Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

解析牛奶致癌說-酪蛋白的謎團

果殼網_96
・2013/11/29 ・2500字 ・閱讀時間約 5 分鐘 ・SR值 570 ・九年級

2132323232_27745788fe_z
credit: CC by www.bluewaikiki.com@flickr

文/少個螺絲

流言: 一篇名為〈牛奶的巨大危害!建議徹底禁食「牛奶、肉、魚、蛋」〉的文章呼籲大家禁食牛奶,因為會致癌。[1] 列舉的一個原因是牛奶中的蛋白質,尤其是酪蛋白,是一種非常強的致癌物,會促進各階段的癌症。

真相: 這是一篇影響深遠的網絡文章,也讓許多人對於食用牛奶產生了懷疑。文章提到的另一個牛奶致癌的說法-類胰島素一號生長因子,謠言粉碎機此前已經發文闢謠了,結論是牛奶中的IGF-1對人並不構成健康隱患(詳見 《牛奶致癌?》 )。今天,我們來討論酪蛋白的問題。

流言是怎麼來的?

文章提到的美國康奈爾大學的坎貝爾(T•Colin Campbell)教授是如何得出牛奶中的酪蛋白可以促進各階段癌症這一結論的呢?

這得從1968年的一篇來自印度的論文說起。這篇研究藉由大鼠試驗得出「攝入高蛋白飼料與肝癌發病率呈正相關」的結論。[2] 坎貝爾教授在看了這篇論文之後,與其研究小組設計了一系列類似的試驗,發現飼料中蛋白質含量的高低會改變大鼠肝癌的發展速度;高蛋白攝入會加快大鼠肝癌的發展。他們還發現,試驗中使用的蛋白是動物來源的牛奶酪蛋白,如果換成植物來源的大豆蛋白或者小麥蛋白,則不會促進癌的發展。在20世紀80年代,坎貝爾教授又參與了一項中國健康調查(The China Study),藉由對比中美兩國人民的日常膳食攝入和一些疾病的發病率,從而得出肉類和乳製品等高蛋白膳食是許多疾病的根源,素食更有利於健康的結論。

坎貝爾教授把他的這些研究經歷寫成了《中國健康調查報告》一書,牛奶中的酪蛋白會促進各階段癌症的觀點正是出自此書 [3] 。由於此書的觀點迎合了推崇素食主義的美國責任醫療醫師委員會(Physicians Committee for Responsible Medicine,PCRM),和提倡保護動物權益的善待動物組織(People for the Ethical Treatment of Animals,PETA)的理念,因而被他們廣泛用來在全球範圍內進行反對乳製品的宣傳。牛奶能致癌就是他們反對乳製品的論據之一。

牛奶會致癌嗎?

那麼,飲用牛奶到底會不會增加癌症的風險呢?

為了回答這個問題,讓我們先回頭看看坎貝爾的實驗。首先,坎貝爾的研究對象是已經藉由大劑量黃麴毒素(一種強致癌物)誘導出了癌變細胞的大鼠,並不能直接推出酪蛋白對健康的人體也有相同的作用。其次,試驗中所用的酪蛋白是大鼠唯一的蛋白質來源,這和人們的膳食結構完全不同。即使按照中國營養學會的建議,每天攝入相當於300克牛奶的乳製品,其中也僅含有7.5克左右的酪蛋白,僅占人體每天攝入的蛋白質的一小部分(不到10%)。這樣一個嚴格控制的動物對照試驗的主要意義在於奠基進一步的研究,並且需要結合其他研究來綜合判斷,單憑一項或某幾項研究不能得出結論,更不應該以此來指導大眾飲食。

對於以人為研究對象的系列研究以及生態研究也要謹慎,因為人們的飲食方式、生活環境、遺傳背景等因素多會干擾結果,而且很難排除。80年代華人和美國人除了飲食習慣之外,人種差異、生活的環境、工業化程度等等也是大大不同的,這些都有可能影響調查結果。

