Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

人體飛行之夢 -飛行裝!

Scimage
・2011/01/14 ・435字 ・閱讀時間少於 1 分鐘 ・SR值 419 ・四年級

像鳥類一樣用自己的身體飛翔一直是人的夢想之一,不過因為人體構造不合適,一直不能實現。鳥類的飛行所需的升力利用了兩種策略,一種是揮動翅膀讓空氣產生不對稱的流動,另一種是利用型態跟迎風角讓空氣自己產生不對稱流動,把前進阻力部分轉化成升力。後一種策略在風箏、風車、紙飛機,或是真正的飛機上都可以看到。

以人類來說,雖然前一種的人力飛行身體結構負擔不起,但是後一種的飛行方式只要想辦法讓飛行的速度夠快,使阻力變的夠大,就有可能可以實現。

這影片介紹的Wingsuit是一種跳傘特技在使用的裝備,可以讓人配備像鼯鼠的滑翔膜,這樣一來在空間停留的時間就會增加。如果更進一步,在腳上裝上小火箭增加滑翔的速度,只要到達一定速度,就可以提供夠多的升力一直持續飛行。

下面的影片就是這樣做的結果;當然,這樣的服裝需要很好的空氣動力學設計,人員也需要很好的訓練,不過或許有一天,只要稍微借助一點小動力裝置,用身體感受飛行不再是不能體驗的事情了!

-----廣告,請繼續往下閱讀-----

本文原發表於科學影像Scimage

-----廣告,請繼續往下閱讀-----
文章難易度
Scimage
113 篇文章 ・ 4 位粉絲
每日介紹科學新知, 科普知識與實際實驗影片-歡迎每一顆好奇的心 @_@!

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
2

文字

分享

0
2
2
守護飛行安全的重要後援!航空氣象知多少
鳥苷三磷酸 (PanSci Promo)_96
・2023/04/19 ・3347字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文由 我的青航時代-2023航發會×暑期航空營 委託,泛科學企劃執行。

座落在熱帶和亞熱帶氣候帶的台灣,地形複雜,天氣的變化多端,比另一半翻臉的速度還快。在地面上的人們尚且需要天氣預報,才能順利規劃日常生活起居;在天空中翺翔的飛機,同樣也必須仰賴航空氣象的資訊,才能完成一趟安全的飛行。一起來瞭解航空氣象扮演的重要角色吧!

努力讓「不測風雲」變得可測

過去不少令人觸目驚心的空難憾事,如 2014 年復興航空 222 號班機空難受颱風麥德姆風雨影響墜毀、2020 年空軍黑鷹直升機因天氣驟變失事,都與天氣因素有關。根據台灣國家運輸安全調查委員會的報告,台灣近 10 年的民用航空運輸重大飛航事故分析中,「天氣」是其中僅次於人員因素的事故原因。

因此要守護機組人員與乘客的安全,能否及時提供可靠的機場氣象觀測、預報及警報,供飛航作業人員參考,便至關重要。

-----廣告,請繼續往下閱讀-----
2012-2021 年民用航空運輸業重大飛航事故原因分類統計(單位:事件個數)
。圖/國家運輸安全調查委員會

那麽氣象資訊是怎麽來的呢?幕後功臣就是設置於台灣各處民航機場,堅守各自崗位的航空氣象臺。目前全島共有 5 個航空氣象臺(松山、桃園、高雄、豐年及金門)與 5 個任務臺(蘭嶼、綠島、恆春、北竿、南竿)[註1]負責監測航空氣象。

航空氣象人員的職責,就是蒐集、整理、分析和解釋飛航所需的機場及航路之預測、預報、警報及顯著危害天氣資訊。他們是飛航安全背後的强力後援,全天候守視飛航情報區天氣變化及提供諮詢。

氣象資訊從哪來?來認識氣象觀測的好幫手們

要即時準確地進行氣象觀測,絕對少不了各種氣象裝備的幫忙!任憑氣象七十二變,氣象人員也能透過氣象觀測隨時掌握情況,確保航空安全。飛航服務總臺在各民航機場都有設置的自動氣象觀測系統(Automatic Weather Observation System,簡稱 AWOS),是一個多功能的好幫手。它可以觀測風向、風速、能見度、跑道視程、雲量、雲高、溫度等等各種項目,讓氣象人員可以用來進行機場天氣測報和航機管制作業。

