Loading [MathJax]/extensions/tex2jax.js

1

3
2

文字

分享

1
3
2

蚯蚓為什麼要在大雨過後爬出地表?

活躍星系核_96
・2014/06/20 ・3182字 ・閱讀時間約 6 分鐘 ・SR值 500 ・六年級

-----廣告,請繼續往下閱讀-----

800px-Lumbricus_terrestris_mating

文 / H

很多人都看過在連續大雨後的清晨有許多蚯蚓奄奄一息的在地表蠕動爬行能力大減的樣子,且有部分個體已經死亡。在台灣許多種類的蚯蚓例如:優雅遠環蚓Amynthas gracilis)、參狀遠環蚓Amynthas aspergillum)、壯偉遠環蚓Amynthas robustus)和舒氏腔環蚓Metaphire schmardae)都有這樣的現象;在歐美最常在大雨後爬出地表的蚯蚓是Lumbricus terrestris。在達爾文的書The formation of vegetable mould through the action of worms, with observation of their habits中有很生動的描述,也讓人好奇的想問:蚯蚓為什麼要在雨後的清晨爬出來?為什麼它們會死在地表上?

達爾文認為蚯蚓體內有寄生蟲寄生,大雨使其健康狀況不良並改變行為,因此在雨後爬出地表。但根據個人長年觀察,發現並非所有爬出地表的蚯蚓都有被寄生蟲(孢子蟲)感染,且這些被感染的蚯蚓,仍可在實驗室中繼續飼養。因此大雨過後蚯蚓爬出地表的原因應與寄生蟲感染無直接關係。

有些學者則認為下雨後的蚯蚓爬出地表與遷移或交配有關,較濕潤的環境有助於牠們遷徙或交配。但在個人的觀察中,蚯蚓白天生活於土壤中,晚上才會接近地表活動。不論是覓食、排遺或交配,大多僅露出身體的一部份,很少整隻爬出來活動。但是下過大雨後的清晨,爬出的蚯蚓通常都是整隻個體,且也從未在這樣的情況下看到蚯蚓進行交配。

-----廣告,請繼續往下閱讀-----

日本的學者Lankester (1921) 則認為蚯蚓在水中會溺死,為了生存所以爬出地表。但另一位日本學者 Nagano (1934) 實驗發現,蚯蚓可以在水中生活一段時間,因此他不認為蚯蚓爬出地表是為了避免溺死,而是和水中溶氧缺少及二氧化碳增加有關。但他的實驗中並未直接證明蚯蚓會因為水中溶氧減少而爬出地表,同時也無法說明為何蚯蚓只在下過大雨後的清晨爬出。

看似簡單的現象卻一直沒有定論,但或許可以推測與蚯蚓的代謝耗氧有關,陸生蚯蚓沒有特化的呼吸器官,氧氣是藉由潮濕的角質層及表皮滲透進入微血管網中。由於氣體必須先溶於水中才能進行呼吸作用,因此蚯蚓的背孔會分泌黏液保持體表的濕潤。當氧氣擴散進入血管後,主要靠蚯蚓血紅素(hemoglobin)負責攜帶氧分子,血紅素與氧的親和力很大,可以有效攜帶氧分子到各組織中,單純以擴散作用(simple diffusion)進行組織間的氣體交換效率極低,因此蚯蚓需依靠循環系統將帶氧血紅素運送到全身。

要測量動物的有氧代謝(aerobic metabolic rate),通常是間接測量其耗氧量(oxygen consumption)。一般來說,蚯蚓的耗氧會因為體型、活力或棲地等因素而影響測量。由於氣體的擴散與表面積有關,體積較小的蚯蚓相對於體重,有較大的表面積,因此每單位體積的耗氧量也較高;即代謝速率較高。例如Lumbricius terrestris的平均單位耗氧量是70 μL/g/h,而在森林中的同種個體較小,其單位耗氧量較高,達到114μL/g/h!呼吸時的耗氧量又和環境溫度有很大的關係,溫度越高則代謝越快,例如:同溫度下,Lampito mauritii 在冬天的耗氧低於在夏天的耗氧,且熱帶地區蚯蚓的耗氧高於溫帶地區的蚯蚓。Rapha的實驗中發現L. terrestris有呼吸的日週期變化,在清晨的時候會有最高的耗氧量。

