Loading [MathJax]/extensions/tex2jax.js

0

4
0

文字

分享

0
4
0

旋轉、飛躍、進球得分!——香蕉球物理學

活躍星系核_96
・2014/06/30 ・1939字 ・閱讀時間約 4 分鐘 ・SR值 559 ・八年級

本文由民視《科學再發現》贊助,泛科學獨立製作

DSC_5456

文 / Peter Chiang(中興大學物理系學生,大專足球運動員)

成功的香蕉球會完美地繞過防守的人牆,然後眼看就要飛到球門外時忽然一拐,直入球門!伴隨著裁判哨聲的,是守門員錯愕的表情及對手神秘的笑容。每次被對手以香蕉球進球,人牆中的我總會萬分懊惱,心裡又不屑地咕噥著:「你只是懂得利用流體力學而已!」

身為一個真實身分是足球員的物理系學生,當我想要踢出直直飛出去的球,我會讓腳著力於球面的中心(通常就簡稱球心);理論上,球將不會旋轉而直直朝著目標方向前進,並且會有最大的力道。當然,如果要使球飛高的話,可能需要朝著球心偏下一點點踢。而當我想要讓球路呈一完美弧線,我會偏左下或偏右下一點。

-----廣告,請繼續往下閱讀-----

10428740_710074215720450_1001809766_n右圖中橘點是我傳地面球會選擇的擊球點,紅點是當前面沒有人阻擋時射門會選擇的擊球點,而綠點跟藍點則是球員在踢香蕉球時通常會踢的位置。

如果一個以左腳為慣用腳的球員(筆者慣用腳為左腳),選擇了綠色的點來做擊球點,球會朝著左前方的高空飛去。因為擊球點偏離了球心,於是會造成球的旋轉,你一定會認為球是朝著逆時針方向旋轉。然而,常看足球的人知道,足球員在踢自由球或角球時,都會稍微往側邊站一點。透過使腳踝呈L型、用腳內側摩擦球的邊緣,加強順時針旋轉的力道,使球路有漂亮的弧線產生。

日本山形大學的研究人員在 1998 年發表的論文中,利用 finite element analysis 來模擬足球員踢球的動作。研究確認了這個絕大多數足球員都知道的訊息-如果將踢球的點稍微偏離中心,並使腳和小腿呈 L 型,就能踢出香蕉球 [1]。下圖為山形大學團隊所模擬出的圖形。

world-11-6-8-6

569px-Magnus_effect.svg左圖是一個球受空氣阻力影響的俯視圖。黑色線條代表著空氣的流動、線上的箭頭是空氣阻力的方 向、球內箭頭是球的旋轉方向。同樣如上一段所描述的情形,慣用左腳的足球員將球踢入了空中,並使球順時針旋轉。球在空中不斷的和空氣摩擦,影響了空氣的流動。球的右側和球旋轉同方向的空氣流速較快,而左側則因為空氣流動方向和球旋轉方向相反,速度相對較慢。

-----廣告,請繼續往下閱讀-----

根據白努利定律,速度快的流體壓力會較小,反之則壓力大。因此可知,圖中的藍色箭頭指向球受力的方向。球路徑於是會成為一向右上運動的弧線。這就是著名馬格努斯效應(Magnus Effect)的應用。

這個道理同樣能夠運用在棒球、桌球及網球等 [2, 3]。當球員的腳離開球以後,因為速度相當快,球會先處在流體力學中所講的 turbulence regime,所受到的阻力相對較小。一旦球的速度降到某種程度,進入 laminar regime,球就受到阻力非常大的影響,而球的旋轉仍再作用。此時 Magnus Effect 的影響就變為明顯。這也是為何比賽常常會看到球直直朝觀眾席衝過去,在最後幾公尺忽然轉彎飛入球門的現象 [1]。