飛機在起飛降落時,最擔心遇到增加飛行難度的風切(Wind Shear)。風切指的是大氣中不同兩點之間,風速或風向的劇烈變化。低空風切(Low-level wind shear)則是指 1600 呎(500 公尺)以下空氣層中的風切,可能造成飛機難以操控而被迫重飛,甚至失速導致飛航事故,因此需格外注意。

-----廣告,請繼續往下閱讀-----

針對棘手的風切問題,氣象臺在松山機場和桃園國際機場設置了 低風切警報系統(Low Level Wind-Shear Alert System,簡稱 LLWAS),利用機場周邊沿跑道兩側及跑道延伸線外之多個 20 公尺以上測風塔進行風場觀測。當風場變化達到風切發生條件時,系統立刻就會透過文字、圖形和聲音等警告資訊,提醒氣象觀測員及塔臺管制員,發布風切警報警示進場和離場的機師做好因應措施。

低風切警報系統中的測風塔。圖/飛航服務總臺

1985 年在桃園國際機場架設的都卜勒氣象雷達(Doppler weather radar),長得就像一個巨型氣球,是當時全亞洲首座供作業用的 C 波段氣象雷達,掃描範圍可達 300 公里。它就像個盡責可靠的氣象觀測員,負責台灣北部機場和附近航路天氣的即時監測與預警,可以掌握劇烈天氣如颱風、雷雨、風切和亂流等天氣現象的發展和移動,提供資訊給飛航相關人員作業參考,確保飛行安全。

1985 年在桃園國際機場架設的都卜勒氣象雷達。圖/飛航服務總臺

「有字天書」——航空氣象報告内容大解密!

如果你拿到一份航空氣象報告,恐怕會以為這是一串亂碼。由各種英文字母縮寫和數字組成的航空氣象電碼,其實有著國際規範的通用格式。只要懂得解讀,就會發現裏頭包含了風向、風速、能見度、雲層狀況、溫度露點及氣壓等多項氣象資訊。按照其用途,航空氣象報告可以分成不同的類型,以下簡單介紹其中幾種。

依照機場的作業規模,航空氣象臺會每半小時或每小時發布機場例行天氣報告(Meteorological Terminal Aviation Routine Weather Report,簡稱 METAR),供飛行員和航管員使用來評估該地區當前的天氣狀況。當天氣變化達特定條件時,則會發布機場特別天氣報告(Aviation Special Weather Report,簡稱 SPECI)。另外,觀測員也會發布未來 2 小時天氣預報,提供航機進行作業因應規劃。

-----廣告,請繼續往下閱讀-----

若需要預測更長程的天氣變化,臺北航空氣象中心也會每天四次更新機場預報(Terminal Aerodrome Forecasts,簡稱 TAF),其有效時間長度分為 30 小時/24 小時/18 小時等三類,讓航空公司可以用來擬定航班飛行計劃,作為航機調度、載重、油料和旅客安排的參考。

安全至上!如何從惡劣天氣中全身而退

在航空業中,天氣變化不只是出門要記得帶傘這點程度的不便,更會影響航班的安排規劃。如果預計會有暴雨或風暴,航空公司可能會取消或延誤航班,以確保乘客和機組人員的安全。當風速和風向發生改變,機師也可能需要改變飛行路線和高度,以大大降低航程的風險。

但你是否也有過類似經驗:明明天氣很好,來到機場卻遇上航班延誤的消息,而感到困惑不解?這些讓旅客滿肚子哀怨的情況,其實也都是為了安全考量,所作的因應安排。因為即使機場所在地的天氣肉眼可見的良好,並不代表機場適合起飛降落。

例如飛機降落前到達一定高度時,機師必須完全看得見跑道及地面狀況,覆蓋在機場起降航道附近的低雲、雷雨區,都可能造成能見度下降,造成飛機不能按時降落。飛行時,若航路前方有雷雨天氣,基於安全考量,機師通常會繞過或飛越,也就增加了航行時間導致班機誤點。靠山邊的機場如蘭嶼機場,常因地形產生風切亂流,導致飛機降落困難,不得不重飛或返航,延誤航班。

-----廣告,請繼續往下閱讀-----

此外,同樣是飛往某地的航班,也可能發生有些能走,有些卻被告知走不了的情況。這是因為航機機型大小不同,適航標準也不同。即使是相同的機型,也會因駕駛員的證照類別、航空公司所訂的安全標準之差異,綜合機場條件、天氣和駕駛員對航機狀態的判斷後,對班機行程做出不一樣的決策。

氣象服務網與 APP 在手,航空氣象即時就有

飛航服務總臺也緊跟時代脚步,建設各項線上即時的氣象資訊服務,包括「航空氣象服務網」和「航空氣象資訊 APP」。航空氣象服務網主要讓航空公司簽派員、飛行員及航空相關人員申請註冊使用,以查詢全球各主要機場即時天氣測報及預報資料。在網站首頁,也有機場即時天氣資料、台灣地區機場適航狀態、即時衛星雲圖等資訊,開發讓一般民衆查詢。

航空氣象資訊 APP 也應行動裝置普及誕生,可供航空從業人員下載使用。一般民衆也能透過 APP 取得全球各大機場即時天氣資訊、東亞地區衛星雲圖及臺灣地區雷達回波圖等資料。

航空氣象資訊 APP 使用介面。圖/飛航服務總臺

【註解】

-----廣告,請繼續往下閱讀-----
  1. 任務臺業務分別由豐年 (業管蘭嶼、綠島)、高雄(業管恆春)、松山(業管北竿)及桃園(業管南竿)航空氣象臺負責管理。
  1. 飛航服務總臺:航空氣象服務介紹
  2. 飛航服務總臺:臺北航空氣象中心
  3. 飛航服務總臺:氣象裝備
  4. 台灣飛安統計(2012 – 2021)。國家運輸安全調查委員會。
  5. 飛航服務總臺:桃園機場都卜勒氣象雷達介紹
  6. 航空氣象服務網
  7. 「2020 飛航解密 暢遊天際」系列講座 – 臺北航空氣象中心主任余曉鵬精彩演講內容
  8. Wikipedia – 航空例行天氣報告
  9. Wikipedia – 終端機場天氣預報
-----廣告,請繼續往下閱讀-----
鳥苷三磷酸 (PanSci Promo)_96
225 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

5
2

文字

分享

0
5
2
迷航的中國氣球怎麼飄到美國?其實早能預測飛行路徑?
PanSci_96
・2023/02/14 ・2263字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

日前,在距離美國海岸線一萬八千公尺的領空,飛彈 AIM-9X 擊中了一顆大型高空氣球;美國與加拿大國防部公開聲明,該氣球來自中國。

這顆氣球在被擊落之前經歷了一段相當漫長的旅程,從中國出發後,沿途經過日本、阿拉斯加、加拿大、美國本土,最後才在大西洋外海被擊落。

如何推算飛行路線

該飛行路徑是由美國國家海洋暨大氣總署(NOAA)使用 HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory)模型計算出的。

HYSPLIT 為一計算模型,可模擬在 100 公里內大氣環境中,任何位置釋放煙霧等粒子後,其隨著大氣傳播和轉移的軌跡;常用於森林大火、工業區廢氣的擴散,如:加州大火、福島核災等事件,以模擬污染物擴散軌跡,確保其不會進入人口密集區。

-----廣告,請繼續往下閱讀-----

若將 HYSPLIT 反向應用,就可透過計算擴散軌跡回推污染傳播路徑,以定位污染源位置。而此次的氣球事件,就是分析大氣氣流方向回推其可能路徑,最終推測出飛行起點位於中國。

氣球為何往東飛

氣球從太平洋西岸飛往東岸,原因不僅僅是為了要避開其他國家的領空,還因為這條「高空航線」只向東開放。在北半球的大氣環境中,風的方向通常是由副熱帶高壓帶吹向極地區域,加上科氏力影響,在中緯度高空會形成一條相當寬的「西風帶」;可想而知,也就成為了氣球環遊世界的最佳航線。西風帶會持續向東移動,對於颱風、洋流以及全球氣候系統都有深遠的影響。

中緯度盛行西風(藍色箭頭)。圖/維基百科

既然氣球乘西風飛翔,為何氣球走的不是直線,而像是繞遠路呢?難道它真的利用自主動力,繞開敏感地區嗎?

打開空中地圖來看,這顆氣球在進入加拿大後,一路向南抵達美國本土,這與「空中快速道路」——噴射氣流的路徑高度相似,因此很可能氣球就是搭著這股氣流前行。噴射氣流通常位於對流層頂部,因巨大的氣壓與溫度差,流速每小時可高達 200 至 300 公里;過去就有人利用噴射氣流降低航空器的油耗,甚至嘗試用來發電。

-----廣告,請繼續往下閱讀-----

既然它是搭乘噴射氣流移動,所以它應該就沒有動力囉?也不一定。目前無法知道這顆探測氣球的確切規格,其搭載的太陽能板除了提供儀器電力外,也可能在某種程度上提供動力。

由於氣候影響很大,釋放氣球也得要考量季節。在冬季的降溫下,西風帶會變得更加寬廣,風速也較為強勁;等到了夏天北半球漸暖後,西風帶就會變得狹窄且緩慢。因此,不論是過去的日本氣球炸彈,還是這次的探測氣球,都選擇在冬季釋放。

然而,氣球的路程並沒有一路大順暢。就正常情況而言,氣球在兩天內就該飄離,但這趟旅程就這麼剛好地遇到了平流層突然變暖,使得西風帶減弱,造成氣球的飄移速度下降,也就在美國本土多滯留了幾天。

究竟飛多高

這顆氣球在離開美國時,高度預計在一萬八千公尺以上。

-----廣告,請繼續往下閱讀-----
一般民航機飛行高度約為一萬一千公尺。圖/Envato Elements

民航機通常會選擇在一萬一千公尺的高度飛行,這剛好是大氣對流層與平流層的分界,平流層的氣流穩定性,使航程不那麼顛頗,而越往上空氣也會越稀薄,飛機越難取得足夠的爬升力。就氣球的一萬八千公尺而言,在美國現役的戰機中僅有 F-22 能上升到兩萬公尺,在安全距離內破壞氣球。

那為什麼不是以飛機用機槍將氣球射下呢?有必要用到要價 40 萬美金的響尾蛇飛彈嗎?過去加拿大也曾有氣象氣球失控朝著俄羅斯領空飛去,然而高速飛行的飛機不僅難以瞄準氣球,靠著打出的幾個小洞也無法將其擊落,只能盯著它慢慢洩氣,最後墜落。

這次美國等到氣球離開陸地再一次性擊落,在能掌握情況的前提下,可能為最佳方式了。

氣球比你想像得還要有用

氣球能上到一般航空器到不了的高度,充分展現了其戰略價值。

-----廣告,請繼續往下閱讀-----

而能上到兩萬五千公尺以上的探空氣球,同步串聯全球大氣資料,各國氣象研究單位藉此分析出完整資料。探空氣球的任務就是在緩緩上升的過程中,紀錄每個高度的溫度、濕度、氣壓、風向、風速、GPS 訊號等變化,做到大氣垂直方向上最精細的測量。

全球的探空氣球會統一在格林威治時間 0 點與 12 點釋放,台灣當然也沒缺席,同時間也就是台灣早晚八點,會從彭佳嶼、新店、花蓮、馬公機場、屏東機場、綠島、東沙島等地釋放探空氣球,遇到特殊天氣,下午兩點還會再多放一次。

探空氣球攜帶無線電遙測儀器,進入大氣層測量各種參數。圖/維基百科

商業氣球還能用來做什麼?其實在馬斯克的星鏈計畫之前,Google 也有類似計畫——Project Loon,要讓全世界偏遠地區都能上網;Project Loon 使用的就是可上升至兩萬公尺的網路氣球,而這項技術早在 2013 年 6 月於紐西蘭實驗成功。雖然 Google 已於 2021 年放棄該計畫,但這種概念並沒有因此消失,可作為發生天災、或遭遇戰事時,便宜、方便的重要通訊替代方案。

這次的氣球漂流記,撇除牽扯到兩大強權國的政治角力,讓全球民眾見證了,看似不起眼的氣球,能完成超高難度的移動。

-----廣告,請繼續往下閱讀-----