根據不同蚯蚓的耗氧研究結果,我們推測蚯蚓在大雨過後的清晨爬出地表可能與其週期性耗氧有關。在台灣,蚯蚓在下雨過後大量爬出地表的季節以冬末春初之際的夜間到清晨較多。由於不同季節的氣溫會有差異,而大部分的蚯蚓都只在夜間到清晨爬出,因此我們假設:蚯蚓在不同溫度或不同時段下,耗氧會有不同,而這些改變會影響其活動模式。

-----廣告,請繼續往下閱讀-----

我們以台灣兩種常見的蚯蚓:纖細遠環蚓(Amynthas gracilis)及南美鞍帶蚓(Pontoscolex corethrurus)為實驗對象,探討蚯蚓在大雨過後清晨爬出地表與耗氧的關係。A. gracilis會在大雨過後的清晨爬出地表,冬天時的活力大於夏天,且幼蚓通常在冬天或次年春天才會被發現;P. corethrurus是近年來發現的台灣外來種蚯蚓,原產於南美洲,目前則是全球皆有分佈,對環境的適應力絕佳,它們在台灣並未被發現會在雨後爬出地表,並且全年都有卵繭發現。我們的實驗分為幾個部分:1. 模擬野外的狀態證實雨水是導致蚯蚓爬出的原因。2. 測量蚯蚓可以在水中存活的時間及水中的殘餘溶氧量。3. 測量蚯蚓在一日中不同時段的耗氧量。希望藉由這些部分釐清下過大雨後的清晨,蚯蚓爬出地表的原因。

第一部份的實驗中,我們假設了下雨這件事會影響很多的因子,例如:淹水、雨水響了土壤酸鹼度或是讓土壤有毒重金屬溶出,所以我們設計幾個組別:A、濕度70%, pH 7的土壤,B、加水(pH 7)到土壤表面或比土壤高1公分模擬淹水的狀況,C、不同pH的水(4-8)濕度70%模擬不同酸鹼度,D、重金屬鎘(0-30 ug/g)模擬重金屬的影響,再將20隻蚯蚓放入後計算會爬出的蚯蚓數量。

結果A. gracilis在淹水的狀況下會爬出地表(平均10-17小時),且個體不會死亡,但P. corethrurus並不會爬出地表,酸鹼度並不會影響兩種蚯蚓的爬行且個體也不會死亡,但重金屬鎘則會造成蚯蚓的死亡但個體並不會爬出地表。由此模擬的實驗可知,下雨後淹水確實會造成部分種類的蚯蚓爬出地表。

第二部分的實驗中,我們將容器加水打氣使溶氧量達至最高後將蚯蚓放入,一組以黏土封緊讓氣體無法交換,一組則是開方式放讓氣體可以交換,控制組則是將蚯蚓放在培養皿中以濕潤的濾紙保持蚯蚓體表的濕潤。結果A. gracilis在密封環境下只能存活5小時,開方式環境下則有17小時,P. corethrurus則在密閉環境中存活45小時,開放式環境下至實驗結束(96小時)都還存活,而控制組的兩種蚯蚓都可以存活至實驗結束。接著測量水中殘氧量發現,A. gracilis的容器殘氧量為1.5 ug/ml左右,而P. corethrurus則是0.5ug/ml左右,顯示A. gracilis相對於P. corethrurus在水中能存活的時間較短,同時也較無法利用水中的溶氧。

-----廣告,請繼續往下閱讀-----

第三部分的實驗,我們模擬蚯蚓在下雨後土壤含水情況下的耗氧量,將蚯蚓放在密閉式系統中測量其耗氧:

