0

1
0

文字

分享

0
1
0

深度學習──人工智能的現在與未來

活躍星系核_96
・2014/03/20 ・2397字 ・閱讀時間約 4 分鐘 ・SR值 561 ・九年級

文 / 曾郁蓁

在2012年,加州的 Google X Lab 用一千台電腦架成的 Google Brain,展現了前所未有的機器學習能力。研究者們準備了一千萬張從 Youtube 隨機截圖的靜止畫面給 Google Brain「觀看」。研究者沒有在系統中預設任何圖像知識、也沒有在圖片上附加任何說明標籤,就讓機器自己發掘圖庫所隱含的規則。在三天的「觀看」學習之後,Google Brain 成功地將這些 Youtube 截圖分成了三類:人臉、身體、還有──貓。

能夠區分出貓的圖片,是Google Brain的一大突破,也是這個研究結果的一大亮點(及笑點),但它的重要性絕不僅於此。它代表機器從此能夠如同人類一樣,在龐雜無盡的資料中自己找出潛在的抽象規則,而不需要他人的說明或指導。它也標示著人工智能(Artificial intelligence, AI)的新篇章:深度學習(deep learning)技術

深度學習

深度學習並不是研究者們憑空創造出來的運算技術,它是模仿神經網路的運算模式,以多節點、分層的運算來分析圖片上的特徵,最低層的節點們只計算每一個像素上的黑白對比,第二層的節點則根據第一層的資料、以連續的對比來分辨出線條與邊界,隨著層級越來越高、累積的計算資訊越來越複雜,就可以對圖片進行辨認與分類。以上述的Google Brain為例,它的結構一共分為九層,模仿人類視神經的分層與功能,最終可以分辨出人臉、身體、與貓圖片的決定性差異、並加以分類之。

圖片來源:ANDREW NG
圖片來源:ANDREW NG

神經網路模式運算也不是剛被提出的新玩意。早在1980年代,研究者們已經開始著手進行相關研究,至今相關研究仍在學界佔有一席之地。而隨著軟硬體的光速進步,這樣的技術已經開始被應用在真實世界。2009年,Geoffrey Hinton以及他在多倫多大學的研究團隊就以深度學習技術,開發出高準確度的語音辨認技術,能夠正確地將口語轉換成文字。而這樣的技術已經被廠商採用,搭載在許多智慧型手機之中。最為大眾廣為所知的手機虛擬助理,iPhone的Siri,便是仰賴深度學習技術,來辨認用戶的語音指令。

舊技術,新突破

而史丹佛大學的研究者 Andrew Ng,便是在同時間說服 Google 公司,讓他使用其公司的豐富資源來建立了 Google Brain。借助強勁的硬體與資料庫,一舉將深度運算技術推向新的紀元:發現潛在規則、自發性分類。這樣的技術比語音轉譯還難上許多,主要是因為其成果已經脫離的單純的資料對應轉換,而進化成在大型資料庫中找尋抽象分類與規則。也因此更接近人類的智能。

除了 Google Brain 這樣,因尖端科技公司出資贊助而在資源上佔有絕對優勢的深度學習系統,Andrew Ng 也研發出不需要一千台電腦就可以消化大量資訊的系統。他表示,使用圖形處理器 (graphics processing units, GPUs),就可以架設出功能類似、但成本更為低廉的運算系統來進行深度學習。

在2012年,Geoffrey Hinton 的團隊,就使用圖形處理器架設了一個深度學習系統。知名網路圖庫 ImageNet 每年皆會舉行一場圖片辨認比賽,這個網站會提供約一百萬張的標準化圖片,並標上其分類,參賽者必須寫出可以學到分類規則的語法,並用全新的照片測試之。Geoffrey Hinton 的深度學習系統使用同樣的圖庫,可以展現比過去參賽系統高出約10%的正確率。這樣的結果,讓他被Google 聘請去提升圖片搜尋的正確性。

廣泛的應用領域

除了圖片分類或語音轉譯,深度學習還有更多的用途。例如,Geoffrey Hinton 的學生 George Dahl 就應用深度學習技術,打敗了默克(Merck)藥廠現行的系統,成功提高了對特定化學分子間反應的預測力,以便更有效率地找出有用的藥物。他的團隊藉由這個深度學習系統,提升了約15%的預測力,更獲得了默克藥廠懸賞的2萬美金獎金。 Paskolos internetu su vekseliu iš žmonių automobiliui be užstato, paskolų refinansavimas, SMS greitieji kreditai

此外,麻省理工學院的 Sebastian Seung 也利用深度學習來分析腦部切片、以建立三維空間的腦圖,以及神經束的走向。這樣的系統除了更快以外,也節省了大量的人力。華盛頓大學的 William Stafford Noble 也應用深度學習系統來預測胺基酸鏈會組成如何的蛋白質、並可進一步預測此蛋白質的性狀。而這兩種應用的共同點都是其背後龐大的資料數量,以及深度學習所能提供的預測性。