牛奶本身是一種複雜的食物,含有多種不同的營養成分,其對人體的作用也是這些不同的營養成分共同作用的結果。同樣是研究牛奶與癌症的關係,不同的研究方法、不同的研究團隊都可能得出不同的結果。而主流的科學觀點則是在綜合評估了所有研究的結果之後得出的一個總結。

雖然坎貝爾教授的這本《中國健康調查報告》也列舉了很多的實驗數據,引用了大量的參考文獻,看起來很像是一本專業嚴謹的學術巨著,也在社會上引起了不小的關注,但其實在學術界並沒有得到大多數科學家的認同。許多針對這本書的批評都指出,其中提到的研究結果,都是作者有意選取的能支持其觀點的研究,而有意忽略了大量其他的不符合他的觀點的研究結果。更多有關這本書的一些不同的聲音可以參考 〈《中國健康調查報告》的另一面〉 這篇文章。換句話說,這本書更多的是表達了作者的個人觀點,而不是學術界的共識,無法代表學術界的主流觀點。

世界癌症研究基金會(WCRF)和美國癌症研究所(AICR)於2007年底聯合發佈的第二份《食物、營養、身體活動和癌症預防》的專家報告根據最新的研究成果對飲食、營養、身體活動與癌症風險進行了權威的評估,客觀地反映了當前學術界的主流觀點。其中,關於牛奶和乳製品與癌症風險關係的研究結論是,目前沒有任何具足夠說服力的證據顯示牛奶會增加或降低癌症風險。但是牛奶可能有降低結腸癌風險的作用;高鈣飲食,不論鈣是來自於牛奶還是其他食物,攝入超過每天1.5克鈣質,有可能有增加前列腺癌風險的作用。部分證據則顯示牛奶可能降低膀胱癌的風險、牛奶以及乳製品可能增加前列腺癌的風險、奶酪可能增加結腸癌的風險。[4]

需要注意的是,儘管部分研究顯示牛奶或者乳製品可能會增加前列腺癌的風險,但是這主要出現在那些大量飲用牛奶的地區居民身上。每天1.5克的鈣質攝入是什麼概念?考慮到一般來自其他食物成分的鈣質大概在每天300毫克左右,也就意味著有1.2克的鈣質來自牛奶,這相當於每天飲用相當於超過1千克的牛奶,明顯遠超過了中國地區普遍的的乳製品日攝入量。

其實,考慮到美國人以及當前部分中國人日常膳食中過高的脂肪和蛋白質攝入量,坎貝爾這本書所提倡的減少高脂肪高蛋白的肉食,增加水果、蔬菜和穀物等植物性食物的觀念還是有一定的積極意義,但是被曲解以後作為造謠的工具實在悲哀。在中國人均乳製品消耗量還遠低於世界平均水平的時候,就因為一個沒被科學證實的原因而放棄這一優質的鈣源,有點杞人憂天了。健康的飲食最重要的是營養均衡,在此基礎上,食物是來自植物還是動物,那就是個人的選擇了。

結論: 牛奶中的酪蛋白能促進癌症不是學術界的主流觀點。截至2007年底,主流學術界沒有有說服力的證據證明牛奶能增加或者降低癌症風險。

作者吐槽:酪蛋白並非牛奶特有的,而是普遍存在於所有哺乳動物的乳汁中。如果酪蛋白可以促癌,那麼咱們作為剛出生時只能喝母乳的哺乳動物,是不是太無奈了點?

參考資料:

  1. 牛奶的巨大危害!建議徹底禁食「牛奶、肉、魚、蛋」
  2. Madhavan TV, Gopalan C. The effect of dietary protein on carcinogenesis of aflatoxin. Arch Pathol, 1968; 85(2): 133-137.
  3. 中國健康調查報告T. Colin Campbell, Thomas M. Campbell吉林文史出版社, 2006.
  4. Food, Nutrition, physical activity and the prevention of cancer a global perspective. WCRF&AICR. 2007.