Image

結果發現A. gracilis在夜間(19:00-21:00)及清晨(4:00-6:00)的耗氧量比中午(11:00-13:00)的耗氧量來的高,但P. corethrurus則沒有這樣的現象,且A. gracilis的總耗氧量也比P. corethrurus來得高,顯示A. gracilis在夜間到清晨有一個呼吸高峰期,配合觀察結果也確定夜晚是A. gracilis的活動高峰。

image[11]

因此綜合來說, 從A. gracilis在水中的存活時間結果推論,在野外只要下雨超過12小時以上,它們就會爬出地表。在實驗中也觀察到,A. gracilis在容器中一段時間後會有向上運動的現象,由於上方的溶氧較多,因此可以推測A. gracilis能感測水中溶氧的不同,而試圖前往氧氣較多的地方。

當溶氧越來越低時,蚯蚓的耗氧也下降,雖然接著可以進行無氧呼吸,但時間相當短暫,因此最後還是會因為沒有足夠的氧氣窒息而死。所以像A. gracilis這一類的蚯蚓蚓耗氧量從晚上到清晨較白天高,常在下過大雨後土壤飽含雨水,將孔隙封住,土壤中氧氣降低,因此當土壤及雨水中氧氣用盡時就被迫必須爬出地表。但另一類如P. corethrurus的蚯蚓,對無氧環境的耐受力高,且耗氧量較低,因此不會在下過大雨後爬出至地表。而這種生理上耗氧的差異,可能就是造成不同種類的蚯蚓在遇到大雨環境時是否爬出地表的原因之一。

-----廣告,請繼續往下閱讀-----

蚯蚓會在連續大雨後爬出地表的另一原因與其排泄有關。由於蚯蚓多以氨及尿素的形式排泄廢物,因此排泄時需要水分稀釋。當環境乾旱時,蚯蚓體內水分短缺,排泄必定受到影響。在吳佳倖的碩士論文中以粒糞腔環蚓Metaphire posthuma)及壯偉遠環蚓實驗發現,蚯蚓確實在乾旱下會累積體內的含氮廢物,包括尿素及氨,在降雨後利用雨水快速將體內的含氮廢物清除。另外土壤會與氮化物結合,但是泡水後,會釋出部分的含氮廢物,使土中含氮廢物濃度增加,因此蚯蚓可能會在連續大雨過後爬出地表利用雨水將含氮廢物清除,並躲避土中升高的含氮廢物量。所以蚯蚓為什麼會在大雨後爬出地表的原因可能會隨著牠們生活的環境及生理的狀況也所不同。

參考文獻:

  • Chuang SC and Chen JH. 2008. Role of diurnal rhythm of oxygen consumption in emergence from soil at night after heavy rain by earthworms. Invertebrate Biol. 127 (1) , 80–86
  • Chuang SC, Lee H, Chen JH. 2004. Diurnal rhythm and effect of temperature on oxygen consumption in earthworms, Amynthas gracilis and Pontoscolex corethrurus. J. Exp. Zool. 301A(9): 731-744.

轉自作者部落格

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

6
4

文字

分享

0
6
4
除了蚯蚓、地震魚和民間達人,那些常見的臺灣地震預測謠言
鳥苷三磷酸 (PanSci Promo)_96
・2024/02/29 ・2747字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

災害性大地震在臺灣留下無數淚水和難以抹滅的傷痕,921 大地震甚至直接奪走了 2,400 人的生命。既有這等末日級的災難記憶,又位處於板塊交界處的地震帶,「大地震!」三個字,總是能挑動臺灣人最脆弱又敏感的神經。

因此,當我們發現臺灣被各式各樣的地震傳說壟罩,像是地震魚、地震雲、蚯蚓警兆、下雨地震說,甚至民間地震預測達人,似乎也是合情合理的現象?

今日,我們就要來破解這些常見的地震預測謠言。

-----廣告,請繼續往下閱讀-----

漁民捕獲罕見的深海皇帶魚,恐有大地震?