人工智能的未來

雖然深度學習已經被應用到尖端科學研究及日常生活當中,而 Google 已經實際搭載在核心的搜尋功能之中。但其他知名的人工智能實驗室,對於深度學習技術的反應並不一致。

例如艾倫人工智慧中心的執行長 Oren Etzioni,就沒有考慮將深度學習納入當前開發中的人工智慧系統中。該機構目前的研究是以小學程度的科學知識為目標,希望能開發出光是看學校的教科書,就能夠輕鬆應付各類考試的智能程式。Oren Etzioni 以飛機為例,他表示,最成功的飛機設計都不是來自於模仿鳥的結構,所以腦神經的類比並無法保證人工智能的實現,因此他們暫不考慮借用深度學習技術來開發這個系統。

現行的人工智能程式,基本上都是將大大小小的各種知識寫成一句一句的陳述句,再灌進系統之中。當輸入問題進去智能程式時,它就會搜尋本身的資料庫,再選擇出最佳或最近解。2011年時,IBM 有名的 Watson 智能電腦,便是使用這樣的技術,在美國的電視益智節目中打敗的人類的最強衛冕者。雖然過去都是使用傳統式的手工輸入知識,然而 Watson 團隊現在也考慮將深度學習技術應用在部分的運算之中。IBM 的首席科技主管 Rob High 表示,他們現在已經在進行實驗,檢視深度學習能如何提高 Watson 辨認圖片的能力。

雖然各家人工智能實驗室對於深度學習技術的反應不一,但科技公司與電腦科學家們已經看中它的潛在獲利能力。George Dahl 已經著手在尋找創立公司的可能性,而 Facebook 的人工智能部門也開始招募相關領域的研究者。Andrew Ng 表示,深度學習的系統會隨著資料庫越龐大,而變得更有效率。當硬體與網路的不斷進化、各種影音資料急速累積,深度學習技術將會吸引更多研究者發展它的各種可能性。George Dahl也表示,深度學習還尚在襁褓之中、才開剛始發展,他預期,這個技術將是未來的一大趨勢。

原文:Computer science: The learning machines

參考資料:

  1. Google Brain報導:How Many Computers to Identify a Cat? 16,000
  2. Deep Learning(深度學習)網站
  3. ImageNet網站主辦之大規模圖片辨認競賽:Large Scale Visual Recognition Challenge 2013

特色圖片來源:Saad Faruque via photopin cc

文章難易度
活躍星系核_96
754 篇文章 ・ 93 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

5
1

文字

分享

0
5
1
從「自動化」進化成「智動化」——智慧製造是半導體產業的未來趨勢
鳥苷三磷酸 (PanSci Promo)_96
・2022/08/15 ・3611字 ・閱讀時間約 7 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

  • 文/曾繁安

台灣擁有傲視全球、成熟完整的半導體產業聚落,在世界科技領域中扮演舉足輕重的角色。這個國家的經濟命脈,經過全自動化的時代後,即將迎來另一次生產技術的大變革——智慧製造。

當訂單越來越多,人力卻不夠,半導體業者該怎麽辦?

半導體產業包含了矽晶圓[註]、相關化學品與氣體及導線架等封裝材料,其中又以晶圓厰為大宗,例如台積電便是全球規模最大的晶圓代工厰。素有「現代科技應用的大腦與心臟」之稱的半導體,是現代多數電子產品的核心單元,因為各項產品正是利用半導體電導率變化的特性來處理資訊。然而,目前半導體製造業卻面臨人力資源跟不上產量需求提高的挑戰。

晶圓是積體電路製程中的載體基片。圖/wikimedia

一般半導體廠場域面積大,人力短缺使企業面臨管理人手吃緊,再加上人員進出無塵室的過程繁瑣耗時,也是另一大負擔。與此同時,在廠內儀器參數比對和規劃生產計劃上,傳統人力也可能有出現誤差的風險。疫情時代也促成在宅經濟和 5G 應用的高速發展,各領域對晶片的需求大增,造成半導體產業出現產量需求高,但人力短缺的現象。

因此對不少業者而言,可有效緩解人力不足、大幅提升作業效率的數位轉型(Digital Transformation),可謂勢在必行。

從「自動化」升級到「智動化」的智慧製造

那半導體產業的數位轉型,該怎麽做?所謂數位轉型,不僅僅只是將資料或作業數位化,還包括導入人工智慧(Artificial Intelligence,簡稱 AI)與數位科技,來改變企業的整個營運生產模式。AI 指的是電腦程式可模擬人類思維過程的能力,而在 AI 概念下的機器學習(Machine Learning,簡稱 ML),即為機器可以根據已收集的大量數據,經由建立模型對新數據進行推測,學習找出最佳解、改善效能

