Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

電磁學先鋒:安德烈-馬里·安培 (André-Marie Ampère)

程式人雜誌
・2013/10/15 ・2329字 ・閱讀時間約 4 分鐘 ・SR值 581 ・九年級

-----廣告,請繼續往下閱讀-----

文/陳鍾誠(國立金門大學資工系助理教授)

圖、安德烈-馬里·安培
圖、安德烈-馬里·安培

安德烈-馬里·安培(André-Marie Ampère,FRS,1775年-1836年),法國化學家,在電磁作用方面的研究成就卓著, 對物理學及數學也有重要貢獻。電流的國際單位安培即以其姓氏命名。

1820年 7月,H.C.奧斯特發表關於電流磁效應的論文後,安培馬上集中精力研究,幾周內就提出了安培定則即右手螺旋定則。 隨後很快在幾個月之內連續發表了 3 篇論文,並設計了 9 個著名的實驗,總結了載流迴路中電流元在電磁場中的運動規律, 即安培定律。

1820年 9月25日,安培報告了兩根載流導線存在相互影響,相同方向的平行電流彼此相吸,相反方向的平行電流彼此相斥; 對兩個線圈之間的吸引和排斥也作了討論。通過一系列經典的和簡單的實驗,他認識到磁是由運動的電產生的。

1821~1825年,安培做了關於電流相互作用的四個精巧的實驗,並根據這四個實驗導出兩個電流源之間的相互作用力公式。

-----廣告,請繼續往下閱讀-----

1827年,安培將他的電磁現象的研究綜合在《電動力學現象的數學理論》一書中 ,這是電磁學史上一部重要的經典論著, 對以後電磁學的發展起了深遠的影響。

安培的科學貢獻

直線電流的安培定則用右手握住導線,讓伸直的大拇指所指的方向跟電流的方向一致,那麼彎曲的四指所指的方向就是磁感線的環繞方向。

AmpereRightHandRule
圖、安培右手定則

然後、安培用數學描述這個現象,於是提出了著名的「安培定律」。

 積分形式 微分形式 「馬克士威-安培方程式」的微分形式
安培定律      

「安培定律的積分形式」所述說的是:「電流直線流動 I 會造成環形磁場  」,而後人所改寫的「微分形式」所述說的是: 「磁通量 B 的旋度  來自於(產生該磁場的)傳導電流密度 J」。這個定律後來經過馬克斯威的修正之後,成了「馬克斯威電磁波方程式」裏重要的一個公式,如上表最右邊的公式所示, 該公式主要加入了「電流的變化 (或說電通量變化) 也會造成磁場的改變」這個修正。環形電流的安培定則2、讓右手彎曲的四指和環形電流的方向一致,那麼伸直的大拇指所指的方向就是環形電流中心軸線上磁感線的方向。

-----廣告,請繼續往下閱讀-----
AmpereRightHandRule2
圖、環形電流的安培定則

安培還發現,電流在線圈中流動的時候表現出來的磁性和磁鐵相似,創製出第一個螺線管,在這個基礎上發明了探測和量度電流的電流計。

AmpereMeter
圖、安培電流計

提出分子電流假說,認為構成磁體的分子內部存在一種環形電流,這在當時物質結構的知識甚少的情況下無法證實。但後來的科學家了解到物質由分子組成,而分子由原子組成,原子中有繞核運動的電子,安培的分子電流假說有了實在的內容,已成為認識物質磁性的重要依據。

補充 1:1911年,拉塞福提出電子環繞原子旋轉的模型,此時距離安培電子流假說已將近百年。

MocularModel

補充 2: 1913年,波耳提出了拉塞福模型的改良版,加入了軌域的觀念。距離原子核越遠,軌域的能量就越高。當電子從距離原子核更遠的軌域,躍遷到距離原子核更近的軌域時,會以光子的形式釋放出能量。相反的,從低能級軌域躍遷到高能級軌域則會吸收能量。

BoyerModel
圖、波耳的能階軌域模型

藉著這些量子化軌域,波耳正確地計算出氫原子光譜。但是,使用波耳模型,並不能夠解釋譜線的相對強度,也無法計算出更複雜原子的光譜。 這些難題,尚待後來量子力學的解釋。