說到在坊間訛傳的地震謠言,許多人第一個想到的,可能是盛行於日本、臺灣的「地震魚」傳說。

在亞熱帶海域中,漁民將「皇帶魚」暱稱為地震魚,由於皇帶魚身型較為扁平,生活於深海中,魚形特殊且捕獲量稀少,因此流傳著,是因為海底的地形改變,才驚擾了棲息在深海的皇帶魚,並因此游上淺水讓人們得以看見。

皇帶魚。圖/wikimedia

因此,民間盛傳,若漁民捕撈到這種極為稀罕的深海魚類,就是大型地震即將發生的警兆。

然而,日本科學家認真蒐集了目擊深海魚類的相關新聞和學術報告,他們想知道,這種看似異常的動物行為,究竟有沒有機會拿來當作災前的預警,抑或只是無稽之談?

-----廣告,請繼續往下閱讀-----

可惜的是,科學家認為,地震魚與地震並沒有明顯的關聯。當日本媒體報導捕撈深海魚的 10 天內,均沒有發生規模大於 6 的地震,規模 7 的地震前後,甚至完全沒有深海魚出現的紀錄!

所以,在科學家眼中,地震魚僅僅是一種流傳於民間的「迷信」(superstition)。

透過動物來推斷地震消息的風俗並不新穎,美國地質調查局(USGS)指出,早在西元前 373 年的古希臘,就有透過動物異常行為來猜測地震的紀錄!

人們普遍認為,比起遲鈍的人類,敏感的動物可以偵測到更多來自大自然的訊號,因此在大地震來臨前,會「舉家遷徙」逃離原本的棲息地。

-----廣告,請繼續往下閱讀-----

當臺灣 1999 年發生集集大地震前後,由於部分地區出現了大量蚯蚓,因此,臺灣也盛傳著「蚯蚓」是地震警訊的說法。

20101023 聯合報 B2 版 南投竹山竄出蚯蚓群爬滿路上。

新聞年年報的「蚯蚓」上街,真的是地震警訊嗎?

​當街道上出現一大群蚯蚓時,密密麻麻的畫面,不只讓人嚇一跳,也往往讓人感到困惑:為何牠們接連地湧向地表?難道,這真的是動物們在向我們預警天災嗎?動物們看似不尋常的行為,總是能引發人們的好奇與不安情緒。

如此怵目驚心的畫面,也經常成為新聞界的熱門素材,每年幾乎都會看到類似的標題:「蚯蚓大軍又出沒 網友憂:要地震了嗎」,甚至直接將蚯蚓與剛發生的地震連結起來,發布成快訊「昨突竄大量蚯蚓!台東今早地牛翻身…最大震度4級」,讓人留下蚯蚓預言成功的錯覺。

然而,這些蚯蚓大軍,真的與即將來臨的天災有直接關聯嗎?

-----廣告,請繼續往下閱讀-----

蚯蚓與地震有關的傳聞,被學者認為起源於 1999 年的 921 大地震後,在此前,臺灣少有流傳地震與蚯蚓之間的相關報導。

雖然曾有日本學者研究模擬出,與地震相關的電流有機會刺激蚯蚓離開洞穴,但在現實環境中,有太多因素都會影響蚯蚓的行為了,而造成蚯蚓大軍浮現地表的原因,往往都是氣象因素,像是溫度、濕度、日照時間、氣壓等等,都可能促使蚯蚓爬出地表。

大家不妨觀察看看,白日蚯蚓大軍的新聞,比較常出現在天氣剛轉涼的秋季。

因此,下次若再看到蚯蚓大軍湧現地表的現象,請先別慌張呀!

-----廣告,請繼續往下閱讀-----

事實上,除了地震魚和蚯蚓外,鳥類、老鼠、黃鼠狼、蛇、蜈蚣、昆蟲、貓咪到我們最熟悉的小狗,都曾經被流傳為地震預測的動物專家。

但可惜的是,會影響動物行為的因素實在是太多了,科學家仍然沒有找到動物異常行為和地震之間的關聯或機制。

遍地開花的地震預測粉專和社團

這座每天發生超過 100 次地震的小島上,擁有破萬成員的地震討論臉書社團、隨處可見的地震預測粉專或 IG 帳號,似乎並不奇怪。

國內有許多「憂國憂民」的神通大師,這些號稱能夠預測地震的奇妙人士,有些人會用身體感應,有人熱愛分析雲層畫面,有的人甚至號稱自行建製科學儀器,購買到比氣象署更精密的機械,偵測到更準確的地震。