結合 ML 的製造執行系統,需搭配裝置在工廠各處的多個傳感器(Sensor),來收集與回傳各樣的生產數據。它們與工廠設備的相互連接,即是運用了物聯網(Internet of Things)的技術。有賴於 5G 科技的發展,數據可以達成高速率傳輸與低延遲,使得機器與機器之間可以達成溝通,在整合分析各方數據資訊後,有效率地完成各種指令操作,可以比自動化製造系統,更進一步為人類代勞工廠運作的大小事務。

舉例來説,當工廠的生產過程出現問題,自動化系統只會跳出異常通知,還是需要仰賴人員來進行手動排除;但換作應用 ML 系統的話,便可透過自我學習,來自動調整製作流程以解除異常狀況,無需人力介入便可自主解決,提升良率,達成「智動化」智慧製造(Smart Manufacturing)的最終目的。

機器可以根據已收集的大量數據,經由建立模型對新數據進行推測,學習找出最佳解、改善效能。 圖/elements

懂得精益求精、提高品質產量的智慧工廠

一座運用智慧製造的半導體工厰,不但能自主克服製程中的疑難雜症,更能幫助提高晶圓的產量品質。在研發方面,AI 可以協助理解高複雜、高維度的製程開發挑戰,也可與 ML 軟體分析感測資料和檢測影響,進行品質管理與缺陷檢查。

此外,數據治理和數位分身,也是智慧製造的關鍵策略。對企業整體的數據進行管理和控制以提高數據的價值將因為數據產生的成本風險降到最低,是數據治理(Data Governance)的核心精神。

在兼顧資訊安全下,數據治理的體系能使跨部門間的數據共享更為方便暢通。輔以 AI 及 ML 的運算,便可以使業務部門的客戶需求、供應鏈管理等資料,與工廠生產部門的設備控制與品管等流程,有更迅速緊密的配合,規劃好合適的未來生產計劃,指導人員進行相關作業。

如同我們可以在電玩游戲或社交媒體上,按照自己的個人形象,來打造自己的虛擬化身,工厰也能藉助現今的科技,來為產品的物理實體,在資訊化平臺或系統的虛擬空間中,打造一個類比實物數位分身(Digital Twin)

數位分身模型之概念圖。圖/wikimedia

數位分身也是物聯網的應用之一,半導體廠中,由傳感器所收集到的晶圓製造數據,在 AI、ML 和軟體分析的協助下被整合,對映成數位空間中「雙胞胎」的存在。這位孿生兄弟不僅能夠隨物理實體的變化而即時做出相應變化,還可以提供無法在實體產品上測試計算的數據。

理想情況下,數位分身可以經由機器學習,分析過去的歷史資料或多重來源的數據,來推估實體的未來情境。因此在危機或異常事件發生前,業者便可預先進行預測性的設備維護與產品的良率分析,比起傳統人力的判斷更加精確,降低技術風險,大大提高生產效率。

工業 4.0 浪潮來襲,智慧製造是產業未來趨勢

運用通訊科技、資料庫和電腦系統達成全自動化生產,已不是新鮮事,如今人類社會正迎來第四次工業革命的新一波浪潮。主打網絡與機械相互連接的核心精神,導入人工智慧、機器學習、物聯網感測與大數據分析等人機協作的智慧製造,是因應多變市場需求的時下趨勢。

在半導體領域中,企業龍頭台積電可説是數位轉型的成功案例,從二十年前的全自動化製造系統,如今致力於打造組織內部友善 AI 的工作環境,努力向智慧製造全面轉型。數位轉型的技術支援不能沒有半導體產業製造的晶片,而如今數位轉型也有望帶領半導體產業突破產能吃緊、人才短缺的困境,走向智慧製造的新紀元。

以台灣在地企業的智慧製造覆蓋率而言,就已在短短 6 年內成長 50%。舉全台最大的國際半導體展 SEMICON Taiwan 為例,智慧製造相關的展商在近六年內的成長幅度也同樣攀升了 50%。

今年高科技智慧製造特展將以歷年最大規模之姿登場,與全台最大半導體盛宴 SEMICON Taiwan 2022 國際半導體展同期同地舉辦,匯集橫跨高科技製造業智慧製造解決方案業者、系統整合、軟硬體商及智慧製造需求端業者,如盟立自動化、倍福自動化、家登精密、攝揚企業、日商 JEL 等不容錯過。

今年高科技智慧製造特展將以歷年最大規模之姿登場,與全台最大半導體盛宴 SEMICON Taiwan 2022 國際半導體展同期同地舉辦。圖/SEMI

因應疫情下數位轉型成為全球企業的重要任務,今屆展覽中的「高科技智慧製造論壇」將由美光科技、 Lam Research、 Rockwell Automation、Siemens 等知名企業專家以人工智慧工廠為主軸,探討 GEC 技術藍圖,內容包含五個部分包含數據管理、智能分析、數位分身預測等重點實務經驗分享,從晶圓厰到設備製造商和解決方案提供者的角度,讓參與者得以探究 AI 智能工廠的前景和挑戰,跟上數位轉型的步伐。

除了智慧製造議題,展覽期間共有超過 20 場重磅級的國際趨勢論壇,豐富主題涵蓋先進製程、異質整合、化合物半導體、車用晶片、永續製造、半導體資安及人才。論壇將在今年 9 月 13 日率先開幕,展覽則於 9 月 14 日至 16 日於臺北南港展覽館一館盛大開場,規模創歷年新高,届時將有 700 間國內外指標性大廠共襄盛舉,現場將有 2,450 個攤位展出,完整串聯全球半導體供應鏈,目前展會參觀與論壇皆已開放報名,參與席次有限,有興趣者趕快手刀至官網報名起來!

註:晶圓(Wafer)是半導體晶體圓形的簡稱,是從半導體材料如最常見的矽,經過拉製、提煉等一系列處理過程,製成的圓柱狀半導體晶體經過切片、抛光而來。這些圓形薄切片被用於積體電路製程中的載體基片,也可用來製作太陽能電池。

參考資料

  1. 半導體是什麼?晶片產業一次看懂
  2. About SEMI Smart Manufacturing initiative
  3. 【獨家披露】台積電數位轉型的下一步,靠AI推動全面轉型(上
  4. 【獨家披露】台積電數位轉型的下一步,靠AI推動全面轉型(下)
  5. 泛科學:每分鐘 15 次的駭客攻擊,5G 世代的臺灣資安挑戰——資安所王仁甫策略總監專訪
  6. Data Governance – 臺灣人工智慧行動網
  7. 「數據治理」:人工智慧企業的基本功
  8. 科技大觀園:從全自動化製造邁向智慧製造
  9. 聯剛科技股份有限公司
  10. 【新興領域:9月焦點8】數位分身(Digital Twin)技術發展趨勢與不同層次應用模式
  11. 半導體資安的新挑戰!後疫情時代,如何全面打造半導體供應鏈數位韌性
  12. 工業4.0大全,從淺到深一篇搞懂它!
鳥苷三磷酸 (PanSci Promo)_96
146 篇文章 ・ 268 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

2

3
3

文字

分享

2
3
3
英國「學童」取代「病理學家」?!辨識癌細胞的人工智慧
胡中行_96
・2022/05/30 ・2391字 ・閱讀時間約 4 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

18 世紀工業革命,人力從家庭進入工廠,連孩子們也無法倖免。為了保障童工的權利,1819 年英國制定了《工廠法》(Factory Act),規範合法工作年齡和時數。[1]現在 COVID-19 又把部份勞工趕回去,在家工作的現象,竟讓英國企業動了「善用」童工的念頭……。

學童成為人工智慧幕後推手

橡樹國家學院(the Oak National Academy)宣傳圖片。圖/橡樹國家學院

2020 年英國政府因應 COVID-19 疫情,成立了「橡樹國家學院」(the Oak National Academy)網路平台,提供線上教學課程。這招多少能挽救受學校停課影響的教學品質,但解決不了封城或隔離期間課後活動的匱乏,無聊到快抓狂的孩子,差點逼瘋在家工作的家長。此時,數位病理科技集團 PathLAKE 橫空出世,為家長分憂,「順便」利用學童來發展人工智慧。[2]

  • 人工智慧(artificial intelligence)的「機器學習」(machine learning),大略分為三種:
  1. 監督式機器學習(supervised machine learning):把標註好的資訊,餵給機器。由於標註的步驟是人類執行的,機器在學習的過程中,會逐漸朝人類設定的目標,愈加精準。[3]
  2. 非監督式機器學習(unsupervised machine learning):要求程式從未標註的資料中,找出現象或模式。在人類沒有插手的狀況下,有時會得到出乎意料的結果。[3]
  3. 增強式機器學習(reinforcement machine learning):設下獎勵機制,讓機器從嘗試中學習。例如:告訴自駕車它在行駛中,做對了哪個決定。[3]

PathLAKE 集團想做的是病理圖像的「監督式機器學習」。然而,標註資料的工作耗時費力,近年選擇從事病理科工作的醫師比例又大不如前。於是,「童工」就成為填補業界人力空缺的另類解方。

PathLAKE 的策略,大致上是這樣的:首先,昭告天下說這裡有個線上課外活動,即將開放給學童參加。拐來一票願意簽署同意書的家長後,先教他們的小孩癌細胞長怎樣。等小鬼頭們學得差不多,便可以玩遊戲闖關,藉此驗收他們的學習成果。依循此模式,將來或許就能聘僱為數龐大的「童工」,來標註病理圖像,然後再以此數據資料訓練人工智慧機器。[2]

「打敗病理學家」細胞形態辨識競賽

PathLAKE 集團舉辦的活動分二個梯次,每次都招募 3 個不同年齡層的學童:4 到 11 歲、11 至 16 歲以及 16 到 18 歲。他們透過網路學習基礎的「細胞形態學」(cell morphology),以辨識乳癌細胞染色影像的 4 種類型:陽性癌細胞(positive tumour cell)、陰性癌細胞(negative tumour cell)、陽性非癌細胞(positive non-tumour cell),還有陰性非癌細胞(negative non-tumour cell)。課程結束,便參與競賽。[2]