轉載自果殼網

-----廣告,請繼續往下閱讀-----
文章難易度
果殼網_96
108 篇文章 ・ 9 位粉絲
果殼傳媒是一家致力於面向公眾倡導科技理念、傳播科技內容的企業。2010年11月,公司推出果殼網(Guokr.com) 。在創始人兼CEO姬十三帶領的專業團隊努力下,果殼傳媒已成為中國領先的科技傳媒機構,還致力於為企業量身打造面向公眾的科技品牌傳播方案。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
1

文字

分享

0
2
1
喝鮮奶真的能長高?拆解營養素與身高的關鍵連結!
鳥苷三磷酸 (PanSci Promo)_96
・2024/12/17 ・3185字 ・閱讀時間約 6 分鐘

本文與 食力foodNEXT 合作,泛科學企劃執行。

日本的兒童與青少年在 1960 年代開始,身高像是坐上了成長的直升機!有人說,關鍵就在於1964年推動的學童乳政策,這一喝就是 60 年,讓孩子們「蹭蹭蹭」地長高。

那麼台灣呢?從 2010 年與 2015 年,嘉義、雲林率先實行學童乳政策,到 2024 年在進一步全國推動「班班有鮮奶」,我們的孩子也有這樣的機會長高嗎?但如果孩子長不高,真的是因為牛奶喝不夠嗎?其實,想要孩子長個子,還有更多「長高密碼」!

為什麼長不高?哪些因素決定身高?

人的身高是高是矮,有 80% 來自於基因決定。圖/envato

到底是先天還是後天在主宰我們的身高?科學家告訴我們,影響身高的原因,有 80% 來自基因!到目前為止,已經辨識出 700 多個基因和身高有關,其中一部分是影響骨骼中的生長板,另一部分則影響身體荷爾蒙的分泌,這些基因一起合力,最終決定了我們的身高表現。

-----廣告,請繼續往下閱讀-----

影響荷爾蒙分泌的基因,就像人體的「身高總指揮」,主要控制三大荷爾蒙:生長激素、甲狀腺素和性激素。

  • 生長激素是由腦下垂體分泌的,如果人體生長激素分泌較少,身高也會明顯受影響,也就是身高比較矮。
  • 甲狀腺素則是幫助粒線體這個「細胞能量工廠」順利運作,讓細胞有充足能量來代謝與生長。如果甲狀腺素分泌不足,細胞發育自然跟不上,就會影響身高表現。
  • 性激素則是影響生長板與肌肉的關鍵!例如,女性賀爾蒙分泌旺盛,會促使骨骼中的生長板提早關閉,所以女性平均身高比男性矮。而男性賀爾蒙不僅有助骨骼發育,還能增加肌肉量,讓身材更高挑結實。

所以,基因是命定的,後天就無法再突破了嗎?其實不然!雖然基因決定了大部分,但後天的努力也有很大空間來改變結局!接下來,我們就來看看後天四大關鍵:飲食、運動、睡眠和環境,如何影響孩子的身高成長!

後天逆轉勝!抓住長高的四大黃金關鍵

長高需要什麼?首先,飲食是關鍵!長高需要足夠的營養素,充足的蛋白質、鈣質與維生素能幫助骨骼發育,而均衡飲食則是孩子長高的基石。除此之外,運動也不可或缺,發育中的孩童建議每天至少一小時的運動,包括阻力訓練、有氧運動和放鬆運動等,能讓肌肉與骨骼的發育更加堅實,並且維持正常體重,促進生長激素分泌。

睡眠則是很多家長容易忽略的重要因素 。研究顯示,生長激素的分泌高峰在晚間 11 點至凌晨 1 點,以及清晨 5 點至 7 點。因此,確保孩子有規律且足夠的睡眠時間,可以顯著提升骨骼生長效率。

-----廣告,請繼續往下閱讀-----

最後,外在環境因素也會影響兒童身高。例如,空氣污染及鉛、鎘等有害物質可能阻礙發育。為了給孩子最好的成長環境,就要避開這些污染源。

盤點完這些後天因素後,我們不禁要問:牛奶真的能幫助長高嗎?答案將隨著我們深入探討後揭曉!

喝牛奶真的能幫助長高?

後天因素同樣會影響兒童身高,那喝牛奶會有幫助嗎?圖/envato

聯合國對於發育遲緩之定義,是該年齡孩童所測量身高,低於世界衛生組織制定的身高標準中位數 2 個標準差,就視為發育遲緩。

2023 年一篇跨國研究研究顯示,增加乳製品攝取能降低發育遲緩比例。

-----廣告,請繼續往下閱讀-----

當然,乳製品消費量增加可能也代表當地正在經濟成長,可能從其他面向影響飲食。為了避免其他因素干擾,這份研究也納入了人均 GDP、兒童扶養比、人口成長率、農村電氣化比例與女性參與勞動比等等變數進行控制。此外,該篇研究還另外指出乳糖不耐症常見於青少年與成人,對孩童沒有影響,因此不必過於擔心。

總之,喝牛奶的確可能對長高有幫助,但牛奶只是眾多因素之一。而更重要的是,台灣孩童真的缺這一杯鮮奶嗎?

牛奶的確對身高的發育有幫助,但台灣的學童真的缺奶嗎?

根據《國民營養健康狀況變遷調查》,除了 1-3 歲的幼兒外,其他年齡層的乳品攝取量都遠低於建議標準。特別是 7-18 歲的學童,乳品攝取量僅達建議量的一半,顯示台灣兒童的乳製品攝取明顯不足。事實上,7-18 歲的學童中,有 8 成每天攝取不到 1 份乳品,這對正在生長期的孩子來說,營養攝取遠遠不夠。

然而,學童缺的不僅是鈣,還有維生素 D。根據 2008 年一篇回顧性的研究,維生素D對身高發育與鈣質同等重要。如果鈣和維生素 D 攝取不足,會影響骨骼發育。1999 年中國的實驗研究指出,飲用牛奶能有效促進身高,尤其是加強維生素 D 的補充後,骨密度顯著提高。

-----廣告,請繼續往下閱讀-----

那麼,台灣學童的鈣與維生素 D 攝取是否足夠呢?答案是遠遠不夠!根據國民健康署的調查,7-18 歲的學童,鈣的攝取量平均不到建議量的一半,維生素 D 的攝取量甚至只有四成多。這樣的營養狀況,怎麼能夠提供足夠骨骼發育的營養環境?

更令人關注的是,這些營養缺口與乳品攝取不足有直接關聯。每份乳品大約含有 240 毫升牛奶,其中含有 240 毫克的鈣質及 3 微克的維生素 D。根據國民健康署採用的推薦膳食攝取量(RDA),每天需要的鈣質約為 1000 毫克,維生素 D 則是 15 微克,如果每人每天攝取2份乳品類,加上其他的飲食攝取,就有機會補足鈣與維生素 D 的缺口。

此外,牛奶中的鈣質容易被人體吸收。牛奶有三分之一的鈣是以游離態存在的,能夠直接被吸收,剩餘的鈣與酪蛋白結合,當人體消化酪蛋白時,這些鈣質也會被釋放,然後被人體吸收。事實上,人體對牛奶鈣質的吸收率為 32.1%,遠高於其他食物。因此,想要補充鈣質,牛奶無疑是最佳選擇。

人體對牛奶的吸收率達 32.1%,是補鈣的理想選擇。圖/envato

喝的不是鮮奶,而是加溫處理後的保久乳,營養素會被破壞嗎?

至於保久乳的營養價值問題,根據國民健康署 2021 年針對這個問題,提出了說明。鮮乳是生乳經過短時間高溫或超高溫殺菌方式所製成,所以無法達到完全滅菌,保存期間較短,而且需要冷藏。保久乳則是透過高溫或高壓滅菌,並且以無菌的填充方式放入無菌包材,所以能夠保存較久。

-----廣告,請繼續往下閱讀-----

根據食品藥物管理署營養成分資料庫,鮮乳跟保久乳中的蛋白質、脂肪、碳水化合物(乳糖)、礦物質及維生素都沒有太大差異,只有少數熱敏感的營養素,像是維生素 C 會稍微少一點外,其他成分大致上都一樣。所以,不管是鮮乳還是保久乳,在營養成分上差異不大!

另外,許多父母擔心乳糖不耐症影響孩子喝牛奶、容易引起腹瀉。牛奶中含有乳糖,而乳糖是一種雙醣,由半乳糖與葡萄糖所構成。人體想要運用乳糖,需要先把它分解成半乳糖與葡萄糖,這時候需要一種特別的腸道酵素:乳糖酶。在兒童時期乳糖酶會正常分泌,這是為了要分解母乳,隨著年齡增加,乳品類食物逐漸減少,人體的乳糖酶漸漸地分泌越來越少。然而,這並不代表不能喝牛奶。透過逐步攝取少量低乳糖的牛奶製品,或使用乳糖酶補充品,都有機會能改善不適,重新恢復對牛奶的耐受力。

總結來看,牛奶確實能補足我們失落的鈣質和維生素 D 缺口。這些營養素,也確實與身高有關。但別忘了,影響身高的因素有很多,飲食、運動、睡眠和環境等各方面都不可忽視!補充足夠的營養素,並搭配運動和良好的作息,將會是孩子的身高發育的關鍵。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
225 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
翻越性別高牆 打破生乳營養迷思 埃凡斯促成牛奶滅菌(2)
顯微觀點_96
・2024/08/13 ・2351字 ・閱讀時間約 4 分鐘

本文轉載自顯微觀點

顯微鏡後的女性科學家系列

他像是一艘船在河中航行;四處遇到阻礙,唯獨一面通暢;在那,所有的障礙都消失了,他徐徐地穿越著深深的航道,進入無盡的海洋。

——愛默生

埃凡斯在動物工業局的研究興趣集中到一種致流產的傳染性微生物。

丹麥獸醫伯納.班(Bernhard Bang) 在 19 世紀末發現了一種導致乳牛流產的病菌,而這種病菌多年來已知存在於受感染的乳牛乳房中。

而農業工業局病理部的施洛德(Schroeder) 和卡登(Cotton)在 1911 年從看似健康的牛隻的牛奶樣本中分離出這種病菌;幾乎同時,另一組研究人員史密斯(Theobeld Smith)和費比恩(Febyen)也在 1912 年從牛奶中分離出同樣的病菌。因此埃凡斯開始思索這類致牛隻流產的病菌是否也會導致人類生病。

-----廣告,請繼續往下閱讀-----

與此同時,蘇格蘭病理學家布魯斯(David Bruce)分離出了會使人類發燒和肌肉疼痛的波浪熱(或稱馬爾他熱,Malta fever)的病菌,且發現可透過羊奶傳染給人類。

當時的科學家都認為透過羊奶傳染給人和導致牛流產的是不同的病菌。透過羊奶傳染馬爾他熱的是羊微球菌;引起牛流產的則是流產芽孢桿菌。

但埃凡斯透過觀察,認為這兩種來源的細菌形態相似:這些細胞呈桿狀,但有不同的長度;有些細胞很短,在顯微鏡下看起來呈球形。

經過細菌鑑定以及將病菌接種在動物身上的對比試驗,埃凡斯推斷這兩者其實是同一種桿菌,並將這些發現於 1917 年 12 月在美國細菌學家協會(the Society of American Bacteriologists)年會上報告,並發表於 1918 年 7 月的《傳染病雜誌》(The Journal of Infectious Diseases)。而後來為紀念首先研究這病症的布魯斯,這個病原菌被定名為「布氏桿菌」(Brucella abortus)。

-----廣告,請繼續往下閱讀-----

同時埃凡斯基於研究發現也提出質疑:「我們是否確信,人類不會因為飲用生牛奶而偶爾發生腺熱(glandular fever)、流產或可能的呼吸道疾病?」

Alice Evans 1945。圖片來源:wiki

避免人畜傳染 推動牛奶滅菌

1864 年,法國生物、化學家.巴斯德(Louis Pasteur)描述了如何透過加熱保存液體的系統,也就是巴氏殺菌。但當時這樣的滅菌法應用於葡萄酒或啤酒,而不是牛奶,因為人們認為牛奶只要不被污染就是安全的。

當時牛奶的問題在於變質的速度。過去,有些乳牛場為了解決變質,會建在城市,以縮短生產和消費之間的時間;而有些則使用摻假物,例如碳酸氫鹽、糖、糖蜜甚至粉筆,來掩蓋乳品腐敗的狀況。

對於埃凡斯提出喝生牛乳可能致病的質疑,不但未被採納,還遭到其他科學家、醫師和酪農業等各界的批判。

-----廣告,請繼續往下閱讀-----

一來是科學家普遍相信發現結核菌的德國生物學家柯霍(Heinrich Hermann Robert Koch)所提出的觀點:同一種病菌會同時造成動物與人類的共同疾病。

柯霍曾在 1901 年提出儘管結核病是牛隻常見的疾病,產出的牛奶含有大量的「結核菌」,但這種牛型結核病不會傳染給人。

他說,如果牛結核桿菌能夠感染人類,就會出現很多病例,尤其是脆弱的兒童;但大多數醫護人員認為案例數並不多並非如此。他甚至認為,採取措施保護人類免受牛結核病的侵害是不明智的。

二來是科學家們不相信埃凡斯這樣沒有博士學位的女性,能提出如此「重大的發現」。對酪農和乳製品業而言,埃凡斯則被認為在圖利巴氏殺菌設備。

-----廣告,請繼續往下閱讀-----

所幸,埃凡斯的發現在 1920 年後陸續得到梅耶(Karl Friedrich Meyer)等人的研究支持,被認為是可信的科學發現。 美國衛生局(USPHS)也從 1924 年開始制定了一項名為《標準牛奶條例》(Standard Milk Ordinance)的示範法規,由州和地方掌控乳製業機構自願採用。之後又陸續頒布行政和技術細節,修改成 A 級巴氏滅菌牛奶條例(Grade A Pasteurized Milk Ordinance),提供全國統一的牛奶衛生標準。

重要貢獻鼓勵後進女科學家

為了表彰埃凡斯的成就,美國細菌學家協會(現為美國微生物學會,the American Society for Microbiology,ASM)於 1928 年推舉她成為首位女性主席。

然而儘管有豐富的實驗室經驗以及預防措施,但埃凡斯仍在 1922 年感染布氏桿菌,並在往後幾年反覆發作。她曾在回憶錄中提到,「完全喪失能力和康復的時期交替出現,最後一次致殘的病情惡化發生在 1943 年夏天,距感染之日已近 21 年」。

更慘的是,當時對疾病沒有夠多的認識,因此她和其他布氏桿菌患者一樣,被診斷為「神經衰弱」,認為這些症狀是被幻想出來的,被誤解為騙子,是在「詐病」。但埃凡斯說,慢性症狀方面的經歷使她有機會親眼觀察這種疾病及其影響。

-----廣告,請繼續往下閱讀-----

不過她也漸漸將研究目光轉向溶血性鏈球菌,一直致力於此直到 1945 年退休。1975 年 9 月 5 日埃凡斯於維吉尼亞州亞歷山大市逝世,享年 94 歲。她的墓誌銘刻著::「溫柔的獵人,追趕並馴服她的獵物,穿越到了新的家園」。

雖然埃凡斯並未取得博士學位,又曾因女性身分導致科學發現不被認可。但美國微生物學會於1983年為表彰埃凡斯在微生物學領域的參與以及傑出貢獻,設立了「埃凡斯獎」(The Alice C. Evans Award),以表揚後進致力於微生物科學領域的女性。

查看原始文章

推薦閱讀

顯微鏡後的女性科學家:甘居配角仍不減貢獻 微生物學家安娜‧威廉斯

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
28 篇文章 ・ 5 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。