0

0
0

文字

分享

0
0
0

如何在塞爆的電子郵件信箱,理出郵件的處理優先順序。

科景_96
・2011/02/10 ・754字 ・閱讀時間約 1 分鐘 ・SR值 533 ・七年級

Original publish date:Mar 07, 2010

編輯 HCC 報導

美國Carnegie Mellon大學Andrew Faulring與其同事設計了Reflective Agents with Distributed Adaptive Reasoning (RADAR)系統,處理塞爆的電子郵件信箱,協助使用者找出最需優先處理的郵件。RADAR為SRI International公司與Carnegie Mellon大學的聯合研究計畫,由DARPA資助。

於政府機構、國防部門、企業界大公司或研究機構的工作人員,處於緊急工作或危機處理階段,面臨排山到海而來的資訊或電子郵件時,最苦惱的就是深陷於資訊當中,無法擇優處理。

-----廣告,請繼續往下閱讀-----

例如郵件收件者打開塞爆、看不完,充斥著Reply、Re-Reply、Re-Re-Reply的電子郵件信箱,經常無從判斷資訊的優先性與急迫性,逐筆閱讀與處理郵件的結果,就造成了工作延宕與重大損失;或寄件者深懼對方不即時回應,所以常見的撇步就是將郵件加註重要標誌旗號、將主旨改為鮮紅的字體、或於主旨欄加註重要郵件、請一定要閱讀等字眼,以爭取郵件被優先處理的機會,或再逐一敲電話告知。

RADAR計畫研發團隊目的在建立與經驗評估一套學習型的認知助理(cognitive assistant),協助面臨資訊過載的電子郵件使用者。研究團隊認為RADAR是種認知修復輔助性(cognitive prosthetics)系統,當使用者能處理、或使用者能管控電子郵件信箱時,RADAR不會妨礙操作;當使用者對資訊管控能力不足,或無力管控時,RADAR即能提供認知輔助(cognitive assistance)。

系統需要先輸入使用者在意的關鍵詞以及處理順序,掃描完電子郵件信箱後,即依重要性將相關郵件順序列出。依據RADAR計畫的實測經驗,此種人工智慧技術能協助使用者管理資訊。

Andrew Faulring團隊的研究報告,詳如“The Design and Evaluation of User Interfaces for the RADAR Learning Personal Assistant”(http://www.aaai.org/ojs/index.php/aimagazine/article/view/2265)

-----廣告,請繼續往下閱讀-----

美國國防部先進研究計劃署(DARPA)下的Information Processing Technologies Office (IPTO)資助RADAR研究計畫,IPTO同時資助CALO (Cognitive Assistant that Learns and Organizes)研究計畫。

 

參考來源:

相關連結:

文章難易度
科景_96
426 篇文章 ・ 7 位粉絲
Sciscape成立於1999年4月,為一非營利的專業科學新聞網站。

0

5
1

文字

分享

0
5
1
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
194 篇文章 ・ 297 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
資訊量過大啦!我們其實不擅長處理複雜的資訊?——《生物轉大人的種種不可思議》
商周出版_96
・2023/11/21 ・1330字 ・閱讀時間約 2 分鐘

-----廣告,請繼續往下閱讀-----

誰不接受多樣性?

我們的成長方式具有多樣性。有人長得快,有人長得慢;有人長得高大,有人長不高。這種多樣性是「生物的策略」。不過有個東西並不接受多樣性。就是我們的大腦。

人腦不善於處理複雜的訊息。

有一個法則叫做「神奇數字七法則」,意思是:人類一次頂多只能記住七樣東西。

這是真的嗎?我們來試試看。

-----廣告,請繼續往下閱讀-----

請記住以下插圖,限時三十秒。

接著再看下面的圖,什麼東西不見了?

答案是不倒翁。為什麼明明十樣物品也不多,我們就是記不住呢?

再來試試下一題吧。

-----廣告,請繼續往下閱讀-----

雖然超過七個圖,但是這一題可能大家都記得住,因為這些圖都與《桃太郎》的故事有關。先找出關聯性,再加以歸納整理,大腦才有辦法勉強記住超過七樣東西。

大腦不擅長處理太多資訊

記憶圖畫或許比較困難,試試看數字吧。

請記住旁邊的數字,限時五秒。

怎麼樣? 是不是太簡單了點!

-----廣告,請繼續往下閱讀-----

下面這一組數字呢? 也是限時五秒。

上面這一題是不是也太簡單了!

下一組數字呢? 限時同樣五秒鐘。

如何?

-----廣告,請繼續往下閱讀-----

前兩題應該可以輕輕鬆鬆記住,但是第三題就比較不容易了吧?