競賽題目示意圖。圖/參考資料 2

以下是二個梯次競賽部份的內容與差異:[2]

  • 測試版競賽(Pilot competition): 
  1. 關卡:遊戲總共有三關,關卡名稱「微辣」(Mild)、「中辣」(Hot)、「大辣」(Spicy),聽起來頗像麻辣鍋的辣度分級……,每一關分別有 20、30 和 50 張影像,要參賽者辨識。
  2. 成績:報名並完成線上課程的 28 名學童中,僅有 5 人參加競賽。其中只有 1 人成功地從「微辣」晉級到「中辣」,而「特辣」根本沒人玩。教學和遊戲的難度,明顯須要調整。
  • 主要競賽「打敗病理學家」("Beat the Pathologists"):

有了上一梯次的經驗,PathLAKE 團隊修改設計,於 2020 年 10 月的「牛津科學節」(the Oxford Science Festival)推出「打敗病理學家」活動。

  1. 關卡:這回有「微辣」(Mild)、「中辣」(Hot)、「大辣」(Spicy)以及「特辣」(Supercharger),共 4 個關卡,邀請參賽者分別得挑戰 20、40、60 和 80 張影像。
  2. 成績:總計 98 位學童登記報名中,有 95 人參與競賽。其中 91 人通過「微辣」考驗,經過層層過關斬將,最終 22 人成功解鎖(含 15 人晉級)「特辣」關卡。

成效與願景

皇家病理學家協會(the Royal College of Pathologists)在 2020 年「國家病理週」(National Pathology Week)期間,宣傳 PathLAKE 的活動。PathLAKE 集團本身也萬分滿意其成效,在 2022 年 5 月 12 日的《科學報告》(Scientific Reports)期刊中,表示「學童有精確標註細胞的高度潛力……,期望此類的競賽不光使他們對病理學和人工智慧產生興趣,還能促進病理學家與電腦科學家的合作」,並預告他們之後會推出一個標註「腺體結構」(glandular structures)的新活動。[2]

當然,看完「資方」的心得與願景,也該來瞭解一下「勞方」的處境。在英國文豪狄更斯(Charles Dickens)小說《孤雛淚》(Oliver Twist)描述的 19 世紀維多利亞時代,兒童被家長或監護人逼迫去工作,工時冗長且勞動環境惡劣。[4]

將近二個世紀的時間過去後,COVID-19 疫情期間的英國學童,是否受到相對優渥的待遇?

19 世紀礦坑童工。圖/National Museum Wales

從 PathLAKE 團隊的片面描述,我們可以得知:除了病理知識外,每位活動成員均得到參與證書一份,前三名則另有獎項。

參考資料

  1. Impact of government acts improving working conditions(BBC)
  2. Lessons from a breast cell annotation competition series for school pupils(Scientific Reports, 2022)
  3. Machine learning, explained(MIT Sloan School of Management, 2021)
  4. Children in Dickens’s Novels(International Journal on Studies in English Language and Literature, 2014)
所有討論 2
胡中行_96
49 篇文章 ・ 16 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

2

8
4

文字

分享

2
8
4
機器學習 × 鈣鈦礦材料:讓 AI 設計太陽能電池!
研之有物│中央研究院_96
・2022/03/09 ・6280字 ・閱讀時間約 13 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文|簡克志
  • 美術設計|林洵安

機器學習輔助材料設計

為了 2050 淨零排放的目標,太陽能發電為不可或缺的再生能源之一,其中「鈣鈦礦太陽能電池」是近年最熱門的研究領域,不僅成本低廉、光電轉換效率也可達到 25%。然而,鈣鈦礦材料在環境中容易降解,影響使用壽命。材料科學家為了做出效能好又穩定的鈣鈦礦「料理」,無不卯足了勁,替這道菜加上各種「食材」,但是越複雜的菜,調出好味道就越困難。人腦畢竟有限,如果交給機器呢?中央研究院「研之有物」專訪院內應用科學研究中心包淳偉研究員,他與團隊訓練了一套機器學習模型,可以又快又準的找出複雜鈣鈦礦材料的最佳化條件!

「鈣鈦礦太陽能電池」是近年最熱門的研究領域,不僅成本低廉、光電轉換效率也可達到 25%。圖/Wikimedia Commons

光電好夥伴:複雜鈣鈦礦材料

對太陽能電池來說,鈣鈦礦材料具有優異的光電性質和低生產成本,近年也廣泛應用在 LED、雷射、光感測器和光觸媒。

鈣鈦礦是什麼呢?最初是指鈣與鈦的氧化物 CaTiO3,而現在常講的「鈣鈦礦材料」為一種統稱,泛指擁有相似結構的金屬鹵化物材料,通式為 ABX3。要調配出優秀的鈣鈦礦材料並不容易,科學家必須像大廚一樣,運用各種「食材」煮出 ABX3

鈣鈦礦材料 ABX3 的結構示意圖,同一個位置可以放入不同的相應元素。資料來源/Journal of Energy Chemistry

鈣鈦礦材料 ABX3 的「食材」有哪些?

  • A 的位置:可放入 +1 價的有機或無機陽離子,例如甲胺(CH3NH3+,簡稱 MA)、甲脒(HC(NH2)2+,簡稱 FA)或銫離子(Cs+)。
  • B 的位置:可放入 +2 價的無機金屬陽離子,通常是鉛離子(Pb2+)。
  • X 的位置:可放入 -1 價的鹵素陰離子,如碘(I)、溴(Br)、或氯( Cl)離子。

由於鈣鈦礦材料在環境中容易降解、影響使用壽命。研究發現,添加多種有機和無機離子的鈣鈦礦太陽能電池可大幅提升性能和穩定性,因此科學家為了調配出最好的鈣鈦礦材料,加料不手軟,成份也愈來愈複雜。

在眾多複雜鈣鈦礦材料中,包淳偉研究員探討的是 MAyFA1−yPb(BrxI1−x)3 ,下標符號 y 和 1-y 表示相對含量,如果 MA 佔 60%、FA 就是 40%,因為 MA 和 FA 會競爭同一個位置;同理 Br 和 I 亦然。

圖片為鈣鈦礦材料通式 ABX3 對應到混合離子鈣鈦礦材料 MAyFA1−yPb(BrxI1−x)3 之示意圖。圖/研之有物

問題來了,MAyFA1−yPb(BrxI1−x)3 這個材料這麼複雜,比例要怎麼配比較好呢?「你累積的經驗越多,你就猜得越準」,包淳偉說道。

2016 年曾經有國外團隊為了找出離子濃度配方與 MAyFA1−yPb(BrxI1−x)3 元件性能的關係,不惜花重本「土法煉鋼」,分別將兩組相對含量 7 等分(0, 1/6, 2/6, 3/6, 4/6, 5/6, 1),做出 49 種不同的鈣鈦礦太陽能電池,再去測量光電轉換效率,得出最佳比例為 MA2/6FA4/6Pb(Br1/6I5/6)3 。

然而,爲何這樣的濃度配方可以得到最佳元件呢?很遺憾的,實驗團隊由於實驗表徵手段的限制,並不能解答這個重要的基礎問題。因此,實驗團隊仍然需要學生們焚膏繼晷地爆肝,用試誤法(trial and error)把最佳配方「踹」(try)出來。

國外團隊為了找到 MAyFA1−yPb(BrxI1−x)3 最佳比例,做出 49 種不同的鈣鈦礦太陽能電池,黃框處即為最佳比例。左圖為相應濃度的元件外觀,右圖為相應濃度的材料表面微結構。資料來源/Energy & Environmental Science

不過,一直反覆試誤並非好方法,畢竟每做一次實驗就是一次成本。因此,科學家也設法從理論模擬著手,包淳偉強調「模擬的好處是可以在電腦空間中創造一個最純淨的系統。」,而原子尺度模擬,更可以達到原子級的解析度,提供許多實驗無法量測的資訊。

要如何模擬一個材料系統?

材料科學注重製程(Process)、性質(Property)和結構(Structure)之間的關係。當我們對結構不夠瞭解時,往往只能透過不同的製程參數,慢慢做出我們想要的性質,可能在失敗多次之後,才能抓到一些訣竅。

理論模擬幫助科學家在做出樣品之前,先建立能量模型,找出能量最低、最穩定的微結構。當我們了解結構之後,可以避免有問題的製程參數設定,進而得到較好的材料性質。

首先,如果要知道材料性質,有個最精準也最耗時的方法:「第一原理計算」,只用量子力學原理,從頭開始把原子間的作用力和能量計算出來。

因為計算繁瑣,應用上只能模擬 1 奈米以內(10-9 公尺)的三維材料,抓到數個皮秒(10-12 秒)內的原子狀態,若再往外擴展所耗費的時間和成本難以想像。

相對地,計算材料性質也有省時省力的方法:「分子動力學模擬」,運用古典的牛頓力學,搭配統計力學去計算系統的微觀結構和能量。

分子動力學模擬大約可以模擬 100 奈米內的三維材料,抓到數個微秒(10-6 秒)內的原子狀態,可模擬的系統尺寸和時間都比第一原理計算要來得多!可惜準確度對於現在化學組成高度複雜的新穎材料而言是一個極大的挑戰。

有沒有一種方法,可以做到又快又準呢?有有有!它就是近年大熱門的「機器學習」!

圖/研之有物
第一原理計算僅適合用在 1 奈米以內尺度,計算準確耗時;分子動力學模擬可用於 100 奈米尺度,計算省時卻不夠精準;透過機器學習建立的神經網路模型,可以快速模擬 100 奈米尺度的材料,也保留高準確度。資料來源/包淳偉

時間就是金錢,請愛用機器學習!

