0

0
0

文字

分享

0
0
0

我們離「預測地震」還有多遠?

阿樹_96
・2013/11/04 ・3944字 ・閱讀時間約 8 分鐘 ・SR值 572 ・九年級

10/31花蓮一起規模6.3強震,震憾全台,至今仍餘震四起,所幸並未造成嚴重傷亡。人們對於地震災害,一直總是處於被動的應對,想必不禁會有個疑問:對於地震的預測,我們仍然無能為力嗎?在花蓮地震過後,有部分媒體報導,在中國大陸湖北宜昌的民間預測單位,在10月29在微博提出警告,正好提及了「在10月30至11月7日間,在花蓮、台東或宜蘭其中一個地區,將會發生5.8級至6.5級的地震。」,真的是很準的令人「訝異」?(註:大陸方面表示的地震規模以「級」為單位,實際上,芮氏規模為一無單位實數,而在台灣,將「級」僅用於震度分級上,也不會有小數點,為免混淆,在此說明)

這個民間單位在微博上的帳號為「預報中心小號」,與一般我們常見的民間預測地震方式不同的地方是,非以人體感應、生物或FM訊號等方式來預測。仔細的看了該中心在微博上的發文,仍經常提到許多地球科學名詞,如板塊邊界、地震帶等等,而在地震的預測發文,也經常提及「群震」、「動物異常」、「電離層異常」,的確現在在進行地震前兆的研究,這些方式經常拿來被探討,此外還包括了地下水、地殼變形等監測,因此看起來該中心的方式「很科學」。

微博帳號:預報中心小號。微博截圖於20130103
微博帳號:預報中心小號。微博截圖於20130103

不過,再多往前回顧一下其在微博發布的文章,也偶有誤報,而其預報的頻率約為每日一則,然而就USGS美國地質調查所統計資料,全世界每週動輒發生20~30甚至更多起規模4.5以上的地震,也就是說,多數的地震都沒被「預報」到,而在地震的震源深度,也並未在任何一次的預報中提及,而震源深度的重要性,在於它的致災程度,若是10/31的地震發生的深度在10公里以內,那麼災害程度與範圍勢必會大幅增加。因此,即使這些有被預報到的地震,不是偶然或巧合,但在實用性上,仍有待時間驗證,而這位朋友看來也在積極的尋求科學驗證。

實際上所謂的「實用地震預測」,應該包括了時間、地點、規模、深度,以及使用理論的可重覆驗證性。以目前的科技與科學發展,要完全做到上述的5點,實在是強人所難。尤其是可重覆驗證的理論,等同於我們要理解,從能量的累積到釋放,地底下斷層面上不同深度位置的岩石性質、摩擦力行為等等,才能夠精準的針對短時間尺度提出預測。以下簡單的介紹一些目前科學家認為可以作為預測的工具與前兆分析的研究:

大地測量地殼變形

根據野外地質調查與大地測量的紀錄,在大地震發生時,地殼會產生變動,而由全球的GPS定位測量結果,知道了世界各地的陸地正不斷的移動著。而台灣正處於我們熟知的歐亞板塊和菲律賓海板塊的邊界上,兩板塊以每年8公分的速率相互靠近,而這些移動累積的地殼變形,就累積在台灣島與鄰近的區域中。然而目前為止,地殼變形僅能作為能量估計。

大地測量地殼變形_維基共享資源_NASA
大地測量地殼變形_維基共享資源_NASA

井水含氡量變化

前蘇聯的科學家,在加爾姆地區發現到水井中的含氡(Radon) 於地震前會增加,亦用以預測地震。而在許多次的大地震前亦有觀察到此種現象,而其理論依據,科學家認為是岩石受到強大壓力時,岩石內部產生許多小裂隙,而使得岩石更容易接觸到地下水,同時吸收了岩石中含有放射性的氡,直到地震發生後,氡的含量才會逐漸下降。

電離層出現異常

近年來科學家也開始注意到,電離層的電子含量會有異常的變化,而要觀測這樣的變化,由GPS地面接收端記錄衛星發射的電波訊號,進一步去反演電離層的電子含量。對於GPS而言,電離層的電子變化會影響定位的精確度,因此必須要先求得電子含量的變化來作修正。以目前的理論來嘗試解釋,可以說是地殼的變形間接影響到了350公里的高空電離層,但實際上的機制仍未明朗,國內主要研究此項的學者為中央大學的劉正彥教授,近年來也持續的進行相關研究。

大地震前的異常地震分布

在2011年的311地震發生後,東京大學地震研究所助理教授加藤愛太郎(Aitaro Kato)等人,主震之前的地震活動,發現了一些蜘絲馬跡,在主震的破裂區域發現了微震(規模2左右的無感地震)的「遷徒」活動,從2月份時緩慢移動了一次,接著在兩天前規模7.9的前震發生之後,又發現了一次遷徒現象,加藤的研究團隊認為這有可能是一種前兆訊息,並發表於2012年1月的《科學》期刊。與上述地下水含氡量的機制變化一樣,微小的地震代很的是岩石慢速、小規模的破裂,科學家認為可能這就是大的斷層破裂之前,累積到極限的變形行為。

日本311地震震前的「慢滑移」事件,分別在2月份與3月9日之後,微震的分布傳播分別以每日5公里與每日20公里的速度向南傳播。修改自Kato, et. al., 2012,此圖原發布於「小地震,大災難」文章。
日本311地震震前的「慢滑移」事件,分別在2月份與3月9日之後,微震的分布傳播分別以每日5公里與每日20公里的速度向南傳播。修改自Kato, et. al., 2012,此圖原發布於「小地震,大災難」文章。

大地震的再現週期

說到地震的「再現週期」,其實有兩種定義研究方式,第一種方式較為直覺,就是用地質的方式,以車籠埔斷層為例,從對車籠埔的斷層開挖研究,地質學家找到了五次的古地震事件記錄。分別為西元1999年、西元1650-1520年、西元1270-1160年、西元1060-1030年、西元570-400年、西元240-50年。這些錯動的規模都不輸921地震產生的錯動量,也就是說,我們可以推演未來車籠埔發生大地震可能約在西元2340±90年。(註:因此只能作為長期預測參考)

二千年以來車籠埔斷層古地震發生的時間,以及推估下次大地震發生的時間可能在西元2340±90年。圖片來源:地震再現週期分析:簡介臺灣的古地震研究案例。

另一種方式則是以數學和物理的模型來解釋,經由上述提到的大地測量、地震隨時間、另空間上的變化,來估算斷層累積了多少能量,甚至可以結合地質上的紀錄來進行估算,然而地下構造的複雜,有如大氣的混沌性,我們僅能推估概率,還未能完美的驗證,以下圖為例,日本在311前並未估算到最大會發生到9.0等級的地震,而在中國大陸的汶川地震亦是如此,最直接的原因,就是我們目前累積的地震資料與對地底下的認知還是太少。

本未來30年內震度概率分布,請注意等值圖非線性分布,概率大於30%的部分皆為紅色(修改自地震調查推進本部網頁公開資料)。原圖發布於「小地震,大災難」
本未來30年內震度概率分布,請注意等值圖非線性分布,概率大於30%的部分皆為紅色(修改自地震調查推進本部網頁公開資料)。原圖發布於「小地震,大災難」

今天我們該如何看待「地震預報?」

雖然以科學的角度來看,地震預報目前還尚未有突破性的發展,甚至有科學家認為目前「地震預測是不可行的」。由於地震的分布隨機、地下的構造又渾沌 未知,加上各項地震預測的理論幾乎都是從虛無創造出來的,使得批判者很容易利用科學論證破除各種理論的缺陷。不過我們也毋需太過悲觀,即使地震預測相關的 研究進展緩慢,但上述的各項發現,也是科學家競競業業的努力成果。

坊間有許多努力預測地震的民眾,以防災的觀點,這是個立意良善的態度,但實際上即使真的有任何可以預測的方式,我們將會面臨到與氣象預報一模一樣,甚至更棘手的問題。

首先是預報與防災應該怎麼結合。即使數值氣象預報已應用了數十年,現今的防災或地方單位還是難以直接利用氣象預報的結果,來進行決策;經常聽到:「颱風放假(不放假)是根據中央氣象局提到的資料決定。」但有時天氣狀況出現誤差時,氣象局就會受到責難。而就目前能預測地震的手段,誤差往往比颱風登陸路徑或侵襲時間還要大許多;當然我們一定也沒辦法接受,連續好幾天撒離家園附近,結果地震沒來的情況,萬一發布地區在旅遊名勝附近,要是出現誤差,當地的商家也會氣的跳腳。

另一個例子,就是在2009年L’Aquila附近發生大地震前,當時有一位科學家Giampaolo Giuliani發現地下水氡氣含量變化異常的現象(非直接測量氡,而是氡釋放出的放射線),提出了大地震的警告。而後,當地也發生了前震,然而官員與國家委託研究的科學家並不認為這是個前兆,並召開了記者會告訴大家不要驚慌,不過在記者會中,官員隨著媒體起舞的輕浮的態度,讓民眾忽視了地震威脅。也因而在2012年底被處6年的徒刑(原求刑4年),雖然地震無法預測,但這個判決其實並非針對無法預測的地震的缺失,而是輕忽災害威脅的官員,加上與大眾和媒體粗劣的發言讓民眾更加誤解導致。

義大利L'Aquila市政廳,在2009年震災之後。維基共享資源,用戶Insilvis創用 Creative Commons Attribution-Share Alike 3.0授權
義大利L’Aquila市政廳,在2009年震災之後。維基共享資源,用戶Insilvis創用 Creative Commons Attribution-Share Alike 3.0授權

所以,在離預測地震還很遠的現今,或許我們該思考的,是對這些我們視為「天然災害」的「自然現象」,該用什麼態度與災共生才更加實在吧!

本篇文章同時發布在作者部落格「地球故事書」。 歡迎大家來看看各種關於地球的故事。

延伸閱讀:

 

文中提及311地震前兆研究文獻:

A. Kato, K. Obara, T. Igarashi, H. Tsuruoka, S. Nakagawa, N. Hirata, Propagation of Slow Slip Leading Up to the 2011 Mw 9.0 Tohoku-Oki Earthquake, Science, vol335, 705(2012)

文章難易度
阿樹_96
72 篇文章 ・ 16 位粉絲
地球科學的科普專門家,白天在需要低調的單位上班,地球人如果有需要科普時時會跑到《震識:那些你想知道的震事》擔任副總編輯撰寫地震科普與故事,並同時在《地球故事書》、《泛科學》、《國語日報》等專欄分享地科大小事。著有親子天下出版《地震100問》。


1

4
0

文字

分享

1
4
0

解析「福衛七號」的觀測原理——它發射升空後,如何讓天氣預報更準確?

科技大觀園_96
・2021/10/25 ・2915字 ・閱讀時間約 6 分鐘

2019 年 6 月 25 日,福爾摩沙衛星七號(簡稱福衛七號)在國人的引頸期盼下升空。一年多來(編按:以原文文章發佈時間計算),儘管衛星還沒有全部轉換到預定的軌道,但已經回傳許多資料,這些資料對於天氣預報的精進,帶來很大的助益。中央大學大氣系特聘教授黃清勇及團隊成員楊舒芝教授、陳舒雅博士最近的研究主題,就是福衛七號傳回的資料,對天氣預報能有哪些改善。

掩星觀測的原理

要介紹福衛七號帶來的貢獻,得先從它的上一代──福衛三號說起。福衛三號包含了 6 顆氣象衛星,軌道高度 700~800 公里,以 72 度的傾角繞著地球運轉(繞行軌道與赤道夾角為 72 度)。這些衛星提供氣象資訊的方式,是接收更高軌道(約 20,200 公里)的 GPS 衛星所放出的電波,這些電波在行進到氣象衛星的路程中,會從太空進入大氣,並產生偏折,再由氣象衛星接收。換句話說,氣象衛星接收到的電波並不是走直線傳遞來的,而是因為大氣的折射,產生了偏折,藉由偏折角可推得大氣資訊。

▲低軌道衛星(如福衛三號)持續接收 GPS 衛星訊號,直到接收不到為止,整個過程會轉換成一次掩星事件,讓科學家取得大氣溫濕度垂直分佈。圖/黃清勇教授提供

氣象衛星會一邊移動,一邊持續接收電波,直到接收不到為止,在這段過程中,電波穿過的大氣從最高層、較稀薄的大氣,逐漸變為最底層、最接近地面的大氣,科學家能將這段過程中每一層大氣所造成的偏折角,通過計算回推出折射率,而折射率又和大氣溫度、水氣、壓力有關  ,因此可再藉由每個高度的大氣折射率,得出溫濕度垂直分布,這種觀測方式稱為「掩星觀測」。掩星觀測所得到的資料,可以納入數值預報模式,進一步做各種預報分析。 

資料同化──觀測與模式的最佳結合

在將掩星觀測資料納入數值預報模式時,必須先經過「資料同化」的過程。數值預報模式內含動力方程式,可以模擬任何一個位置的氣塊的運動,但是因為大氣環境非常複雜,模擬時不可能納入全部的動力條件,因此模擬結果不一定正確。而另一方面,掩星觀測資料提供的是真實觀測資訊,楊舒芝形容:「觀測就像拿著照相機拍照,不管什麼動力方程式,拍到什麼就是什麼。」但是,觀測的分布是不均勻的—唯有觀測過的位置,我們才會有觀測資料。

所以,我們一手擁有分布不均勻但很真實的觀測資料,另一手擁有很全面但可能不太正確的模式模擬。資料同化就是結合這兩者,找到一個最具代表性的大氣初始分析場,再以這個分析場為起點,去做後續的預報。資料同化正是楊舒芝和陳舒雅的重點工作之一。 

中央大學分別模擬 2010 年梅姬颱風和 2013 年海燕颱風的路徑,發現加入福三掩星觀測資料之後,可以降低颱風模擬路徑的誤差。圖/黃清勇教授提供

由於掩星觀測取得的資料與大氣的溫度、濕度、壓力有密切關係,因此在預報颱風、梅雨或豪大雨等與水氣量息息相關的天氣時,帶來重要的幫助。黃清勇的團隊針對福衛三號的掩星觀測資料對天氣預報的影響,做了許多模擬與研究,發現在預測颱風或氣旋生成、預報颱風路徑,以及豪大雨的降雨區域及雨量等,納入福衛三號的掩星觀測資料,都能有效提升預報的準確度。

黃清勇進一步說明,由於颱風都是在海面上生成的,而掩星觀測技術仰賴的是繞著地球運行的衛星來收集資料,相較於一般位於陸地上的觀測站,更能夠取得海上大氣資料,因此對於預測颱風的生成有很好的幫助。另一方面,這些資料也能幫助科學家掌握大氣環境,例如對於太平洋高壓的範圍抓得很準確,那麼對颱風路徑的預測自然也會更準。根據團隊的研究,加入福衛三號的掩星觀測資料,平均能將 72 小時颱風路徑預報的誤差減少約 12 公里,相當於改進了 5%。

豪大雨的預測則不只溫濕度等資訊,還需要風場資訊的協助,楊舒芝以 2008 年 6 月 16 日臺灣南部降下豪大雨的事件做為舉例,一般來說豪大雨都發生在山區,但這次的豪大雨卻集中在海岸邊,而且持續時間很久。為了找出合理的預測模式,楊舒芝探討了如何利用掩星觀測資料來修正風場。 

從 2008 年 6 月 16 日的個案發現,掩星資料有助於研究團隊掌握西南氣流的水氣分佈。上圖 CNTL 是未使用掩星資料的控制組,而 REF 和 BANGLE 皆有加入掩星資料(同化算子不一樣),有掩星資料可明顯改善模擬,更接近觀測值(Observation)。圖/黃清勇教授提供

福衛七號接棒觀測

隨著福衛三號的退休,福衛七號傳承了氣象觀測的重責大任。福衛七號也包含了 6 顆氣象衛星,不過它和福衛三號有些不同之處。

福衛三號是以高達 72 度的傾角繞著地球運轉,取得的資料點分布比較均勻,高緯度地區會比低緯度地區密集一些。相較之下,福衛七號的傾角只有 24 度,它所觀測的點集中在南北緯 50 度之間,對臺灣所在的副熱帶及熱帶地區來說,密集度更高;加上福衛七號收集的電波來源除了美國的 GPS 衛星,還增加了俄國的 GLONASS 衛星,這些因素使得在低緯度地區,福衛七號所提供的掩星觀測資料將比福衛三號多出約四倍,每天可達 4,000 筆。

福衛三號與福衛七號比較表。圖/fatcat 11 繪

另一方面,福衛七號的軟硬體比起福衛三號更加先進,可以獲得更低層的大氣資料,而因為水氣主要都集中在低層,所以福衛七號對水氣掌握會比福衛三號更具優勢。

從福衛三號到福衛七號,其實模式也在逐漸演進。早期的模式都是納入「折射率」進行同化,而折射率又是從掩星觀測資料測得的偏折角計算出來的。「偏折角」是衛星在做觀測時,最直接觀測到的數據,相較之下,折射率是計算出來的,就像加工過的產品,一定有誤差。因此,近來各國學者在做數值模擬時,愈來愈多都是直接納入偏折角,而不採用折射率。黃清勇解釋:「直接納入偏折角會增加模式計算的複雜度,也會增加運算所需的時間,而預報又是得追著時間跑的工作,因此早期才會以折射率為主。」不過現在由於電腦的運算能力與模式都已經有了進步,因此偏折角逐漸成為主流的選擇。 

由左至右依序為,楊舒芝教授、黃清勇特聘教授、陳舒雅助理研究員。圖/簡克志攝

福衛七號其實還沒有全部轉換到預定的軌道,不過這一年多來的掩星觀測資料,已經讓中央氣象局對熱帶地區的天氣預報,準確度提升了 4~10%;陳舒雅也以今年 8 月的哈格比颱風為案例,成功地利用福衛七號的掩星觀測資料,模擬出哈格比颱風的生成。

除了福衛七號,還有一顆稱為「獵風者」的實驗型衛星,預計 2022 年將會升空。獵風者的任務是接收從地表反射的 GPS 衛星電波,然後推估風速。可以想見,一旦有了獵風者的加入,我們對大氣環境的掌握度勢必更好,對於颱風等天氣現象的預報也能更加準確。就讓我們一起期待吧!

科技大觀園_96
156 篇文章 ・ 376 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策