-----廣告,請繼續往下閱讀-----

然而,若認真想一想就會發現,臺灣地震頻率極高,約 2 天多就會發生 1 次規模 4.0 至 5.0 的地震, 2 星期多就可能出現一次規模 5.0 至 6.0 的地震,若是有心想要捏造地震預言,真的不難。 

在學界,一個真正的地震預測必須包含地震三要素:明確的時間、 地點和規模,預測結果也必須來自學界認可的觀測資料。然而這些坊間貼文的預測資訊不僅空泛,也並未交代統計數據或訊號來源。

作為閱聽者,看到如此毫無科學根據的預測言論,請先冷靜下來,不要留言也不要分享,不妨先上網搜尋相關資料和事實查核。切勿輕信,更不要隨意散播,以免造成社會大眾的不安。

此外,大家也千萬不要隨意發表地震預測、觀測的資訊,若號稱有科學根據或使用相關資料,不僅違反氣象法,也有違反社會秩序之相關法令之虞唷!

-----廣告,請繼續往下閱讀-----

​地震預測行不行?還差得遠呢!

由於地底的環境太過複雜未知,即使科學家們已經致力於研究地震前兆和地震之間的關聯,目前地球科學界,仍然無法發展出成熟的地震預測技術。

與其奢望能提前 3 天知道地震的預告,不如日常就做好各種地震災害的防範,購買符合防震規範的家宅、固定好家具,做好防震防災演練。在國家級警報響起來時,熟練地執行避震保命三步驟「趴下、掩護、穩住」,才是身為臺灣人最關鍵的保命之策。

延伸閱讀

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

0
0

文字

分享

0
0
0
【成語科學】雨過天青:天空為什麼是藍色的?傍晚的橘紅色天空又是怎麼形成的?
張之傑_96
・2023/10/06 ・1183字 ・閱讀時間約 2 分鐘

下過雨後,天空藍得透明。這個自然現象,衍生出成語雨過天青,比喻情況由壞轉好。雨過天晴也有同樣的意思,不過仍以雨過天青較為正式。閒話少說,讓我們造兩個句吧。

這事挽救及時,現已雨過天青。

雨過天青,您的事可以放心了。

下過雨後,天空藍得透明。圖/pixabay

這個成語還有個故事呢。有一種瓷器,稱為雨過天青,起源於五代‧後周柴世宗。某日臣子請示,皇家瓷器要燒成什麼顏色?柴世宗隨手批示:「雨過天青雲破處,這般顏色作將來。」工匠經過多次實驗,終於燒製出來,這就是有名的「柴窯」。由於沒有作品傳世,柴窯的真面目已無從查考。

談到這裡,該談談這個成語的意涵了。大雨過後,天空為什麼藍得透明?這是因為空氣中的灰塵隨著雨下降下,空氣較為潔淨的關係。喜歡打破沙鍋問到底的小朋友或許還會問:為什麼空氣潔淨、天就較藍?

這要從天空為什麼呈藍色說起。空氣的成份,主要是氮氣和氧氣。晴天的時候,射到地球上的陽光碰到空氣中的氮分子或氧分子,會引起散射作用。藍光的波長較紅光短,散射得較厲害,看在我們眼裡,天空就成為藍色的。

-----廣告,請繼續往下閱讀-----
藍光的波長較紅光短,散射得較厲害,看在我們眼裡,天空就成為藍色的。圖/pixabay

這個道理看起來好像很簡單,但是人類明白這個道理是 19 世紀末的事。1873 年,英國物理學家瑞利是第一位看天看出名堂的人。他的散射理論——瑞利散射,破解了天色的秘密。

在陽光的七種色光中,紅、橙、黃光的波長較長,藍、靛、紫光的波長較短。空氣中的氧分子、氮分子,大小恰好可以散射波長較短的藍光,藍光散了一天,天空當然呈藍色的。

到了傍晚,夕陽西下,陽光打斜裡射過來,較接近地面,而地面的空氣含有較多的水氣和灰塵,粒子比氧分子、氮分子大得多,較容易散射波長較長的紅光、橙光或黃光,艷麗的晚霞就是這樣散射出來的。

陽光打斜裡射過來,而地面的空氣含有較多的水氣和灰塵,較容易散射波長較長的紅光、橙光或黃光。圖/pixabay

如果天上懸浮著小水滴,也就是雲,那又是另一種景象。小水滴比灰塵大得多,各種波長的色光都能被它散射,結果雲就成為白色的。如果雲層較厚較密,陽光穿不過去,就變成了灰色或黑色。白雲蒼狗,不過是陽光玩的把戲而已!

-----廣告,請繼續往下閱讀-----

當雲聚成雨滴的時候,顆粒就更大了,大得具有稜鏡的作用。倘若一邊已出太陽,一邊還在下雨,陽光穿過雨滴,就會形成彩虹。噴泉和瀑布上也可以出現彩虹,原理是一樣的。

-----廣告,請繼續往下閱讀-----

1

3
2

文字

分享

1
3
2
蚯蚓為什麼要在大雨過後爬出地表?
活躍星系核_96
・2014/06/20 ・3182字 ・閱讀時間約 6 分鐘 ・SR值 500 ・六年級

800px-Lumbricus_terrestris_mating

文 / H

很多人都看過在連續大雨後的清晨有許多蚯蚓奄奄一息的在地表蠕動爬行能力大減的樣子,且有部分個體已經死亡。在台灣許多種類的蚯蚓例如:優雅遠環蚓Amynthas gracilis)、參狀遠環蚓Amynthas aspergillum)、壯偉遠環蚓Amynthas robustus)和舒氏腔環蚓Metaphire schmardae)都有這樣的現象;在歐美最常在大雨後爬出地表的蚯蚓是Lumbricus terrestris。在達爾文的書The formation of vegetable mould through the action of worms, with observation of their habits中有很生動的描述,也讓人好奇的想問:蚯蚓為什麼要在雨後的清晨爬出來?為什麼它們會死在地表上?

達爾文認為蚯蚓體內有寄生蟲寄生,大雨使其健康狀況不良並改變行為,因此在雨後爬出地表。但根據個人長年觀察,發現並非所有爬出地表的蚯蚓都有被寄生蟲(孢子蟲)感染,且這些被感染的蚯蚓,仍可在實驗室中繼續飼養。因此大雨過後蚯蚓爬出地表的原因應與寄生蟲感染無直接關係。

有些學者則認為下雨後的蚯蚓爬出地表與遷移或交配有關,較濕潤的環境有助於牠們遷徙或交配。但在個人的觀察中,蚯蚓白天生活於土壤中,晚上才會接近地表活動。不論是覓食、排遺或交配,大多僅露出身體的一部份,很少整隻爬出來活動。但是下過大雨後的清晨,爬出的蚯蚓通常都是整隻個體,且也從未在這樣的情況下看到蚯蚓進行交配。

-----廣告,請繼續往下閱讀-----

日本的學者Lankester (1921) 則認為蚯蚓在水中會溺死,為了生存所以爬出地表。但另一位日本學者 Nagano (1934) 實驗發現,蚯蚓可以在水中生活一段時間,因此他不認為蚯蚓爬出地表是為了避免溺死,而是和水中溶氧缺少及二氧化碳增加有關。但他的實驗中並未直接證明蚯蚓會因為水中溶氧減少而爬出地表,同時也無法說明為何蚯蚓只在下過大雨後的清晨爬出。

看似簡單的現象卻一直沒有定論,但或許可以推測與蚯蚓的代謝耗氧有關,陸生蚯蚓沒有特化的呼吸器官,氧氣是藉由潮濕的角質層及表皮滲透進入微血管網中。由於氣體必須先溶於水中才能進行呼吸作用,因此蚯蚓的背孔會分泌黏液保持體表的濕潤。當氧氣擴散進入血管後,主要靠蚯蚓血紅素(hemoglobin)負責攜帶氧分子,血紅素與氧的親和力很大,可以有效攜帶氧分子到各組織中,單純以擴散作用(simple diffusion)進行組織間的氣體交換效率極低,因此蚯蚓需依靠循環系統將帶氧血紅素運送到全身。

要測量動物的有氧代謝(aerobic metabolic rate),通常是間接測量其耗氧量(oxygen consumption)。一般來說,蚯蚓的耗氧會因為體型、活力或棲地等因素而影響測量。由於氣體的擴散與表面積有關,體積較小的蚯蚓相對於體重,有較大的表面積,因此每單位體積的耗氧量也較高;即代謝速率較高。例如Lumbricius terrestris的平均單位耗氧量是70 μL/g/h,而在森林中的同種個體較小,其單位耗氧量較高,達到114μL/g/h!呼吸時的耗氧量又和環境溫度有很大的關係,溫度越高則代謝越快,例如:同溫度下,Lampito mauritii 在冬天的耗氧低於在夏天的耗氧,且熱帶地區蚯蚓的耗氧高於溫帶地區的蚯蚓。Rapha的實驗中發現L. terrestris有呼吸的日週期變化,在清晨的時候會有最高的耗氧量。

根據不同蚯蚓的耗氧研究結果,我們推測蚯蚓在大雨過後的清晨爬出地表可能與其週期性耗氧有關。在台灣,蚯蚓在下雨過後大量爬出地表的季節以冬末春初之際的夜間到清晨較多。由於不同季節的氣溫會有差異,而大部分的蚯蚓都只在夜間到清晨爬出,因此我們假設:蚯蚓在不同溫度或不同時段下,耗氧會有不同,而這些改變會影響其活動模式。

-----廣告,請繼續往下閱讀-----

我們以台灣兩種常見的蚯蚓:纖細遠環蚓(Amynthas gracilis)及南美鞍帶蚓(Pontoscolex corethrurus)為實驗對象,探討蚯蚓在大雨過後清晨爬出地表與耗氧的關係。A. gracilis會在大雨過後的清晨爬出地表,冬天時的活力大於夏天,且幼蚓通常在冬天或次年春天才會被發現;P. corethrurus是近年來發現的台灣外來種蚯蚓,原產於南美洲,目前則是全球皆有分佈,對環境的適應力絕佳,它們在台灣並未被發現會在雨後爬出地表,並且全年都有卵繭發現。我們的實驗分為幾個部分:1. 模擬野外的狀態證實雨水是導致蚯蚓爬出的原因。2. 測量蚯蚓可以在水中存活的時間及水中的殘餘溶氧量。3. 測量蚯蚓在一日中不同時段的耗氧量。希望藉由這些部分釐清下過大雨後的清晨,蚯蚓爬出地表的原因。

第一部份的實驗中,我們假設了下雨這件事會影響很多的因子,例如:淹水、雨水響了土壤酸鹼度或是讓土壤有毒重金屬溶出,所以我們設計幾個組別:A、濕度70%, pH 7的土壤,B、加水(pH 7)到土壤表面或比土壤高1公分模擬淹水的狀況,C、不同pH的水(4-8)濕度70%模擬不同酸鹼度,D、重金屬鎘(0-30 ug/g)模擬重金屬的影響,再將20隻蚯蚓放入後計算會爬出的蚯蚓數量。

結果A. gracilis在淹水的狀況下會爬出地表(平均10-17小時),且個體不會死亡,但P. corethrurus並不會爬出地表,酸鹼度並不會影響兩種蚯蚓的爬行且個體也不會死亡,但重金屬鎘則會造成蚯蚓的死亡但個體並不會爬出地表。由此模擬的實驗可知,下雨後淹水確實會造成部分種類的蚯蚓爬出地表。

第二部分的實驗中,我們將容器加水打氣使溶氧量達至最高後將蚯蚓放入,一組以黏土封緊讓氣體無法交換,一組則是開方式放讓氣體可以交換,控制組則是將蚯蚓放在培養皿中以濕潤的濾紙保持蚯蚓體表的濕潤。結果A. gracilis在密封環境下只能存活5小時,開方式環境下則有17小時,P. corethrurus則在密閉環境中存活45小時,開放式環境下至實驗結束(96小時)都還存活,而控制組的兩種蚯蚓都可以存活至實驗結束。接著測量水中殘氧量發現,A. gracilis的容器殘氧量為1.5 ug/ml左右,而P. corethrurus則是0.5ug/ml左右,顯示A. gracilis相對於P. corethrurus在水中能存活的時間較短,同時也較無法利用水中的溶氧。

-----廣告,請繼續往下閱讀-----

第三部分的實驗,我們模擬蚯蚓在下雨後土壤含水情況下的耗氧量,將蚯蚓放在密閉式系統中測量其耗氧:

Image

結果發現A. gracilis在夜間(19:00-21:00)及清晨(4:00-6:00)的耗氧量比中午(11:00-13:00)的耗氧量來的高,但P. corethrurus則沒有這樣的現象,且A. gracilis的總耗氧量也比P. corethrurus來得高,顯示A. gracilis在夜間到清晨有一個呼吸高峰期,配合觀察結果也確定夜晚是A. gracilis的活動高峰。

image[11]

因此綜合來說, 從A. gracilis在水中的存活時間結果推論,在野外只要下雨超過12小時以上,它們就會爬出地表。在實驗中也觀察到,A. gracilis在容器中一段時間後會有向上運動的現象,由於上方的溶氧較多,因此可以推測A. gracilis能感測水中溶氧的不同,而試圖前往氧氣較多的地方。

當溶氧越來越低時,蚯蚓的耗氧也下降,雖然接著可以進行無氧呼吸,但時間相當短暫,因此最後還是會因為沒有足夠的氧氣窒息而死。所以像A. gracilis這一類的蚯蚓蚓耗氧量從晚上到清晨較白天高,常在下過大雨後土壤飽含雨水,將孔隙封住,土壤中氧氣降低,因此當土壤及雨水中氧氣用盡時就被迫必須爬出地表。但另一類如P. corethrurus的蚯蚓,對無氧環境的耐受力高,且耗氧量較低,因此不會在下過大雨後爬出至地表。而這種生理上耗氧的差異,可能就是造成不同種類的蚯蚓在遇到大雨環境時是否爬出地表的原因之一。

-----廣告,請繼續往下閱讀-----

蚯蚓會在連續大雨後爬出地表的另一原因與其排泄有關。由於蚯蚓多以氨及尿素的形式排泄廢物,因此排泄時需要水分稀釋。當環境乾旱時,蚯蚓體內水分短缺,排泄必定受到影響。在吳佳倖的碩士論文中以粒糞腔環蚓Metaphire posthuma)及壯偉遠環蚓實驗發現,蚯蚓確實在乾旱下會累積體內的含氮廢物,包括尿素及氨,在降雨後利用雨水快速將體內的含氮廢物清除。另外土壤會與氮化物結合,但是泡水後,會釋出部分的含氮廢物,使土中含氮廢物濃度增加,因此蚯蚓可能會在連續大雨過後爬出地表利用雨水將含氮廢物清除,並躲避土中升高的含氮廢物量。所以蚯蚓為什麼會在大雨後爬出地表的原因可能會隨著牠們生活的環境及生理的狀況也所不同。

參考文獻:

  • Chuang SC and Chen JH. 2008. Role of diurnal rhythm of oxygen consumption in emergence from soil at night after heavy rain by earthworms. Invertebrate Biol. 127 (1) , 80–86
  • Chuang SC, Lee H, Chen JH. 2004. Diurnal rhythm and effect of temperature on oxygen consumption in earthworms, Amynthas gracilis and Pontoscolex corethrurus. J. Exp. Zool. 301A(9): 731-744.

轉自作者部落格

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia