0

4
0

文字

分享

0
4
0

旋轉、飛躍、進球得分!——香蕉球物理學

活躍星系核_96
・2014/06/30 ・1939字 ・閱讀時間約 4 分鐘 ・SR值 559 ・八年級

本文由民視《科學再發現》贊助,泛科學獨立製作

DSC_5456

文 / Peter Chiang(中興大學物理系學生,大專足球運動員)

成功的香蕉球會完美地繞過防守的人牆,然後眼看就要飛到球門外時忽然一拐,直入球門!伴隨著裁判哨聲的,是守門員錯愕的表情及對手神秘的笑容。每次被對手以香蕉球進球,人牆中的我總會萬分懊惱,心裡又不屑地咕噥著:「你只是懂得利用流體力學而已!」

身為一個真實身分是足球員的物理系學生,當我想要踢出直直飛出去的球,我會讓腳著力於球面的中心(通常就簡稱球心);理論上,球將不會旋轉而直直朝著目標方向前進,並且會有最大的力道。當然,如果要使球飛高的話,可能需要朝著球心偏下一點點踢。而當我想要讓球路呈一完美弧線,我會偏左下或偏右下一點。

-----廣告,請繼續往下閱讀-----

10428740_710074215720450_1001809766_n右圖中橘點是我傳地面球會選擇的擊球點,紅點是當前面沒有人阻擋時射門會選擇的擊球點,而綠點跟藍點則是球員在踢香蕉球時通常會踢的位置。

如果一個以左腳為慣用腳的球員(筆者慣用腳為左腳),選擇了綠色的點來做擊球點,球會朝著左前方的高空飛去。因為擊球點偏離了球心,於是會造成球的旋轉,你一定會認為球是朝著逆時針方向旋轉。然而,常看足球的人知道,足球員在踢自由球或角球時,都會稍微往側邊站一點。透過使腳踝呈L型、用腳內側摩擦球的邊緣,加強順時針旋轉的力道,使球路有漂亮的弧線產生。

日本山形大學的研究人員在 1998 年發表的論文中,利用 finite element analysis 來模擬足球員踢球的動作。研究確認了這個絕大多數足球員都知道的訊息-如果將踢球的點稍微偏離中心,並使腳和小腿呈 L 型,就能踢出香蕉球 [1]。下圖為山形大學團隊所模擬出的圖形。

world-11-6-8-6

569px-Magnus_effect.svg左圖是一個球受空氣阻力影響的俯視圖。黑色線條代表著空氣的流動、線上的箭頭是空氣阻力的方 向、球內箭頭是球的旋轉方向。同樣如上一段所描述的情形,慣用左腳的足球員將球踢入了空中,並使球順時針旋轉。球在空中不斷的和空氣摩擦,影響了空氣的流動。球的右側和球旋轉同方向的空氣流速較快,而左側則因為空氣流動方向和球旋轉方向相反,速度相對較慢。

-----廣告,請繼續往下閱讀-----

根據白努利定律,速度快的流體壓力會較小,反之則壓力大。因此可知,圖中的藍色箭頭指向球受力的方向。球路徑於是會成為一向右上運動的弧線。這就是著名馬格努斯效應(Magnus Effect)的應用。

這個道理同樣能夠運用在棒球、桌球及網球等 [2, 3]。當球員的腳離開球以後,因為速度相當快,球會先處在流體力學中所講的 turbulence regime,所受到的阻力相對較小。一旦球的速度降到某種程度,進入 laminar regime,球就受到阻力非常大的影響,而球的旋轉仍再作用。此時 Magnus Effect 的影響就變為明顯。這也是為何比賽常常會看到球直直朝觀眾席衝過去,在最後幾公尺忽然轉彎飛入球門的現象 [1]。

在某些特殊的狀況下,左腳的足球員會選擇用左腳的外側朝藍色的點踢過去,並摩擦帶動球以逆時針旋轉。這時候球就會朝著右前方飛出,繞過人牆,在飛向觀眾席的前一秒應聲 落入球門網中。這個高難度的動作需要足球員擁有強健的腳踝,有力的大小腿肌肉(使球能更快速地旋轉)及對身體的高度協調。知名的巴西球員 Roberto Carlos 就以這個技巧踢出了聞名世界的「The impossible goal」。

https://www.youtube.com/watch?v=8qH9ECcJ_DE

-----廣告,請繼續往下閱讀-----

除了 Magnus Effect 之外,當然還有其他因素都還是有可能讓球的路徑跟預期的不同,如球表面的顆粒。2010 年南非世界盃所使用的球 Jabulani,就讓很多自由球高手表現失常。許多球員歸咎於球的重量,然而科學家發現其實球表面的光滑度不同反而是造成球路及速度和球員們以往經驗不符的主因 [4]。一個好的足球員,懂得利用不同的參數,為球隊創造出最佳的利益。

這幾年來我們的球隊被自由球殺的無地自容,但我永遠會記得大一那年,我們的俄國學長在中場以一球強而有力又刁鑽的香蕉球,帶我們進入了八強賽。我也永遠記得,那天我們順風。

參考資料

  1. The Physics of football. physicsworld [Jun 1, 1998]
  2. 馬格努斯效應。wikipedia
  3. What is the Magnus Force. YouTube
  4. Why the Adidas soccer ball, Jabulani, promises to confound goalies with its ‘otherworldly’ behavior. Design Engineering [ June 14, 2010 ]

—————————–

延伸科學再發現@科技大觀園

-----廣告,請繼續往下閱讀-----


更多內容也可以上科技大觀園搜尋「運動」,或每週六上午8點收看民視53台科學再發現

-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 127 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
210 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

5
0

文字

分享

0
5
0
製作完美可麗餅的終極物理廚技
胡中行_96
・2022/07/04 ・1882字 ・閱讀時間約 3 分鐘

《論語》〈鄉黨〉裡,關於吃飯的規定,超—級—多—!!「食不厭精,膾不厭細。食饐而餲,魚餒而肉敗,不食。色惡不食,臭惡不食。失飪不食,不時不食。割不正不食,不得其醬不食。肉雖多,不使勝食氣。唯酒無量,不及亂。沽酒市脯不食。不撤薑食,不多食。祭於公,不宿肉。祭肉不出三日,出三日,不食之矣。食不語,寢不言。雖疏食菜羹瓜祭,必齊如也。」[1]吼~這麼囉嗦,有本事自己來啊!

有些男人激不得。

  

為了吃,您願意付出多少努力?圖/Monika Grabkowska

  

物理學家 Mathieu SellierEdouard Boujo 就因為前者的妻子提出挑戰,而用電腦運算出最佳烹調模型,還在 2019 年的《物理評論流體》(Physical Review Fluids)期刊上,分享成果,造福饕客。[2, 3, 4]全文第一句話,是這麼說的:「本論文研究固化流體薄膜,受制於複雜的運動學,在固體表面的流動…」,[5, 6]意思是「我們要教大家做可麗餅。

-----廣告,請繼續往下閱讀-----

  

完美可麗餅的定義

撇開二位科學家基於品味差異,而無法達成共識的餡料不談,[2]這個研究中,可麗餅的最高境界,被定義為「厚度均勻,無孔洞,且呈現完美圓形」。[6, 7]要在自家廚房,達成此終極目標,通常會遇上難題:當麵糊在鍋底鋪開,同時也會逐漸被煮熟。如果水平放置鍋子,麵糊便在平均地觸及鍋緣之前固化。為避免這個問題,一般有兩種常見的解決辦法:第一種是用刀具迫使麵糊在鍋中散開,類似刮刀塗層的動作;另個做法則是將鍋子傾斜旋轉,令麵糊往低處流動。[6]

  

運算製作可麗餅的模型

二位科學家採用「伴隨優化」(adjoint optimisation)的數學方法,描述流體在活動容器中的運動,模擬以最小施力,鋪出最平坦的可麗餅。[7, 8]其中考慮的因素,包含:以通過鍋子圓心的縱軸為中心運動;藉重力鋪開麵糊;以及隨溫度改變濃度的麵糊與旋轉中的鍋子的互動。[3]經過一番(讓人反胃的)計算過程,他們找到最佳的做法:先快速翻動鍋子,然後在煮的過程中,緩慢旋轉。[7]

-----廣告,請繼續往下閱讀-----

詳細的技巧,如下:一倒入麵糊,就馬上以陡峭的角度傾斜鍋子,把液體逼到邊緣。接著,手腕輕扭,轉鍋子一圈,確保麵糊完整鋪滿底部。在轉動的時候,傾斜的角度得逐漸縮小,轉速也隨著麵糊固化而趨緩。當覆蓋動作完成,鍋子也恢復水平狀態。[4, 7, 8]

圖中,深紅處麵糊最厚,深藍則最薄。可麗餅的製作流程,由左上開始,先向下,再依序往中、右二欄進行。[7]

起初濃厚的(紅色)麵糊被推向鍋子的右上緣,把稀薄的(淺藍)剩料拋在後頭。然而隨著順時鐘的轉動,麵糊逐漸勻稱地分佈於整個鍋底。[7]

圖/參考資料 6,figure 6

  

製作鬆餅的技巧,也受到科學家的重視。來源:參考資料 9

  

做鬆餅救眼疾

科學家們之所以對餅皮類食物的製作如此著迷,是因為類似的手法不僅能生產巧克力,幫智慧型手機螢幕鍍膜,[4]還可以懸壺濟世。2016 年倫敦大學學院(University College London)在 YouTube 上,也發佈了一個看似玩物喪志的作品。全長約 5 五分鐘的影片裡,前 4 分鐘幾乎都在以嚴謹的態度,講述鬆餅(此指 pancake,而非 waffle)的製作。到了最後卻話鋒一轉,道出製餅技術與眼疾治療的關係。原來手術中控制眼睛內部液體外流的皮瓣(surgical flaps),就要倚靠類似的原理來研發。[9]

救世的精神,於是賦予了科學家一個精進廚藝的學術使命。

  

-----廣告,請繼續往下閱讀-----

參考資料

  1. 論語/鄉黨第十(維基文庫)
  2. Making the Perfect Crêpe (APS Physics, 2019)
  3. The hard-hitting science behind crepes and beauty pageants (Chemical & Engineering News, 2019)
  4. Using fluid dynamics to perfect crêpe cooking techniques (Phys.org, 2019)
  5. Boujo E and Sellier M. (2019) ‘Pancake making and surface coating: Optimal control of a gravity-driven liquid film’. Physical Review Fluids, 4, 064802.
  6. Boujo E and Sellier M. (2019) ‘Pancake making and surface coating: Optimal control of a gravity-driven liquid film’. arXiv
  7. Physicists Think They’ve Finally Found the Trick to Making Perfect Crepes (Science Alert, 2019)
  8. A computer model explains how to make perfectly smooth crepes (Science News, 2019)
  9. Understanding the physics of pancakes to save sight (University College Lodon on YouTube, 2016)
-----廣告,請繼續往下閱讀-----
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

2

2
1

文字

分享

2
2
1
物理學家如何煮義大利麵?
胡中行_96
・2022/06/16 ・2509字 ・閱讀時間約 5 分鐘

疫情期間學烹飪,再拍照上傳社群網站,是凡夫俗子的成果發表;將煮義大利麵的心得筆記,發表在《流體物理學》(Physics of Fluids)期刊上,[1]則是科學家的華麗炫技。

煮麵的動機

美國伊利諾大學Sameh Tawfick副教授的實驗室,專攻靈活可變形的纖維和有彈性的結構,所產生的「流體結構交互作用」(fluid structure interaction)。「過去幾年老是開玩笑,說義大利麵的黏著力與我們的研究息息相關」,他說團隊發覺分析麵條力學質地的轉變,「可以體現黏著力、力學質地和烹煮熟度的關聯。」[2]

以上研究動機有聽沒懂,無所謂。煮麵要緊。

煮麵的方法

當 COVID-19 疫情襲來,學生與博士後研究人員,開始在家中和實驗室裡煮義大利麵。[2]

他們在實驗室裡,用的不是鍋子和瓦斯爐等通俗的烹飪設備,而是燒杯加熱板[3]加熱板是一種有發熱平面的機器,比開放式的火源安全。[4]

依照一般食譜的建議,煮義大利麵的步驟,是先把麵條扔進大滾的鹽水中,等熟了再撈出來瀝乾。[5]不過,實驗的這個部份沒加鹽,大概是想把變數降到最低,後面再討論食鹽的作用。以滾水煮熟的麵條,在脫離水的時候,殘留的水份會在麵條之間形成「彎液面」,以「表面張力」把一根根的麵條黏在一起。[2, 3]

左圖/參考資料3

整個過程就像圖中所示,左側為二條(橙色)義大利麵條,被置在(粉色)加熱板上的燒杯內烹煮;中央是麵條離水;右邊則為局部放大圖,呈現義大利麵條之間的彎液面。

表面張力之所以會產生,是因為水分子與水分子之間,每個方向的引力本來都一樣,可以相互抵銷,然而到了水面就失衡了,因此有儲存能量的張力。 [6, 7]

右圖/參考資料3

表面張力:藍色的圓點代表水分子,橙色的箭頭則是引力。圖/參考資料7

傳統義大利麵講求的口感,叫做「al dente」,意思是「煮到內硬外軟」,恰到好處。從物理的角度來看,水份由麵條表面,逐漸擴散進入內部,所以首先軟化的當然是最外層。吸水的過程中,麵條體積會隨之膨脹。煮愈久,效果愈明顯。下圖是研究團隊在觀察義大利麵「吸濕膨脹」(hygroscopic swelling)時,進行的量化紀錄。[3]

圖片上方中間的麵條剖面,從圓心向外,由深至淺,有輕微的色彩變化。然而,水份達到飽和後的右上剖面,便不再有任何的顏色漸層,大概就是所謂煮過頭的狀態。[3]

至於縱向的吸濕膨脹,則展示在下方。以最左邊的生麵條為比例尺,對照用 100 度 C 的滾水,分別烹煮 12、18、24、30 分鐘後的膨脹變化。整體而言,麵條剖面周長增加的比例,大於長度的成長比例。這是基於內部沒有與水接觸的核心,限制了麵條縱向的延展。[3]

左圖/參考資料3

所以,到底要怎麼做,才能擁有al dente的口感?

研究團隊發現義大利麵條達到 al dente 前,其周長與長度分別的膨脹率相比,所得的比率是3.5比1。一旦超過了,就會軟爛。[2]此外,由於麵條煮愈久,離水時彼此相黏的部份就愈長。研究團隊認為,專業廚師也可以測量相黏長度,來推論起鍋時間,以後再將成熟的技術,推廣至普通民家…[3](原文口氣意外地認真。)總之,要知道煮好沒,不是用嘴試吃,也別拿錶計時,科學家的建議竟是用尺測量!

-----廣告,請繼續往下閱讀-----

煮麵的鹽和光

明明義大利麵條的包裝上,都有建議的烹煮時間。為什麼科學家不直接告訴大家,煮多久能起鍋?原來如果照正常的煮法,在水中加食鹽,麵條的化學和力學特性都會起變化。比起用蒸餾水,鹽水不僅有助麵條膨脹,而且會增添嚼勁。[3]此外,Sameh Tawfick 副教授解釋,滾水中的鹽量,會改變達到 al dente 所需的時間。有鑑於此,他未來要探討食鹽,在義大利麵膨脹時所扮演的角色。[2]同時,這個研究正如一道照亮前程的光,或許會引領其他人,也來嘗試用簡單的方式,研究軟物質的特性。

參考資料:

  1. Hwang J., Ha J., Siu R., Kim Y. S., and Tawfick S. (2022) ‘Swelling, Softening, and Elastocapillary Adhesion of Cooked Pasta’, Physics of Fluids, 34 (042105)
  2. Physics Models Better Define What Makes Pasta Al Dente (Physics of Fluids, 2022)
  3. Hwang J., Ha J., Siu R., Kim Y. S., and Tawfick S. (2022) ‘Swelling, Softening and Elastocapillary Adhesion of Cooked Pasta’, arXiv
  4. Hot Plate Use and Safety in Laboratory (University of Wisconsin-Madison, 2013)
  5. Spaghetti and Meatballs (Gourmet Traveller, 2018)
  6. 第11章  有趣的界面現象(國立成功大學化學工程學系)
  7. Chemical Science Lesson Plan: Hydrogen Bonding and Surface Tension (University of Illinois, 2010)
  8. Enjoy better-cooked pasta with…physics and a ruler? (University of Illinois, 2022)

-----廣告,請繼續往下閱讀-----
所有討論 2
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。