在某些特殊的狀況下,左腳的足球員會選擇用左腳的外側朝藍色的點踢過去,並摩擦帶動球以逆時針旋轉。這時候球就會朝著右前方飛出,繞過人牆,在飛向觀眾席的前一秒應聲 落入球門網中。這個高難度的動作需要足球員擁有強健的腳踝,有力的大小腿肌肉(使球能更快速地旋轉)及對身體的高度協調。知名的巴西球員 Roberto Carlos 就以這個技巧踢出了聞名世界的「The impossible goal」。

https://www.youtube.com/watch?v=8qH9ECcJ_DE

-----廣告,請繼續往下閱讀-----

除了 Magnus Effect 之外,當然還有其他因素都還是有可能讓球的路徑跟預期的不同,如球表面的顆粒。2010 年南非世界盃所使用的球 Jabulani,就讓很多自由球高手表現失常。許多球員歸咎於球的重量,然而科學家發現其實球表面的光滑度不同反而是造成球路及速度和球員們以往經驗不符的主因 [4]。一個好的足球員,懂得利用不同的參數,為球隊創造出最佳的利益。

這幾年來我們的球隊被自由球殺的無地自容,但我永遠會記得大一那年,我們的俄國學長在中場以一球強而有力又刁鑽的香蕉球,帶我們進入了八強賽。我也永遠記得,那天我們順風。

  1. The Physics of football. physicsworld [Jun 1, 1998]
  2. 馬格努斯效應。wikipedia
  3. What is the Magnus Force. YouTube
  4. Why the Adidas soccer ball, Jabulani, promises to confound goalies with its ‘otherworldly’ behavior. Design Engineering [ June 14, 2010 ]

—————————–

延伸科學再發現@科技大觀園

-----廣告,請繼續往下閱讀-----


更多內容也可以上科技大觀園搜尋「運動」,或每週六上午8點收看民視53台科學再發現

-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

5
0

文字

分享

0
5
0
製作完美可麗餅的終極物理廚技
胡中行_96
・2022/07/04 ・1882字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

《論語》〈鄉黨〉裡,關於吃飯的規定,超—級—多—!!「食不厭精,膾不厭細。食饐而餲,魚餒而肉敗,不食。色惡不食,臭惡不食。失飪不食,不時不食。割不正不食,不得其醬不食。肉雖多,不使勝食氣。唯酒無量,不及亂。沽酒市脯不食。不撤薑食,不多食。祭於公,不宿肉。祭肉不出三日,出三日,不食之矣。食不語,寢不言。雖疏食菜羹瓜祭,必齊如也。」[1]吼~這麼囉嗦,有本事自己來啊!

有些男人激不得。

  

為了吃,您願意付出多少努力?圖/Monika Grabkowska

  

物理學家 Mathieu SellierEdouard Boujo 就因為前者的妻子提出挑戰,而用電腦運算出最佳烹調模型,還在 2019 年的《物理評論流體》(Physical Review Fluids)期刊上,分享成果,造福饕客。[2, 3, 4]全文第一句話,是這麼說的:「本論文研究固化流體薄膜,受制於複雜的運動學,在固體表面的流動…」,[5, 6]意思是「我們要教大家做可麗餅。

-----廣告,請繼續往下閱讀-----

  

完美可麗餅的定義

撇開二位科學家基於品味差異,而無法達成共識的餡料不談,[2]這個研究中,可麗餅的最高境界,被定義為「厚度均勻,無孔洞,且呈現完美圓形」。[6, 7]要在自家廚房,達成此終極目標,通常會遇上難題:當麵糊在鍋底鋪開,同時也會逐漸被煮熟。如果水平放置鍋子,麵糊便在平均地觸及鍋緣之前固化。為避免這個問題,一般有兩種常見的解決辦法:第一種是用刀具迫使麵糊在鍋中散開,類似刮刀塗層的動作;另個做法則是將鍋子傾斜旋轉,令麵糊往低處流動。[6]

  

運算製作可麗餅的模型

二位科學家採用「伴隨優化」(adjoint optimisation)的數學方法,描述流體在活動容器中的運動,模擬以最小施力,鋪出最平坦的可麗餅。[7, 8]其中考慮的因素,包含:以通過鍋子圓心的縱軸為中心運動;藉重力鋪開麵糊;以及隨溫度改變濃度的麵糊與旋轉中的鍋子的互動。[3]經過一番(讓人反胃的)計算過程,他們找到最佳的做法:先快速翻動鍋子,然後在煮的過程中,緩慢旋轉。[7]

-----廣告,請繼續往下閱讀-----

詳細的技巧,如下:一倒入麵糊,就馬上以陡峭的角度傾斜鍋子,把液體逼到邊緣。接著,手腕輕扭,轉鍋子一圈,確保麵糊完整鋪滿底部。在轉動的時候,傾斜的角度得逐漸縮小,轉速也隨著麵糊固化而趨緩。當覆蓋動作完成,鍋子也恢復水平狀態。[4, 7, 8]

圖中,深紅處麵糊最厚,深藍則最薄。可麗餅的製作流程,由左上開始,先向下,再依序往中、右二欄進行。[7]

起初濃厚的(紅色)麵糊被推向鍋子的右上緣,把稀薄的(淺藍)剩料拋在後頭。然而隨著順時鐘的轉動,麵糊逐漸勻稱地分佈於整個鍋底。[7]

圖/參考資料 6,figure 6

  

製作鬆餅的技巧,也受到科學家的重視。來源:參考資料 9

  

做鬆餅救眼疾

科學家們之所以對餅皮類食物的製作如此著迷,是因為類似的手法不僅能生產巧克力,幫智慧型手機螢幕鍍膜,[4]還可以懸壺濟世。2016 年倫敦大學學院(University College London)在 YouTube 上,也發佈了一個看似玩物喪志的作品。全長約 5 五分鐘的影片裡,前 4 分鐘幾乎都在以嚴謹的態度,講述鬆餅(此指 pancake,而非 waffle)的製作。到了最後卻話鋒一轉,道出製餅技術與眼疾治療的關係。原來手術中控制眼睛內部液體外流的皮瓣(surgical flaps),就要倚靠類似的原理來研發。[9]

救世的精神,於是賦予了科學家一個精進廚藝的學術使命。

  

-----廣告,請繼續往下閱讀-----
  1. 論語/鄉黨第十(維基文庫)
  2. Making the Perfect Crêpe (APS Physics, 2019)
  3. The hard-hitting science behind crepes and beauty pageants (Chemical & Engineering News, 2019)
  4. Using fluid dynamics to perfect crêpe cooking techniques (Phys.org, 2019)
  5. Boujo E and Sellier M. (2019) ‘Pancake making and surface coating: Optimal control of a gravity-driven liquid film’. Physical Review Fluids, 4, 064802.
  6. Boujo E and Sellier M. (2019) ‘Pancake making and surface coating: Optimal control of a gravity-driven liquid film’. arXiv
  7. Physicists Think They’ve Finally Found the Trick to Making Perfect Crepes (Science Alert, 2019)
  8. A computer model explains how to make perfectly smooth crepes (Science News, 2019)
  9. Understanding the physics of pancakes to save sight (University College Lodon on YouTube, 2016)
-----廣告,請繼續往下閱讀-----
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

2

2
1

文字

分享

2
2
1
物理學家如何煮義大利麵?
胡中行_96
・2022/06/16 ・2509字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

疫情期間學烹飪,再拍照上傳社群網站,是凡夫俗子的成果發表;將煮義大利麵的心得筆記,發表在《流體物理學》(Physics of Fluids)期刊上,[1]則是科學家的華麗炫技。

煮麵的動機

美國伊利諾大學Sameh Tawfick副教授的實驗室,專攻靈活可變形的纖維和有彈性的結構,所產生的「流體結構交互作用」(fluid structure interaction)。「過去幾年老是開玩笑,說義大利麵的黏著力與我們的研究息息相關」,他說團隊發覺分析麵條力學質地的轉變,「可以體現黏著力、力學質地和烹煮熟度的關聯。」[2]

以上研究動機有聽沒懂,無所謂。煮麵要緊。

煮麵的方法

當 COVID-19 疫情襲來,學生與博士後研究人員,開始在家中和實驗室裡煮義大利麵。[2]

他們在實驗室裡,用的不是鍋子和瓦斯爐等通俗的烹飪設備,而是燒杯加熱板[3]加熱板是一種有發熱平面的機器,比開放式的火源安全。[4]

依照一般食譜的建議,煮義大利麵的步驟,是先把麵條扔進大滾的鹽水中,等熟了再撈出來瀝乾。[5]不過,實驗的這個部份沒加鹽,大概是想把變數降到最低,後面再討論食鹽的作用。以滾水煮熟的麵條,在脫離水的時候,殘留的水份會在麵條之間形成「彎液面」,以「表面張力」把一根根的麵條黏在一起。[2, 3]

左圖/參考資料3

整個過程就像圖中所示,左側為二條(橙色)義大利麵條,被置在(粉色)加熱板上的燒杯內烹煮;中央是麵條離水;右邊則為局部放大圖,呈現義大利麵條之間的彎液面。

表面張力之所以會產生,是因為水分子與水分子之間,每個方向的引力本來都一樣,可以相互抵銷,然而到了水面就失衡了,因此有儲存能量的張力。 [6, 7]

右圖/參考資料3

表面張力:藍色的圓點代表水分子,橙色的箭頭則是引力。圖/參考資料7

傳統義大利麵講求的口感,叫做「al dente」,意思是「煮到內硬外軟」,恰到好處。從物理的角度來看,水份由麵條表面,逐漸擴散進入內部,所以首先軟化的當然是最外層。吸水的過程中,麵條體積會隨之膨脹。煮愈久,效果愈明顯。下圖是研究團隊在觀察義大利麵「吸濕膨脹」(hygroscopic swelling)時,進行的量化紀錄。[3]

圖片上方中間的麵條剖面,從圓心向外,由深至淺,有輕微的色彩變化。然而,水份達到飽和後的右上剖面,便不再有任何的顏色漸層,大概就是所謂煮過頭的狀態。[3]

至於縱向的吸濕膨脹,則展示在下方。以最左邊的生麵條為比例尺,對照用 100 度 C 的滾水,分別烹煮 12、18、24、30 分鐘後的膨脹變化。整體而言,麵條剖面周長增加的比例,大於長度的成長比例。這是基於內部沒有與水接觸的核心,限制了麵條縱向的延展。[3]

左圖/參考資料3

所以,到底要怎麼做,才能擁有al dente的口感?

研究團隊發現義大利麵條達到 al dente 前,其周長與長度分別的膨脹率相比,所得的比率是3.5比1。一旦超過了,就會軟爛。[2]此外,由於麵條煮愈久,離水時彼此相黏的部份就愈長。研究團隊認為,專業廚師也可以測量相黏長度,來推論起鍋時間,以後再將成熟的技術,推廣至普通民家…[3](原文口氣意外地認真。)總之,要知道煮好沒,不是用嘴試吃,也別拿錶計時,科學家的建議竟是用尺測量!

-----廣告,請繼續往下閱讀-----

煮麵的鹽和光

明明義大利麵條的包裝上,都有建議的烹煮時間。為什麼科學家不直接告訴大家,煮多久能起鍋?原來如果照正常的煮法,在水中加食鹽,麵條的化學和力學特性都會起變化。比起用蒸餾水,鹽水不僅有助麵條膨脹,而且會增添嚼勁。[3]此外,Sameh Tawfick 副教授解釋,滾水中的鹽量,會改變達到 al dente 所需的時間。有鑑於此,他未來要探討食鹽,在義大利麵膨脹時所扮演的角色。[2]同時,這個研究正如一道照亮前程的光,或許會引領其他人,也來嘗試用簡單的方式,研究軟物質的特性。

  1. Hwang J., Ha J., Siu R., Kim Y. S., and Tawfick S. (2022) ‘Swelling, Softening, and Elastocapillary Adhesion of Cooked Pasta’, Physics of Fluids, 34 (042105)
  2. Physics Models Better Define What Makes Pasta Al Dente (Physics of Fluids, 2022)
  3. Hwang J., Ha J., Siu R., Kim Y. S., and Tawfick S. (2022) ‘Swelling, Softening and Elastocapillary Adhesion of Cooked Pasta’, arXiv
  4. Hot Plate Use and Safety in Laboratory (University of Wisconsin-Madison, 2013)
  5. Spaghetti and Meatballs (Gourmet Traveller, 2018)
  6. 第11章  有趣的界面現象(國立成功大學化學工程學系)
  7. Chemical Science Lesson Plan: Hydrogen Bonding and Surface Tension (University of Illinois, 2010)
  8. Enjoy better-cooked pasta with…physics and a ruler? (University of Illinois, 2022)

-----廣告,請繼續往下閱讀-----
所有討論 2
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。