安培的小故事

安培思考科學問題專心致志,據說有一次,安培正慢慢地向他任教的學校走去,邊走邊思索著一個電學問題。 經過塞納河的時候,他隨手揀起一塊鵝卵石裝進口袋。過一會兒,又從口袋裡掏出來扔到河裡。到學校後, 他走進教室,習慣地掏懷錶看時間,拿出來的卻是一塊鵝卵石。原來,懷錶已被扔進了塞納河。

-----廣告,請繼續往下閱讀-----

還有一次,安培在街上散步,走著走著,想出了一個電學問題的算式,正為沒有地方運算而發愁。突然, 他見到面前有一塊「黑板」,就拿出隨身攜帶的粉筆,在上面運算起來。那「黑板」原來是一輛馬車的車廂背面。 馬車走動了,他也跟著走,邊走邊寫;馬車越來越快,他就跑了起來,一心一意要完成他的推導, 直到他實在追不上馬車了才停下腳步。安培這個失常的行動,使街上的人笑得前仰後合。

結語

從以上的小故事我們可以看到,安培能夠在電磁學上有卓越的貢獻,並非僥倖而已,當一個人全心投入某個領域時, 才有可能在該領域散發出無比耀眼的光芒啊!

【本文由陳鍾誠取材並修改自 維基百科 與 OpenStax College 的 College Physics 一書,採用創作共用的 姓名標示、相同方式分享 授權】

-----廣告,請繼續往下閱讀-----
文章難易度
程式人雜誌
9 篇文章 ・ 1 位粉絲
程式人雜誌是一個結合「開放原始碼與公益捐款活動」的雜誌,簡稱「開放公益雜誌」。開放公益雜誌本著「讀書做善事、寫書做公益」的精神,我們非常歡迎程式人認養專欄、或者捐出您的網誌。

0

0
0

文字

分享

0
0
0
從PD-L1到CD47:癌症免疫療法進入3.5代時代
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/25 ・4544字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

如果把癌細胞比喻成身體裡的頭號通緝犯,那誰來負責逮捕?

許多人第一時間想到的,可能是化療、放療這些外來的「賞金獵人」。但其實,我們體內早就駐紮著一支最強的警察部隊「免疫系統」。

既然「免疫系統」的警力這麼堅強,為什麼癌症還是屢屢得逞?關鍵就在於:癌細胞是偽裝高手。有的會偽造「良民證」,騙過免疫系統的菁英部隊;更厲害的,甚至能直接掛上「免查通行證」,讓負責巡邏的免疫細胞直接視而不見,大搖大擺地溜過。

-----廣告,請繼續往下閱讀-----

過去,免疫檢查點抑制劑的問世,為癌症治療帶來突破性的進展,成功撕下癌細胞的偽裝,也讓不少患者重燃希望。不過,目前在某些癌症中,反應率仍只有兩到三成,顯示這條路還有優化的空間。

今天,我們要來聊的,就是科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?

科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?/ 圖片來源:shutterstock

免疫療法登場:從殺敵一千到精準出擊

在回答問題之前,我們先從人類對抗癌症的「治療演變」說起。

最早的「傳統化療」,就像威力強大的「七傷拳」,殺傷力高,但不分敵我,往往是殺敵一千、自損八百,副作用極大。接著出現的「標靶藥物」,則像能精準出招的「一陽指」,能直接點中癌細胞的「穴位」,大幅減少對健康細胞的傷害,副作用也小多了。但麻煩的是,癌細胞很會突變,用藥一段時間就容易產生抗藥性,這套點穴功夫也就漸漸失靈。

直到這個世紀,人類才終於領悟到:最強的武功,是驅動體內的「原力」,也就是「重新喚醒免疫系統」來對付癌症。這場關鍵轉折,也開啟了「癌症免疫療法」的新時代。

-----廣告,請繼續往下閱讀-----

你可能不知道,就算在健康狀態下,平均每天還是會產生數千個癌細胞。而我們之所以安然無恙,全靠體內那套日夜巡邏的「免疫監測 (immunosurveillance)」機制,看到癌細胞就立刻清除。但,癌細胞之所以難纏,就在於它會發展出各種「免疫逃脫」策略。

免疫系統中,有一批受過嚴格訓練的菁英,叫做「T細胞」,他們是執行最終擊殺任務的霹靂小組。狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,這個偽裝的學名,「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, PD-L1) 」,縮寫PD-L1。

當T細胞來盤查時,T細胞身上帶有一個具備煞車功能的「讀卡機」,叫做「程序性細胞死亡蛋白受體-1 (programmed cell death protein 1, PD-1) 」,簡稱 PD-1。當癌細胞的 PD-L1 跟 T細胞的 PD-1 對上時,就等於是在說:「嘿,自己人啦!別查我」,也就是腫瘤癌細胞會表現很多可抑制免疫 T 細胞活性的分子,這些分子能通過免疫 T 細胞的檢查哨,等於是通知免疫系統無需攻擊的訊號,因此 T 細胞就真的會被唬住,轉身離開且放棄攻擊。

這種免疫系統控制的樞紐機制就稱為「免疫檢查點 (immune checkpoints)」。而我們熟知的「免疫檢查點抑制劑」,作用就像是把那張「偽良民證」直接撕掉的藥物。良民證一失效,T細胞就能識破騙局、發現這是大壞蛋,重新發動攻擊!

-----廣告,請繼續往下閱讀-----
狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,也就是「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, 縮寫PD-L1) 」/ 圖片來源:shutterstock

目前免疫療法已成為晚期癌症患者心目中最後一根救命稻草,理由是他們的體能可能無法負荷化療帶來的副作用;標靶藥物雖然有效,不過在用藥一段期間後,終究會出現抗藥性;而「免疫檢查點抑制劑」卻有機會讓癌症獲得長期的控制。

由於免疫檢查點抑制劑是借著免疫系統的刀來殺死腫瘤,所以有著毒性較低並且治療耐受性較佳的優勢。對免疫檢查點抑制劑有治療反應的患者,也能獲得比起化療更長的存活期,以及較好的生活品質。

不過,儘管免疫檢查點抑制劑改寫了治癌戰局,這些年下來,卻仍有些問題。

CD47來救?揭開癌細胞的「免死金牌」機制

「免疫檢查點抑制劑」雖然帶來治療突破,但還是有不少挑戰。

-----廣告,請繼續往下閱讀-----

首先,是藥費昂貴。 雖然在台灣,健保於 2019 年後已有條件給付,但對多數人仍是沉重負擔。 第二,也是最關鍵的,單獨使用時,它的治療反應率並不高。在許多情況下,大約只有 2成到3成的患者有效。

換句話說,仍有七到八成的患者可能看不到預期的效果,而且治療反應又比較慢,必須等 2 至 3 個月才能看出端倪。對患者來說,這種「沒把握、又得等」的療程,心理壓力自然不小。

為什麼會這樣?很簡單,因為這個方法的前提是,癌細胞得用「偽良民證」這一招才有效。但如果癌細胞根本不屑玩這一套呢?

想像一下,整套免疫系統抓壞人的流程,其實是這樣運作的:當癌細胞自然死亡,或被初步攻擊後,會留下些許「屍塊渣渣」——也就是抗原。這時,體內負責巡邏兼清理的「巨噬細胞」就會出動,把這些渣渣撿起來、分析特徵。比方說,它發現犯人都戴著一頂「大草帽」。

-----廣告,請繼續往下閱讀-----

接著,巨噬細胞會把這個特徵,發布成「通緝令」,交給其他免疫細胞,並進一步訓練剛剛提到的菁英霹靂小組─T細胞。T細胞學會辨認「大草帽」,就能出發去精準獵殺所有戴著草帽的癌細胞。

當癌細胞死亡後,會留下「抗原」。體內的「巨噬細胞」會採集並分析這些特徵,並發布「通緝令」給其它免疫細胞,T細胞一旦學會辨識特徵,就能精準出擊,獵殺所有癌細胞。/ 圖片來源:shutterstock

而PD-1/PD-L1 的偽裝術,是發生在最後一步:T 細胞正準備動手時,癌細胞突然高喊:「我是好人啊!」,來騙過 T 細胞。

但問題若出在第一步呢?如果第一關,巡邏的警察「巨噬細胞」就完全沒有察覺這些屍塊有問題,根本沒發通緝令呢?

這正是更高竿的癌細胞採用的策略:它們在細胞表面大量表現一種叫做「 CD47 」的蛋白質。這個 CD47 分子,就像一張寫著「自己人,別吃我!」的免死金牌,它會跟巨噬細胞上的接收器─訊號調節蛋白α (Signal regulatory protein α,SIRPα) 結合。當巨噬細胞一看到這訊號,大腦就會自動判斷:「喔,這是正常細胞,跳過。」

結果會怎樣?巨噬細胞從頭到尾毫無動作,癌細胞就大搖大擺地走過警察面前,連罪犯「戴草帽」的通緝令都沒被發布,T 細胞自然也就毫無頭緒要出動!

這就是為什麼只阻斷 PD-L1 的藥物反應率有限。因為在許多案例中,癌細胞連進到「被追殺」的階段都沒有!

為了解決這個問題,科學家把目標轉向了這面「免死金牌」,開始開發能阻斷 CD47 的生物藥。但開發 CD47 藥物的這條路,可說是一波三折。

-----廣告,請繼續往下閱讀-----

不只精準殺敵,更不能誤傷友軍

研發抗癌新藥,就像打造一把神兵利器,太強、太弱都不行!

第一代 CD47 藥物,就是威力太強的例子。第一代藥物是強效的「單株抗體」,你可以想像是超強力膠帶,直接把癌細胞表面的「免死金牌」CD47 封死。同時,這個膠帶尾端還有一段蛋白質IgG-Fc,這段蛋白質可以和免疫細胞上的Fc受體結合。就像插上一面「快來吃我」的小旗子,吸引巨噬細胞前來吞噬。

問題來了!CD47 不只存在於癌細胞,全身上下的正常細胞,尤其是紅血球,也有 CD47 作為自我保護的訊號。結果,第一代藥物這種「見 CD47 就封」的策略,完全不分敵我,導致巨噬細胞連紅血球也一起攻擊,造成嚴重的貧血問題。

這問題影響可不小,導致一些備受矚目的藥物,例如美國製藥公司吉立亞醫藥(Gilead)的明星藥物 magrolimab,在2024年2月宣布停止開發。它原本是預期用來治療急性骨髓性白血病(AML)的單株抗體藥物。

太猛不行,那第二代藥物就改弱一點。科學家不再用強效抗體,而是改用「融合蛋白」,也就是巨噬細胞身上接收器 SIRPα 的一部分。它一樣會去佔住 CD47 的位置,但結合力比較弱,特別是跟紅血球的 CD47 結合力,只有 1% 左右,安全性明顯提升。

像是輝瑞在 2021 年就砸下 22.6 億美元,收購生技公司 Trillium Therapeutics 來開發這類藥物。Trillium 使用的是名為 TTI-621 和 TTI-622 的兩種融合蛋白,可以阻斷 CD47 的反應位置。但在輝瑞2025年4月29號公布最新的研發進度報告上,TTI-621 已經悄悄消失。已經進到二期研究的TTI-622,則是在6月29號,研究狀態被改為「已終止」。原因是「無法招募到計畫數量的受試者」。

-----廣告,請繼續往下閱讀-----

但第二代也有個弱點:為了安全,它對癌細胞 CD47 的結合力,也跟著變弱了,導致藥效不如預期。

於是,第三代藥物的目標誕生了:能不能打造一個只對癌細胞有超強結合力,但對紅血球幾乎沒反應的「完美武器」?

為了找出這種神兵利器,科學家們搬出了超炫的篩選工具:噬菌體(Phage),一種專門感染細菌的病毒。別緊張,不是要把病毒打進體內!而是把它當成一個龐大的「鑰匙資料庫」。

科學家可以透過基因改造,再加上AI的協助,就可以快速製造出數億、數十億種表面蛋白質結構都略有不同的噬菌體模型。然後,就開始配對流程:

  1. 先把這些長像各異的「鑰匙」全部拿去試開「紅血球」這把鎖,能打開的通通淘汰!
  2. 剩下的再去試開「癌細胞」的鎖,從中挑出結合最強、最精準的那一把「神鑰」!

接著,就是把這把「神鑰」的結構複製下來,大量生產。可能會從噬菌體上切下來,或是定序入選噬菌體的基因,找出最佳序列。再將這段序列,放入其他表達載體中,例如細菌或是哺乳動物細胞中來生產蛋白質。最後再接上一段能號召免疫系統來攻擊的「標籤蛋白 IgG-Fc」,就大功告成了!

目前這領域的領頭羊之一,是美國的 ALX Oncology,他們的產品 Evorpacept 已完成二期臨床試驗。但他們的標籤蛋白使用的是 IgG1,對巨噬細胞的吸引力較弱,需要搭配其他藥物聯合使用。

而另一個值得關注的,是總部在台北的漢康生技。他們利用噬菌體平台,從上億個可能性中,篩選出了理想的融合蛋白 HCB101。同時,他們選擇的標籤蛋白 IgG4,是巨噬細胞比較「感興趣」的類型,理論上能更有效地觸發吞噬作用。在臨床一期試驗中,就展現了單獨用藥也能讓腫瘤顯著縮小的效果以及高劑量對腫瘤產生腫瘤顯著部分縮小效果。因為它結合了前幾代藥物的優點,有人稱之為「第 3.5 代」藥物。

除此之外,還有漢康生技的FBDB平台技術,這項技術可以將多個融合蛋白「串」在一起。例如,把能攻擊 CD47、PD-L1、甚至能調整腫瘤微環境、活化巨噬細胞與T細胞的融合蛋白接在一起。讓這些武器達成 1+1+1 遠大於 3 的超倍攻擊效果,多管齊下攻擊腫瘤細胞。

結語

從撕掉「偽良民證」的 PD-L1 抑制劑,到破解「免死金牌」的 CD47 藥物,再到利用 AI 和噬菌體平台,設計出越來越精準的千里追魂香。 

對我們來說,最棒的好消息,莫過於這些免疫療法,從沒有停下改進的腳步。科學家們正一步步克服反應率不足、副作用等等的缺點。這些努力,都為癌症的「長期控制」甚至「治癒」,帶來了更多的希望。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
觸控面板的秘密:從靜電到你的指尖魔法——《物理角色圖鑑》
azothbooks_96
・2024/09/24 ・1254字 ・閱讀時間約 2 分鐘

-----廣告,請繼續往下閱讀-----

歐姆定律:電流與電壓的完美協奏

川村老師,請用簡單的方式告訴我「歐姆定律」是什麼?

★歐姆定律,德國物理學家歐姆提出,在溫度不變時,流經金屬導線的電流I 與導線兩端的電壓 V 成正比,兩者的關係為 V=RI,R 是導線的電阻,單位為歐姆 Ω。圖/《物理角色圖鑑》
圖/《物理角色圖鑑》

老師:的方式會使電流變弱。電阻定律告訴我們,金屬導線的電阻 R 與長度 L 成正比,也就是導線愈長,電阻愈大。相反的,截面積 S 愈大,電阻愈小。

貓咪:能捲太多圈嗎?喵!

老師:這樣會讓導線長度增加。電阻 Rρ L/ Aρ 是電阻率。

圖/《物理角色圖鑑》

觸控面板的原理

觸控面板是貼附在螢幕玻璃表面上的薄膜,手機與電腦普遍使用的觸控面板是利用靜電原理進行感應。觸控面板有許多感應方法,最具代表性的是電容式觸控與電阻式觸控。手機使用的是電容式觸控面板,利用靜電就能讓 CPU 知道手指是否放在螢幕上。

-----廣告,請繼續往下閱讀-----

觸控面板中縱橫交錯著許多表面帶靜電的電極陣列,如下圖。

圖/《物理角色圖鑑》

手指碰到觸控面板時,會吸走該位置的靜電,感測器便據此判斷何處有靜電釋放。用一般的筆或戴著手套觸碰時,手機不會有反應,是因為其他東西與手指不同,不會導電,所以也不會釋放靜電。

電阻式觸控面板無法多點觸控;也就是說,不能用兩根手指同時操作。使用手機時,可以用拇指和食指同時觸碰面板,然後手指張開把照片放大,或手指閉合把照片縮小,電阻式觸控面板就沒辦法這麼方便。

電阻式觸控面板的電流是從兩片膜之間通過;手指碰觸時,上層膜會接觸到下層膜,使電阻降低,表示該處有電流通過,此時感測器便可讀取到接觸點位置。電阻式面板是透過壓力來操控,與觸控媒介是否導電無關;所以用筆、指甲來觸碰,螢幕也會有反應。這種面板也能感應觸碰壓力的強弱,因此常用於遊戲機。

-----廣告,請繼續往下閱讀-----
圖/《物理角色圖鑑》

——本文摘自《物理角色圖鑑:用35個萌角色掌握最重要的物理觀念,秒懂生活中的科普知識》,2024 年 9 月,漫遊者文化,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

azothbooks_96
55 篇文章 ・ 21 位粉絲
漫遊也許有原因,卻沒有目的。 漫遊者的原因就是自由。文學、人文、藝術、商業、學習、生活雜學,以及問題解決的實用學,這些都是「漫遊者」的範疇,「漫遊者」希望在其中找到未來的閱讀形式,尋找新的面貌,為出版文化找尋新風景。

0

4
2

文字

分享

0
4
2
一卡在手便利無窮,悠遊卡的設計原理——《我們的生活比你想的還物理》
商周出版_96
・2022/12/05 ・2482字 ・閱讀時間約 5 分鐘

時事話題

NEWS|在課堂介紹電磁波概念時,有位同學佳琦舉手提問筆者:「老師,用悠遊卡刷進捷運站非常方便,那個背後的原理和電磁波有關嗎?」另一位同學婕妤回答:「應該是悠遊卡會發出電磁波,傳遞訊息到門閘的感應器吧?」

悠遊卡如今早已融入臺灣大都會的生活中,不論是捷運、超商、購物或搭乘公車,悠遊卡在手,便利許多。然而,悠遊卡內並無電池,也不需要插入讀卡機,為何能夠溝通而傳遞資訊呢?

刷悠遊卡進出捷運站,其背後原理和電磁波有關嗎?圖/Pixabay

為何沒裝電池的悠遊卡可以產生電流?

悠遊卡系統主要是應用法拉第電磁感應定律來辨識與傳遞資訊,此與無接觸感應技術有關,該技術稱為「無線射頻辨識系統」(radio frequency identification,RFID)。完整的一套無線射頻辨識系統,是由讀卡機(reader)、電子標籤(tag)和應用程式資料庫電腦系統部分所組成。

運作過程先由讀卡機發射一特定頻率的無線電波能量給電子標籤,藉此驅動標籤內建電路,輸送內部的身分代碼,以開啟溝通之路。

-----廣告,請繼續往下閱讀-----

若以法拉第電磁感應的物理概念解釋,讀卡機產生變動磁場, 同步提供電子標籤變動磁場,驅動電子標籤產生感應電流,也就是讓悠遊卡內部迴路產生感應電流,並讓電子標籤發送身分代碼訊息給讀卡機,也即驅動內部晶片能夠發送訊號,讀卡機依序接收資訊、解讀此身分代碼,再透過應用程式資料庫系統讀取悠遊卡內的晶片資料,完整達成溝通與解讀任務。

電子標籤發送身分代碼訊息給讀卡機,即驅動內部晶片發送訊號。圖/維基百科

每一張悠遊卡都有獨立的電子標籤,當卡片靠近悠遊卡標誌的磁場感應範圍內,即可透過電磁感應的原理,驅使電子標籤內的線圈產生感應電流,此電流供應電子標籤傳送資訊至讀卡機,以解讀晶片資料。

或許讀者會好奇,沒有電池的悠遊卡怎麼產生電流呢?這個問題也需要以法拉第電磁感應定律說明。

依法拉第電磁感應定律,悠遊卡的線圈迴路會因為磁場強弱的變化,以及通過的面積區域角度變化而產生類似電池驅動電流功能的「感應電動勢」,或稱為感應電壓。此感應電壓大小與線圈匝數及每匝線圈中磁場隨時間的變化率有關。匝數愈多,磁場變化率愈大,悠遊卡迴路中的感應電壓愈大,產生的感應電流就愈大。

-----廣告,請繼續往下閱讀-----
當卡片靠近標誌的磁場感應範圍內,即透過電磁感應產生感應電流。圖/《我們的生活比你想的還物理

因此,悠遊卡雖然沒有內建電池,但可以透過電磁波的應用,採用無線射頻辨識系統,在運作時,讀卡機持續發出電磁波,當卡片接近時,其內部線圈產生感應電動勢,再進一步驅動感應電流。此感應電流讓卡片內的晶片發出電磁波,回傳必要的資訊給讀卡機,完成感應過閘的流程。

以臺北、臺中和高雄的悠遊卡來說,採用的是無線射頻辨識系統模式,屬於比較低頻率的電磁波,卡片必須距離讀卡機約 14 公分內,才能讀取卡片的晶片資料。因此若將悠遊卡裝在比較厚的皮夾或兩張磁卡疊在一起,可能無法第一時間完成讀卡,而形成「卡片無法讀取」的「卡卡」現象,建議單純使用悠遊卡過閘,較能順暢通過閘門。

其他如進出家門的感應磁扣、停車場的票卡、信用卡感應支付、國道收費系統 ETC 等,皆是應用無線射頻辨識系統 RFID 的技術,只不過國道收費系統 ETC 的感應器的感應距離約需 60 公尺內,才能順利讀取通過車輛的相關資訊。

台灣高速公路的電子道路收費系統(electronic toll collection, ETC)。圖/維基百科

物理小教室

  • 手機行動支付的物理學原理

手機支付的運作原理也是基於 RFID 發展而出的近場通訊(near-field communication,NFC) 技術。目前近場通訊技術採用頻率為 13.56 MHz 的電磁波,以 106 kbit/s、212 kbit/s 或 424 kbit/s 這 3 種速率傳輸資料,bit 翻譯為位元,是電腦資料的最小單位。

-----廣告,請繼續往下閱讀-----

利用手機支付時,須靠近刷卡機約 4 公分距離內,此時可藉由電磁波傳遞相關資訊,完成付款手續。近場通訊技術不只有用在手機支付, 也可運用傳輸文字、照片、音樂檔案,是目前手機常見的內建功能。

  • 電磁感應的進階說明

電動勢(electromotive force, emf)可以驅動導體內的電荷移動, 產生電流。電池因為內部材料的屬性,會在正負極產生固定的電位差或電壓。電動勢是電池正負極間的電位差,也常稱為電壓,其國際單位制(SI)單位為伏特(V)。

導體內的電流與電壓成正比,假設導線的電阻及電池的內電阻都可略去不計,電路中流動的電流是電壓與電阻相除後的數值。可知電池的電動勢,可以驅動迴路上的電流,讓燈泡發光發熱。

然而,一個未接電源的迴路導線圈,可不可能產生電流?可以。若是通過迴路導線圈的磁場變化或磁通量改變,也會產生感應電流,這是發電機的原理,也是物理學家法拉第和冷次的電磁感應概念。

-----廣告,請繼續往下閱讀-----

電磁爐和捷運列車的磁煞車也是運用電磁感應的概念。電磁爐內部的主要構造是由絕緣體包覆的導線環繞的線圈,當交流電通過線圈時, 電磁爐表面就會產生隨時間改變的磁場,這個磁場的變化會同時在鍋子底面產生應電流,再透過電流熱效應加熱鍋子,也加熱食物。

——本文摘自《我們的生活比你想的還物理》,2022 年 11 月,商周出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
商周出版_96
123 篇文章 ・ 364 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。