當包淳偉看到 2016 年國外團隊的 MAyFA1−yPb(BrxI1−x)3 鈣鈦礦研究之後,他認為「結構」這塊還有很多地方可以討論,如果透過理論模擬,先找出最低能量的微結構,或許就能更有效率地探索離子濃度空間,找出決定最佳配方的關鍵要素!

由於第一原理計算和分子動力學模擬都不夠好用,包淳偉就將念頭轉到近年熱門的「機器學習」,他和團隊就先從簡單的 PbI2 開始,慢慢做到複雜的鈣鈦礦材料。一開始包淳偉的團隊使用布朗大學開發的原子尺度機器學習套件(Atomistic Machine-learning Package, AMP)來進行訓練與測試,然而,由於 AMP 套件性能無法達到預期,包淳偉團隊就走上了自行開發機器學習分子動力學模擬程式的不歸路。

訓練神經網路模型時,包淳偉採用第一原理計算的結果當作機器學習素材,並設計函數進行反饋校正,直到預測的原子能量誤差遠小於熱擾動。

這套神經網路模型如何運作?先輸入原子座標(位置向量 r),再換算成「原子指紋」(特徵向量 G,表示該原子與其他原子之間獨一無二的相對關係),之後透過神經網路,快速輸出整個材料系統的原子能量和作用力。

從輸入到輸出,要模擬原子走一個步階(註 1)有多快?假設以 2000 顆原子的計算量來看,自行開發的機器學習方法只要約 0.1 秒,第一原理計算則要花費 3 小時,足足快了十萬倍(註 2)!

包淳偉與團隊成功訓練出可以模擬複雜鈣鈦礦材料系統的神經網路模型。資料來源/包淳偉
此神經網路模型可以準確預測 MAyFA1−yPb(BrxI1−x)3 鈣鈦礦材料的系統能量和受力。縱軸表示包淳偉團隊的神經網路模型模擬結果,橫軸表示第一原理計算結果。資料來源/包淳偉

AI 告訴我們什麼?

包淳偉團隊成功訓練出來的神經網路模型,可以在 2,000 顆原子左右的材料系統上進行數百萬種可能的原子排列採樣,並計算出複雜鈣鈦礦材料的最低能量結構,模擬出不同原子在材料中最穩定的位置、它們的振動,以及它們受到擠壓時會怎麼跑。

多虧了神經網路的快速計算,即使是 MAyFA1−yPb(BrxI1−x)3 這麼複雜的系統也能處理,跑了將近 1 百萬次結構模擬,得出不同成份比例下 81 種最低能量的微結構(如下圖),這是第一原理計算絕對跑不出來的成果。

MAyFA1−yPb(BrxI1−x)3 鈣鈦礦材料的最低能量原子結構,縱軸 y 為 MA 濃度(CMA,從 MA0-FA1到 MA1-FA0),橫軸 x 為 Br 濃度(CBr,從 Br0-I1 到 Br1-I0),各自 9 等分。為求圖片簡潔,省略 x, y = 0 或 1 的結構圖。資料來源/包淳偉

找出系統最低能量的原子組態還不夠,包淳偉團隊想要進一步檢驗鈣鈦礦材料 MAyFA1−yPb(BrxI1−x)3 是否能穩定地保持混合狀態,因此計算不同濃度成份下的離子混合能 Emix(如下圖)。

  • 混合能是負的,表示系統會傾向混合在一起,這也是材料學家想要的微結構,系統會維持單一固溶相,原子和原子之間「和平共處」。
  • 混合能是正的,表示系統會傾向分離成不同成分的「相」(Phase),材料不能保持穩定的混合狀態,會析出相異固溶相,產生許多缺陷。
MAyFA1−yPb(BrxI1−x)3 鈣鈦礦材料的混合能 Emix分布,藍色表示混合能為負(維持單一固溶相),紅色表示混合能為正(析出相異固溶相),可以看到 Br 和 MA 濃度高的時候,容易析出化合物。其中,縱軸 y 為 MA 濃度(CMA),橫軸 x 為 Br 濃度(CBr)。資料來源/包淳偉

從 MAyFA1−yPb(BrxI1−x)3 混合能分布初步來看,Br 濃度(CBr)或 MA 濃度(CMA)越高的時候,混合能就越高,系統越容易析出相異的固溶相。

除了混合能之外,研究團隊更進一步檢驗了不同濃度成份下的其他結構參數,例如短程有序參數 αA-B(正值表示 A-B 析出;負值表示 A-B 混合)、晶格扭曲 ηs(shear strain)與晶格畸變 ηv(volumetric strain),觀察析出化合物時,是否真的會改變晶格的幾何結構。

為了將模擬結果和實際情況對照,包淳偉再將模擬出來的結構以第一原理計算出不同濃度成份下的材料能隙(Eg),以及用內差法比對 2016 年國外團隊的實驗數據,得出不同濃度成份下的元件短路電流(Jsc)和光電轉換效率(power conversion efficiency, PCE)。

有了這些關鍵數據,我們終於可以完成鈣鈦礦材料 MAyFA1−yPb(BrxI1−x)3 優化製程參數的最後一哩路!