你知道第三題有幾個數字嗎?

答案是八個。

只有八個!

-----廣告,請繼續往下閱讀-----

人類厲害到發明了電腦,我們優秀又傑出的大腦照理說應該能理解一百、一萬,甚至一億個數字。然而實際上,人腦必須費盡力氣才能記住兩隻手數得完的數字。我們的大腦本質上不擅長處理「大量」的資訊。

理解「大量」的方法

如同上述的例子,當題目是文字(圖像)時,只要歸納出《桃太郎》的故事,我們的大腦就更容易理解。

那麼數字呢?

我們來看看下面的數列。

-----廣告,請繼續往下閱讀-----

把亂七八糟的數字排成一列,是不是就好記很多?

如果再排成下面這樣呢?

這次是依照數字的大小排序。

我們可以看到「3」有兩個,而 1 到 9 中間缺少了「7」和「8」。經過排列和整理順序之後,人腦就比較能夠理解這些資料。我們的大腦最喜歡把東西排成一列或排順序。學校排成績也是這樣的關係吧?

-----廣告,請繼續往下閱讀-----

——本文摘自《生物轉大人的種種不可思議:每一種生命的成長都有理由,都值得我們學習》,2023 年 8 月,商周出版,未經同意請勿轉載。

商周出版_96
119 篇文章 ・ 360 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

0

1
0

文字

分享

0
1
0
跨物種溝通即將成真!若有動物的「翻譯蒟蒻」你想擁有嗎?
鳥苷三磷酸 (PanSci Promo)_96
・2023/11/13 ・4484字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

人與動物之間的溝通一直是科學界和哲學界十分引人關注的一個議題。傳統觀點認為,人類和其他動物之間的溝通受到生物學和語言能力的限制,因此很難實現真正的互相理解。然而,近年來,科學家們對這個問題的看法已經開始轉變,並且有一些跡象表明跨物種溝通有望成為現實。

為什麼科學家認為跨物種溝通即將成真?從海豚到水豚、從蜘蛛到山豬,人工智慧能成為所有生物的萬能「翻譯蒟蒻」嗎?當人類真的破解了另一物種的溝通方式,未來會發生什麼事呢?

跨物種溝通即將成真?圖/giphy

為什麼動物溝通,備「獸」關注?

從古代神話、經典傳說,到熱門動漫影視,都有不少能說人話、化為人形的動物,像是美猴王孫悟空、馴鹿喬巴、還有火箭浣熊,這些擬人化的角色雖然外表參雜獸的特質,卻往往更有人性,故事也著重呈現人與獸人如何從誤解到包容,讓我們為之動容。

在當代台灣的漫畫作品中,許多優秀的新一代漫畫家探討了擬人化動物和人類之間的隔閡、衝突以及理解,呈現了多元化的故事情節。其中,有一些引人入勝的作品,例如《瀕臨絕種團》,故事描述了被路殺後轉生成人類的石虎、黑熊和水獺,當上 YouTuber 還成為高中女生的故事。這個作品提供了獨特的視角,探討了不同物種之間的互動和冒險。

-----廣告,請繼續往下閱讀-----

另一部作品是《海巫事務所》,它將魔法元素融入生物學,講述了一個迷茫的廢業青年與擬人化海洋動物相遇並相互療癒的故事。還有一個短篇漫畫《IVE》,通過科幻的方式,描述了某種深海雌鮟鱇的繁殖和誘導機制,卻將目標對象設定為人類男性的謎般生物,及她和科學家之間的異色關係。

短篇漫畫《IVE》描述了有著雌鮟鱇的繁殖和誘導機制,卻將目標對象設定為人類男性的謎般生物,及她和科學家之間的異色關係。圖/CCC 追漫台

這些作品在畫風和故事情節方面都各有特色,無論你是一位一般漫畫愛好者還是偏愛條漫,你都可以在 CCC 追漫台找到它們,享受不同的視覺和情感體驗。

而這幾部作品的共通核心問題就是:如果動物能用人類的語言跟我們溝通,會怎樣?即使牠們能跟我們說話了,我們就能理解彼此嗎?要取得那唯一的真相,除了請出《不可知論偵探》海麟子(也是 CCC 追漫台 上的熱門作品),科學家還有一個辦法:就讓動物自己說話吧!今年 7 月 Science 期刊上發表了一篇觀點文章,標題為《用機器學習解碼動物溝通》表示新方法有望帶來全新的洞見,也有助於保育。不過在打電話給露洽露洽之前,我們得先了解什麼是動物溝通?

什麼是動物溝通?

首先要有一個清楚的認知,那就是人類跟所有其他的動物,都各自受限於自己的感官,活在不同的「環境界」(Umwelt),這個德文的意思是說每一種生物都活在獨有的感官泡泡裡,所見、所聞、所聽、所嚐、所觸都跟其他生物截然不同。你想想,連人與人之間都會因為家庭背景、生活環境、媒體教育而對同一件事物有天差地遠的詮釋了,對跨物種來說,不同的感官體驗讓彼此如同身處完全不同的世界。

-----廣告,請繼續往下閱讀-----

例如,海龜和許多鳥類能感知地球的磁場,藉此進行長距離遷徙;而響尾蛇具有紅外線感覺器官,能夠在黑暗中感知幾公尺外的獵物體溫。蝙蝠則使用回音定位來捕捉飛蛾等獵物,每秒發射兩百次超音波脈衝,並根據百萬分之一秒的時間差距來精準定位目標。斑海豹則依賴其特殊的鬍鬚來察覺魚游過的流體動力,猶如水中留下的軌跡。角蟬使用震動通信,能夠透過植物表面傳遞信息給其他角蟬,即使對人類來說是聽不見的。至於我們的忠實夥伴狗,它們的世界主要由氣味構成,能夠分辨地下埋藏的松露、潛藏的地雷、古蹟、毒品甚至主人身體內的腫瘤等各種氣味。

狗狗的世界主要由氣味構成。圖/giphy

那麼,海龜要如何跟我們這些沒有磁場感應的人類解釋牠們的感覺呢?蜂鳥又要怎樣才能描述它看到的一億種顏色呢?這真的是雞同鴨講,甚至比牛頭更不對馬嘴!

但有越來越多科學家認為,隨著人工智慧(AI)的快速進步,破譯動物的溝通方式不再是不可能的事情。AI 能幫上什麼忙呢?首先,機器不具備人類的偏見,因此能幫助研究者更理解動物溝通系統的結構和功能,同時辨識我們和動物之間的差異。

其次,機器學習技術能夠辨識那些對於人類難以想像或無法感知的動物感官訊號,這些包括聲音、振動、光線、化學物質等。機器可以幫助分析這些訊號,並幫助我們理解動物想要傳遞的訊息。

-----廣告,請繼續往下閱讀-----

最後,AI 還可以基於動物訊號,開發出預測動物行為的模型。例如預測動物的交配行為或遷徙模式,或何時可能需要尋找庇護避免捕食者。

此刻的我們對於深度學習能完美辨識圖像語音,以及 GPT-4 或 PaLM 2 等大型語言模型能生成語言,甚至跟我們交談,完全不覺得奇怪,但可能僅僅 10 年前,這都還像是天方夜譚。那麼將這份能力運用在動物身上,也將變得理所當然……嗎?

現在科學家已經做到什麼程度?破解了哪些動物語言呢?

科學家正在使用人工智慧來解讀各種物種的動物溝通方式。

例如烏鴉:英國聖安德魯斯大學的科學家 Christian Rutz 長期研究南太平洋的新喀里多尼亞烏鴉( New Caledonian Crow ),牠們是少數能夠製造工具的鳥類,會把樹枝的葉子拔掉,做成鉤子來釣蟲,不同群體的作法也有差異。他發現島上不同烏鴉群體有不同的叫聲,可能是文化得以傳播的關鍵。身為烏鴉專家的他加入了 ESP 地球物種計畫,研究二十年前已經野外滅絕,現在只剩圈養個體的夏威夷烏鴉,他們用機器學習來比較圈養跟野生烏鴉的錄音,了解圈養是否改變了烏鴉的詞彙,例如注意威脅、求偶等重要的叫聲,是否已經在圈養環境中失去了,如果我們破譯這些叫聲,可能可以幫助這些烏鴉重新野化。

-----廣告,請繼續往下閱讀-----
或許我們可以預測鯨魚會說什麼,反過來和牠們對話?圖/giphy

哺乳類的另一個成員鯨魚更是重點研究對象,2020年成立的 CETI,由 40 多名科學家、跨15 個機構組成,是最受關注的鯨語破譯團隊。他們除了駕船出海用水下麥克風偷聽鯨魚對話,也使用無人機從上方監看,更計畫在加勒比海海底安裝三個監聽站,從遠處捕捉離海岸 12 英里處抹香鯨聊天的喀噠咔嗒聲。以前啊,抹香鯨的聲音被比擬為單純的二進位代碼,但其實更為複雜,而機器學習可以重新辨識這些聲音。圖靈獎得主,加州大學柏克萊分校西蒙斯計算理論研究所所長莎菲·戈德瓦塞爾( Shafi Goldwasser )受訪時就說, CETI 的目標就是要像 ChatGPT 一樣,能預測鯨魚會說什麼,甚至反過來和鯨魚對話。

這些只是 AI 解讀的眾多物種中的一部分,其他還有不少鳥類、靈長類、海豚、蜘蛛、螞蟻、蜂類,或與人親近的貓、狗、豬等,也都是目前被科學家認為有機會破譯其「語言」的生物。

如果我們成功解讀出了動物的語言,我們又該從什麼角度與動物溝通?我們所「理解的語言」真的一樣嗎?

就算解讀動物溝通,能避免擬人化的陷阱嗎?

儘管機器學習在許多情況下表現出令人印象深刻的準確性,但動物的聲音、姿態和其他訊號往往具有多義性,也就是同一個訊號可能有多個意思,很難正確解釋它們的含義。此外,機器學習再強,目前也存在限制,特別是我們尚未完全理解的感知機制,如電感、磁感和費洛蒙等。

-----廣告,請繼續往下閱讀-----

在漫畫《瀕臨絕種團》跟《海巫事務所》中,動物跟人類除了偶爾吵架之外,基本上相處得極為融洽,這也是我們人類想像中希望的情境,就是能與動物友善地、無惡意地溝通。而在《 IVE 》這部異色科幻作品中,則提出更現實的問題。汪幼海博士認為 IVE 為了與人接觸,如鮟鱇魚一般的餌球竟然為了吸引人類而變成人形,甚至可以與人溝通。雖然令人驚喜,但這也意味 IVE 的目的就是要讓人類成為其血肉的一份子,獲取其基因,因此也使用類似費洛蒙的物質吸引人類男性。對鮟鱇魚或 IVE 來說,這是很自然、毫無惡意的,但對人類來說,就是一種恐懼的殺戮。大自然中本來就有許多「愛」是以殺為結局,包括蜘蛛、螳螂等。人類又要如何在對事物理解前提完全不同的情況下,與動物更深度溝通呢?

圖/pexels

在科學研究上,我們情不自禁地把動物擬人化更是個麻煩且不容易解決的問題,要是過於擬人化地認為動物跟人類共享一樣的情感,可能導致研究者在實驗設計和解釋結果時受到情感干擾,使研究不客觀。此外,擬人化也會使研究者更容易面臨到底是該保護動物權益,還是進行實驗研究之間的衝突,陷入倫理的困境。

但若反過來,要是有科學家認為動物跟人類完全不同,因此缺乏同情心,不尊重動物權益,倫理問題只會更嚴重。現在大家對動物福祉很關注,尤其是在涉及動物實驗和野生動物保護的時候,研究人員對動物無感情的態度反而可能導致研究受到質疑。更重要的是,這會讓科學家缺乏共鳴和洞察力,忘記我們也是動物。因此啊,如何拿捏分寸,在過分擬人跟缺乏同情的兩端之間找到適當的位置,也是動物溝通研究者的重要問題。

人類會將破譯動物溝通的能力拿來善用嗎?怎樣算是善用呢?

在石虎、黑熊跟水獺轉生變高中女生、IVE 開始對人類有興趣之前,機器學習的確可幫助我們監控和保護瀕臨絕種的野生物種,透過解讀其溝通方式,更了解牠們的需求和行為,制定更有效的保育策略。也能夠幫助我們理解圈養動物的情感和需求,從而改進在人類照顧下的生活品質。

-----廣告,請繼續往下閱讀-----

然而,當播放動物聲音以吸引它們或干擾它們時,會不會對它們的行為產生不可預測的影響?甚至不可逆地改變群體的文化,從而威脅它們的生存和生態系統的平衡?假訊息在人類世界已經夠麻煩的了,想像一下,若連動物世界也都被假訊息入侵時,會發生什麼事呢?

CCC 追漫台是一個臺灣原創漫畫平台

致力於推廣臺灣漫畫,並將臺灣漫畫融入日常生活。這個平台由本土新銳圖文創作者們打造,並結合國家典藏資料素材,以探索臺灣的豐富歷史、民俗、社會和生態等多元議題。

CCC 追漫台的使命是透過原創漫畫作品,傳達臺灣在地精神,讓讀者深入了解這個多元文化的島嶼。通過精心創作的漫畫,平台不僅提供了具娛樂性的閱讀體驗,還擴展了讀者對臺灣文化和歷史的認識。

文章中提及之漫畫皆可在追漫台上閱讀唷。

鳥苷三磷酸 (PanSci Promo)_96
194 篇文章 ・ 297 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia