木長到成熟,每年只能吸收平均全球燃燒化石燃料的 10% 排放量。

而在成長期過後,還需要更換樹木,因為在建築中也會使用到木材。有人建議,可以燃燒林業的廢棄物來產生能量(熱或電),並捕捉和封存排放出來的二氧化碳。

這種生質能源的碳捕捉尚有爭議,必須要確保改變土地利用的這項變動最後的結果是產生淨負排放,而不是增加碳的排放量。此外,這種方法尚在開發中,可能會與其他對可耕地和淡水的需求產生競爭關係。

多種樹,真的可以救地球嗎?事情可沒有我們想的那麼簡單!圖/Pixabay

不過,可以使用化學吸收器直接從空氣中捕捉二氧化碳,這種方法比生質能源更緻密、更可靠, 只是目前的價格較為昂貴。

奧利金能源公司(Origen Power)正在開發將碳捕捉與具有商業價值的石灰生產相結合,這樣的製程可望降低成本。

吸碳新創公司「Carbon Engineering」也在開發另一種方法,是使用與二氧化碳接觸會形成碳酸鈣的氫氧化鉀。整個過程以石灰來合成氫氧化鉀,形成碳酸鈣,然後將其加熱,釋放出二氧化碳,進行壓縮和封存──這時便會再度合成石灰。他們預估,以這種方式捕捉二氧化碳的成本可望降低至每噸 100 美元。

碳捕捉的展望與未來

為了增加產值,可以將捕捉來的二氧化碳與氫結合(比方說以再生電力來電解水,製造出氫氣),這可用來合成低碳燃料,取代汽油、柴油或航空燃料,這樣一來,其總排放量會遠低於某些生質燃料。

若是要捕捉和封存燃煤發電廠排放的二氧化碳,電力成本會增加約 60%,而使用再生能源來發電,成本則低得多。

然而,隨著空氣碳捕捉的研發和大量投資,再加上在某些工業製程中捕捉二氧化碳,以及重新造林,預估到二〇五〇年時,碳捕捉可能會吸收掉全球年排放量的 10%。

到二〇五〇年,再生能源和核能的總發電量可能接近當前全球需求量的 90%,透過碳捕捉,全世界可能會達到二氧化碳淨零排放。但要處理大量再生電力,電網在輸送和分配上需要適應風場和太陽光電場輸出量的種種變數,因此發展儲能設備非常重要。

——本文摘自《牛津通識課|再生能源:尋找未來新動能》,2022 年 6 月,日出出版,未經同意請勿轉載。

日出出版
11 篇文章 ・ 5 位粉絲