鈣鈦礦材料設計最佳化!

還記得我們一開始跑模擬的目標嗎?幫助研究團隊在花大錢做實驗之前,先找出最穩定的結構,從結構參數回推好的製程參數,進而得到較好的材料性質。

那麼要如何把這麼多參數的相關性一網打盡呢?有個好工具叫「皮爾森相關性矩陣」(Pearson correlation matrix)

MAyFA1−yPb(BrxI1−x)3 鈣鈦礦材料透過機器學習方法模擬之後,計算出性質參數(Eg、Jsc、PCE)、結構參數(Emix、α、ηs、ηv)與製程參數(CMA、CBr)與之間的相關性。其中,r 為相關係數,紅色正值表示兩者正相關,藍色負值表示兩者負相關。資料來源/包淳偉

上圖的矩陣整合了結構參數、製程參數與性質參數的相關性。這張表格要怎麼解讀呢?

首先看結構參數,混合能(Emix)越高,晶格扭曲(ηs)程度越大,MA 和 FA 不互溶,Br 和 I 也不互溶,鈣鈦礦材料 MAyFA1−yPb(BrxI1−x)3 不能保持穩定的混合狀態。

再來看製程參數和結構參數,Br 的濃度(CBr)和 MA 的濃度(CMA)越高,晶格扭曲明顯增加,使得混合能越高。尤其是 Br,Br 加得越多,MA 和 FA 不互溶,Br 和 I 也不互溶,容易析出其他固體相,在材料中引入缺陷。

最後看性質參數與結構參數,會發現混合能越高,光電轉換效率(PCE)和元件短路電流(Jsc)越差。

因此,如果要提升光電轉換效率,必須降低 Br 和 MA 的摻雜濃度來減少晶格扭曲,以降低混合能,使得 MA 和 FA ,Br 和 I 都能充分混合,讓析出物和缺陷減少。使電流傳輸時不會受到材料缺陷或晶界的阻礙,光電轉換效率才會好。

要做出好的鈣鈦礦材料 MAyFA1−yPb(BrxI1−x)3 必要條件之一:「降低 Br 和 MA 的摻雜濃度,盡量讓材料維持單一固溶相」。

這就是理論模擬的科學力量,預先評估一款材料設定的製程參數好不好。如果要透過實驗方法窮舉出上述的最佳化原則,不僅金錢花費巨大,時間成本也相當高。

包淳偉與研究團隊透過近年熱門的機器學習技術,建立了模擬材料系統的神經網路模型,因為神經網路快速運算的特性,大幅降低花費時間和成本,並且模擬結果相當準確。

包淳偉團隊從簡單的化合物模擬開始,終於在 2021 年成功發表複雜鈣鈦礦材料 MAyFA1−yPb(BrxI1−x)3 的最佳化條件,成果發表在權威期刊《Journal of Physical Chemistry Letters》。

目前除了繼續改善神經網路模型之外,也開始和其他國外研究團隊合作解決混合複雜元素的材料系統問題,例如高熵合金。最近包淳偉團隊與香港研究團隊在《自然》期刊發表了一種超彈性高熵合金,而包淳偉團隊也正在使用機器學習輔助原子尺度模擬來研究它有趣的塑性變形性質。

要做出好的材料,結構、製程與性質缺一不可,機器學習輔助的模擬方法可以幫助科學家快速找到最低能量的結構,這是傳統模擬方法無法做到的。

目前除了繼續改善神經網路模型之外,最近包淳偉團隊與香港研究團隊在《自然》期刊發表了一種超彈性高熵合金,而包淳偉團隊也正在使用機器學習輔助的原子尺度模擬來研究它有趣的塑性變形性質。圖/研之有物

註解

  • 註 1:原子走一個步階的意思是:原子從某個位能井跳到下一個位能井。
  • 註 2:此為研究團隊早期模擬 MAPbI3 的成果,之後的神經網路模型效率更好。

延伸閱讀

  1. 機器學習與材料廚神的神祕Recipe
  2. 應用人工神經網路勢能場研究複雜鈣鈦礦材料微觀結構
  3. 見微知著─分子模擬的應用
  4. A highly distorted ultraelastic chemically complex Elinvar alloy
  5. Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells
  6. Is machine learning redefining the perovskite solar cells?
  7. Microstructure Maps of Complex Perovskite Materials from Extensive Monte Carlo Sampling Using Machine Learning Enabled Energy Model
  8. Molecular Dynamics Simulation for All
所有討論 2
研之有物│中央研究院_96
248 篇文章 ・ 2060 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook