0

0
0

文字

分享

0
0
0

電磁學先鋒:安德烈-馬里·安培 (André-Marie Ampère)

程式人雜誌
・2013/10/15 ・2329字 ・閱讀時間約 4 分鐘 ・SR值 581 ・九年級

-----廣告,請繼續往下閱讀-----

文/陳鍾誠(國立金門大學資工系助理教授)

圖、安德烈-馬里·安培
圖、安德烈-馬里·安培

安德烈-馬里·安培(André-Marie Ampère,FRS,1775年-1836年),法國化學家,在電磁作用方面的研究成就卓著, 對物理學及數學也有重要貢獻。電流的國際單位安培即以其姓氏命名。

1820年 7月,H.C.奧斯特發表關於電流磁效應的論文後,安培馬上集中精力研究,幾周內就提出了安培定則即右手螺旋定則。 隨後很快在幾個月之內連續發表了 3 篇論文,並設計了 9 個著名的實驗,總結了載流迴路中電流元在電磁場中的運動規律, 即安培定律。

1820年 9月25日,安培報告了兩根載流導線存在相互影響,相同方向的平行電流彼此相吸,相反方向的平行電流彼此相斥; 對兩個線圈之間的吸引和排斥也作了討論。通過一系列經典的和簡單的實驗,他認識到磁是由運動的電產生的。

1821~1825年,安培做了關於電流相互作用的四個精巧的實驗,並根據這四個實驗導出兩個電流源之間的相互作用力公式。

-----廣告,請繼續往下閱讀-----

1827年,安培將他的電磁現象的研究綜合在《電動力學現象的數學理論》一書中 ,這是電磁學史上一部重要的經典論著, 對以後電磁學的發展起了深遠的影響。

安培的科學貢獻

直線電流的安培定則用右手握住導線,讓伸直的大拇指所指的方向跟電流的方向一致,那麼彎曲的四指所指的方向就是磁感線的環繞方向。

AmpereRightHandRule
圖、安培右手定則

然後、安培用數學描述這個現象,於是提出了著名的「安培定律」。

 積分形式 微分形式 「馬克士威-安培方程式」的微分形式
安培定律      

「安培定律的積分形式」所述說的是:「電流直線流動 I 會造成環形磁場  」,而後人所改寫的「微分形式」所述說的是: 「磁通量 B 的旋度  來自於(產生該磁場的)傳導電流密度 J」。這個定律後來經過馬克斯威的修正之後,成了「馬克斯威電磁波方程式」裏重要的一個公式,如上表最右邊的公式所示, 該公式主要加入了「電流的變化 (或說電通量變化) 也會造成磁場的改變」這個修正。環形電流的安培定則2、讓右手彎曲的四指和環形電流的方向一致,那麼伸直的大拇指所指的方向就是環形電流中心軸線上磁感線的方向。

-----廣告,請繼續往下閱讀-----
AmpereRightHandRule2
圖、環形電流的安培定則

安培還發現,電流在線圈中流動的時候表現出來的磁性和磁鐵相似,創製出第一個螺線管,在這個基礎上發明了探測和量度電流的電流計。

AmpereMeter
圖、安培電流計

提出分子電流假說,認為構成磁體的分子內部存在一種環形電流,這在當時物質結構的知識甚少的情況下無法證實。但後來的科學家了解到物質由分子組成,而分子由原子組成,原子中有繞核運動的電子,安培的分子電流假說有了實在的內容,已成為認識物質磁性的重要依據。

補充 1:1911年,拉塞福提出電子環繞原子旋轉的模型,此時距離安培電子流假說已將近百年。

MocularModel

補充 2: 1913年,波耳提出了拉塞福模型的改良版,加入了軌域的觀念。距離原子核越遠,軌域的能量就越高。當電子從距離原子核更遠的軌域,躍遷到距離原子核更近的軌域時,會以光子的形式釋放出能量。相反的,從低能級軌域躍遷到高能級軌域則會吸收能量。

BoyerModel
圖、波耳的能階軌域模型

藉著這些量子化軌域,波耳正確地計算出氫原子光譜。但是,使用波耳模型,並不能夠解釋譜線的相對強度,也無法計算出更複雜原子的光譜。 這些難題,尚待後來量子力學的解釋。

安培的小故事

安培思考科學問題專心致志,據說有一次,安培正慢慢地向他任教的學校走去,邊走邊思索著一個電學問題。 經過塞納河的時候,他隨手揀起一塊鵝卵石裝進口袋。過一會兒,又從口袋裡掏出來扔到河裡。到學校後, 他走進教室,習慣地掏懷錶看時間,拿出來的卻是一塊鵝卵石。原來,懷錶已被扔進了塞納河。

-----廣告,請繼續往下閱讀-----

還有一次,安培在街上散步,走著走著,想出了一個電學問題的算式,正為沒有地方運算而發愁。突然, 他見到面前有一塊「黑板」,就拿出隨身攜帶的粉筆,在上面運算起來。那「黑板」原來是一輛馬車的車廂背面。 馬車走動了,他也跟著走,邊走邊寫;馬車越來越快,他就跑了起來,一心一意要完成他的推導, 直到他實在追不上馬車了才停下腳步。安培這個失常的行動,使街上的人笑得前仰後合。

結語

從以上的小故事我們可以看到,安培能夠在電磁學上有卓越的貢獻,並非僥倖而已,當一個人全心投入某個領域時, 才有可能在該領域散發出無比耀眼的光芒啊!

參考文獻

【本文由陳鍾誠取材並修改自 維基百科 與 OpenStax College 的 College Physics 一書,採用創作共用的 姓名標示、相同方式分享 授權】

文章難易度
程式人雜誌
9 篇文章 ・ 1 位粉絲
程式人雜誌是一個結合「開放原始碼與公益捐款活動」的雜誌,簡稱「開放公益雜誌」。開放公益雜誌本著「讀書做善事、寫書做公益」的精神,我們非常歡迎程式人認養專欄、或者捐出您的網誌。

0

3
1

文字

分享

0
3
1
一卡在手便利無窮,悠遊卡的設計原理——《我們的生活比你想的還物理》
商周出版_96
・2022/12/05 ・2482字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

時事話題

NEWS|在課堂介紹電磁波概念時,有位同學佳琦舉手提問筆者:「老師,用悠遊卡刷進捷運站非常方便,那個背後的原理和電磁波有關嗎?」另一位同學婕妤回答:「應該是悠遊卡會發出電磁波,傳遞訊息到門閘的感應器吧?」

悠遊卡如今早已融入臺灣大都會的生活中,不論是捷運、超商、購物或搭乘公車,悠遊卡在手,便利許多。然而,悠遊卡內並無電池,也不需要插入讀卡機,為何能夠溝通而傳遞資訊呢?

刷悠遊卡進出捷運站,其背後原理和電磁波有關嗎?圖/Pixabay

為何沒裝電池的悠遊卡可以產生電流?

悠遊卡系統主要是應用法拉第電磁感應定律來辨識與傳遞資訊,此與無接觸感應技術有關,該技術稱為「無線射頻辨識系統」(radio frequency identification,RFID)。完整的一套無線射頻辨識系統,是由讀卡機(reader)、電子標籤(tag)和應用程式資料庫電腦系統部分所組成。

運作過程先由讀卡機發射一特定頻率的無線電波能量給電子標籤,藉此驅動標籤內建電路,輸送內部的身分代碼,以開啟溝通之路。

-----廣告,請繼續往下閱讀-----

若以法拉第電磁感應的物理概念解釋,讀卡機產生變動磁場, 同步提供電子標籤變動磁場,驅動電子標籤產生感應電流,也就是讓悠遊卡內部迴路產生感應電流,並讓電子標籤發送身分代碼訊息給讀卡機,也即驅動內部晶片能夠發送訊號,讀卡機依序接收資訊、解讀此身分代碼,再透過應用程式資料庫系統讀取悠遊卡內的晶片資料,完整達成溝通與解讀任務。

電子標籤發送身分代碼訊息給讀卡機,即驅動內部晶片發送訊號。圖/維基百科

每一張悠遊卡都有獨立的電子標籤,當卡片靠近悠遊卡標誌的磁場感應範圍內,即可透過電磁感應的原理,驅使電子標籤內的線圈產生感應電流,此電流供應電子標籤傳送資訊至讀卡機,以解讀晶片資料。

或許讀者會好奇,沒有電池的悠遊卡怎麼產生電流呢?這個問題也需要以法拉第電磁感應定律說明。

依法拉第電磁感應定律,悠遊卡的線圈迴路會因為磁場強弱的變化,以及通過的面積區域角度變化而產生類似電池驅動電流功能的「感應電動勢」,或稱為感應電壓。此感應電壓大小與線圈匝數及每匝線圈中磁場隨時間的變化率有關。匝數愈多,磁場變化率愈大,悠遊卡迴路中的感應電壓愈大,產生的感應電流就愈大。

-----廣告,請繼續往下閱讀-----
當卡片靠近標誌的磁場感應範圍內,即透過電磁感應產生感應電流。圖/《我們的生活比你想的還物理

因此,悠遊卡雖然沒有內建電池,但可以透過電磁波的應用,採用無線射頻辨識系統,在運作時,讀卡機持續發出電磁波,當卡片接近時,其內部線圈產生感應電動勢,再進一步驅動感應電流。此感應電流讓卡片內的晶片發出電磁波,回傳必要的資訊給讀卡機,完成感應過閘的流程。

以臺北、臺中和高雄的悠遊卡來說,採用的是無線射頻辨識系統模式,屬於比較低頻率的電磁波,卡片必須距離讀卡機約 14 公分內,才能讀取卡片的晶片資料。因此若將悠遊卡裝在比較厚的皮夾或兩張磁卡疊在一起,可能無法第一時間完成讀卡,而形成「卡片無法讀取」的「卡卡」現象,建議單純使用悠遊卡過閘,較能順暢通過閘門。

其他如進出家門的感應磁扣、停車場的票卡、信用卡感應支付、國道收費系統 ETC 等,皆是應用無線射頻辨識系統 RFID 的技術,只不過國道收費系統 ETC 的感應器的感應距離約需 60 公尺內,才能順利讀取通過車輛的相關資訊。

台灣高速公路的電子道路收費系統(electronic toll collection, ETC)。圖/維基百科

物理小教室

  • 手機行動支付的物理學原理

手機支付的運作原理也是基於 RFID 發展而出的近場通訊(near-field communication,NFC) 技術。目前近場通訊技術採用頻率為 13.56 MHz 的電磁波,以 106 kbit/s、212 kbit/s 或 424 kbit/s 這 3 種速率傳輸資料,bit 翻譯為位元,是電腦資料的最小單位。

-----廣告,請繼續往下閱讀-----

利用手機支付時,須靠近刷卡機約 4 公分距離內,此時可藉由電磁波傳遞相關資訊,完成付款手續。近場通訊技術不只有用在手機支付, 也可運用傳輸文字、照片、音樂檔案,是目前手機常見的內建功能。

  • 電磁感應的進階說明

電動勢(electromotive force, emf)可以驅動導體內的電荷移動, 產生電流。電池因為內部材料的屬性,會在正負極產生固定的電位差或電壓。電動勢是電池正負極間的電位差,也常稱為電壓,其國際單位制(SI)單位為伏特(V)。

導體內的電流與電壓成正比,假設導線的電阻及電池的內電阻都可略去不計,電路中流動的電流是電壓與電阻相除後的數值。可知電池的電動勢,可以驅動迴路上的電流,讓燈泡發光發熱。

然而,一個未接電源的迴路導線圈,可不可能產生電流?可以。若是通過迴路導線圈的磁場變化或磁通量改變,也會產生感應電流,這是發電機的原理,也是物理學家法拉第和冷次的電磁感應概念。

-----廣告,請繼續往下閱讀-----

電磁爐和捷運列車的磁煞車也是運用電磁感應的概念。電磁爐內部的主要構造是由絕緣體包覆的導線環繞的線圈,當交流電通過線圈時, 電磁爐表面就會產生隨時間改變的磁場,這個磁場的變化會同時在鍋子底面產生應電流,再透過電流熱效應加熱鍋子,也加熱食物。

——本文摘自《我們的生活比你想的還物理》,2022 年 11 月,商周出版,未經同意請勿轉載。

商周出版_96
119 篇文章 ・ 360 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

0

29
9

文字

分享

0
29
9
極目遠眺的意義:天文學家為何追尋第一代星系
Tiger Hsiao_96
・2022/05/15 ・3764字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

  • 文/蕭予揚 清大天文所碩士生,將於約翰・霍普金斯大學攻讀天文博士
      林彥興 清大天文所碩士生,EASY 天文地科團隊總編

近日,來自東京大學和倫敦大學學院的科學家 播金優一(Yuichi Harikane) 在天文物理期刊《The Astrophysical Journal》發表了一篇論文,宣稱他們可能找到目前最遠的星系(名為 HD-1,紅移值 z 約為13),打破了原本最遠(GNz-11,z 約為 11)的紀錄。

天文學家為什麼執著要找最遠的星系呢?
是單純為了破紀錄而破、抑或是蘊藏了什麼科學涵義?
天文學家們又是怎麼尋找、並且推論這些星系多遠的呢?

HD1 的影像。圖/Harikane et al.

時間推回到二十世紀初,當時的科學家們對宇宙大小到底是恆定或是膨脹爭論不休,其中,愛因斯坦(Albert Einstein)便是支持「宇宙穩恆態理論」的知名科學家。而支持膨脹宇宙的科學家們,一直到西元 1929 年,愛德溫.哈伯(Edwin Hubble)透過測量其他星系,發現了宇宙在膨脹,才為膨脹宇宙(也就是日後人們所說的「大爆炸理論 The Big Bang Theory」)注入了一劑強心針。

接下來的各種證據,如宇宙微波背景輻射、宇宙中元素的比例等,讓天文學家們越來越確信宇宙的年齡是有限的,並開始利用紙筆與超級電腦,來推測最早、也就是第一代星系及恆星的樣貌,並嘗試用望遠鏡,來尋找早期星系是否和我們預測的相符。

科學家是如何知道距離的呢?

天文學家並沒有一把長達「一百多萬光年」的尺,那他們是如何尋找,並且知道這些早期星系距離我們有多遠呢?讓我們把兩個問題分開,先來探討在宇宙學尺度下的距離是怎麼得到的。

-----廣告,請繼續往下閱讀-----

由於我們知道宇宙在膨脹,而這些遠離我們的星系所發出的光,也會因為類似都卜勒效應的影響,有著紅移的現象。而越遠的星系遠離我們的速度越快,它們紅移值也就越大;而從實驗室中,我們知道每種元素都會發出特定的譜線,藉由測量到星系光譜中特定譜線的實際位置,並與那條譜線所該在的位置比較,就能夠計算這些星系的紅移值了。

而結合紅移值和其他測量到的宇宙學參數(例如哈伯常數),就可以從星系的紅移值計算出物理上的距離,比如大家常會看到的「光年」。

星系的紅移(Redshift)與它跟地球的距離(Distance)可以互相換算。圖/林彥興

那既然這樣,我們只要測量所有星系的光譜,不就能知道最遠的星系是哪一個了嗎?可惜事情並沒有這麼簡單。

一來,很多星系(尤其是越遠的星系)都很黯淡,難以測量光譜,二來,測量光譜實際上是又貴又耗時的。所以,以「尋找」的為目的,做單一波段的搜索通常是比較實際的作法。但若是使用單一波段,不就代表我們沒有光譜,這樣不就又不知道距離了?

-----廣告,請繼續往下閱讀-----

Well yes, but actually no。大家應該都聽過盲人摸象的故事,透過觀測越多的波段,我們就越能描繪出實際上的光譜,再根據現有的理論模型,我們就可以利用光譜擬合來推論出這些星系的紅移值。

那要如何鎖定這些早期的星系?

天文學家總不可能對每個能測量到的星系都做很多波段的觀測,並且大費周章的利用理論模型去擬合他們。很多特定的望遠鏡(例如 ALMA、JWST)是要寫觀測計畫書和其他天文學家競爭觀測時間的,總要給出一個有力的理由,才能讓你的觀測計劃脫穎而出。

但還沒有資料之前,天文學家要怎麼知道哪個星系是最遠的?這便產生了一個「沒有工作要怎麼有工作經驗」的迴圈。怎麼辦呢?天文學家就是要想辦法,在已經觀測的深空資料庫中去尋找最遠的星系。

哈伯太空望遠鏡拍攝的「哈伯極深空 Hubble Extreme Deep Field」影像。藉由比較圖片中不同紅移的星系的性質,天文學家就能重建出過去百億年來星系的形成與演化歷史。圖/NASA; ESA; G. Illingworth, D. Magee, and P. Oesch, University of California, Santa Cruz; R. Bouwens, Leiden University; and the HUDF09 Team

而要怎麼在龐大的資料庫中尋找遙遠的星系呢?讓我們再次簡單回顧歷史。量子物理在十九世紀末至二十世紀初逐漸開始發展時,瑞士物理學家約翰.巴耳末(Johann Balmer)研究激發態的氫原子所放出的光譜,發現在可見光波段,氫原子只會發射一系列特定波長的譜線。隨後美國物理學家西奧多.萊曼(Theodore Lyman)也接著發現,氫原子從受激態回到基態時,會放出一系列位於紫外線波段的譜線,這些特定的譜線也被稱為萊曼系。

-----廣告,請繼續往下閱讀-----
氫原子的各個譜線家族,由上而下分別是位於紫外線的萊曼系,位於可見光的巴耳末系,以及位於紅外線的帕森系。圖/Szdori, OrangeDog

而用來尋找早期星系的第一種方法,也是最主要的搜索方法,就與萊曼系關係密切。天文學家發現,宇宙中有一種名為「萊曼斷裂星系(Lyman-break galaxies; LBGs)」的星系,這種星系的光譜有一個很明顯的特徵,便是在特定的波長以下就幾乎觀測不到,原因是波長更短的光(更高的能量)都被星際物質(Interstellar medium; ISM)和星系際物質(Intergalactic medium; IGM)的中性氫的萊曼線系給吸收了。

而萊曼線系中波長最短的譜線(常稱為萊曼極限)約在 91.2 奈米,最長的萊曼 α 譜線則約在 121.6 奈米。只要透過兩個波長足夠接近的波段去尋找「在長波長有觀測到、但在短波段沒觀測到的天體」(稱為 drop-out),就可以粗略的估計星系的紅移。

舉例來說,如果我們要找紅移值為 9 的萊曼斷裂星系,只需要稍微長於和短於 1216 奈米的兩個波段,看看有沒有星系出現在長波段的影像中,但在短波段的影像中卻沒有出現,就有可能是在紅移值為 9 的萊曼斷裂星系。如果要找越遠的萊曼斷裂星系,只需要換波長較長的波段即可。

近日打破紀錄的最遠星系,也是透過 H-band drop-out(在波長 H 波段沒有觀測到,而較長的波段有)所找出的。

-----廣告,請繼續往下閱讀-----
光譜drop-out的例子。圖/Harikane et al (2022)

上圖為近日打破紀錄的最遠星系 HD1 的 H-band drop-out,可以看到長波段:4.5、3.6 微米以及 Ks 波段都有偵測到,但在 H 波段(以及更短波長)的影像就消失不見了。藍色的光譜 z 值為 13.3 的萊曼斷裂模型,灰色的光譜則為可能的低紅移汙染,z=3.9 的巴耳末斷裂模型。

當然,這只能幫助科學家初步的篩選,而且此種方法會受到一些其他非早期星系的汙染。

舉例來說,上文提到氫原子除了萊曼系以外,還有回到第一激發態的巴耳末系。若只是單純地透過 drop-out,因為巴耳末系本身的譜線就比萊曼系來得紅,所以也有可能找到的是紅移值較小的巴耳末斷裂;此外,非常紅且充滿塵埃的星系也會在光譜上出現類似「驟降」的特徵。

當然,更多波段以及光譜的觀測,都有助於釐清這些可能的汙染。而除了上述的方法以外,萊曼 α 發射體(Lyman-alpha emitters; LAEs)、伽瑪射線暴的宿主星系、重力透鏡效應等,也是尋找遙遠星系的重要方法哦!

-----廣告,請繼續往下閱讀-----

那麼,找出這些早期星系有什麼科學意義?

現代宇宙學理論認為,宇宙在早期曾經經歷過兩次相變。第一次是宇宙從炙熱的游離態降溫回到中性的氣態,被稱為宇宙的復合時期(Epoch of Recombination),也是大家熟悉的宇宙微波背景的起源;第二次(也是最後一次)的相變,宇宙中的中性氫變成了游離化的氫離子,這個相變的過程被稱為再電離時期(Epoch of Reionization; EoR)。

而目前認為,第二次這個電離的原因,是第一代恆星和第一代星系所發出的強紫外線光,把周圍的中性氫游離成氫離子。藉由尋找越來越多的早期星系,我們就能透過這些早期星系來描繪宇宙再電離時期的歷史,而這又能夠進一步驗證現代宇宙學理論是否正確。不僅如此,研究這些早期星系,可以讓我們對於星系演化的歷史更往前推,或是研究早期星系的超大質量黑洞,是如何長到這麼大等等的議題。

未來展望

在 2021 年底順利升空的詹姆斯.韋伯太空望遠鏡(James Webb Space Telescope; JWST),其中一個主要的科學目標就是研究早期宇宙。如這篇文章一開始提到的「新的最遠的星系(HD-1)」,又如前一陣子發現的「最遠恆星 Earendel」,以及同一團隊的另一個紅移約 11 的星系,都在第一輪 JWST 的觀測計畫之中。

期待幾個月後 JWST 公布的第一批科學照片,能大幅革新我們對早期宇宙的認識。

-----廣告,請繼續往下閱讀-----

參考資料(論文們)

延伸閱讀(科普文章)

0

0
0

文字

分享

0
0
0
交流電必須死!?走向白熱化的電流之戰──《光之帝國:愛迪生、特斯拉、西屋的電流大戰》
商周出版_96
・2018/01/23 ・2374字 ・閱讀時間約 4 分鐘 ・SR值 533 ・七年級

-----廣告,請繼續往下閱讀-----

為何我們挑選了這本書:
在十九世紀末,美國三位傳奇人物與「電能」的發展息息相關:最著名的夢想者與發明家湯瑪斯‧愛迪生、對發電和電力輸送有革命貢獻的電力奇才尼古拉‧特斯拉、創建多家公司的發明家和企業家喬治‧西屋,《光之帝國:愛迪生、特斯拉、西屋的電流大戰》主要介紹了這三位人物成功、失敗以及彼此的宿怨,美國企業史上最獨特的惡鬥「電流之戰」於此展開。

  • 本篇前情提要:
    在「電流之戰」中,愛迪生掌握的直流電(DC)與西屋和特斯拉的交流電(AC)系統爆發技術之爭,在這段摘錄之前,一八八九年 11 月 11 日眾目睽睽之下,西聯的舖線工人約翰‧菲克斯(John Feeks)被高壓電電死,公眾群情激憤,紐約市長宣布關閉曼哈頓所有高壓電弧燈,導致全區失去照明。
    而在此事件之後,愛迪生正式走到幕前,宣稱必須:消滅交流電!認為交流電「只會為人孔口、房屋、商店、辦公室、電話轉接處、低壓系統和高壓電流設備帶來死亡事件。」我們在此初窺電流之戰中的媒體爭論片段。

電流大戰越演越烈,喬治.西屋在一八八九年秋天決定雇用一個叫恩斯特.海因希斯(Ernest Heinrichs)的匹茲堡報社記者,企圖利用媒體宣傳自己的公司。海因希斯第一天上班時,西屋特地路過向他致意,並解釋自己的目的:

「我希望看到報紙上印出的東西精確無誤。事實是不傷人的。」

西屋與特斯拉結盟,用交流電與愛迪生抗衡,因而引發科技史上一場獨特的恩怨--電流大戰。圖/Joseph G. Gessford@wikipedia

對交流電而言,受攻擊就是最好的宣傳

不久後的一個十一月清晨,海因希斯在他任職於西屋公司九層大樓的辦公桌前,瀏覽一篇攻擊交流電與西屋的文章,這位年輕人被激怒了。他跳起來,連門都忘了敲,就衝進老闆的辦公室。西屋坐在他寬大的軟墊椅子上,用大型木頭餐桌當書桌。他也正在讀同一份報紙,但是他心情平靜。

-----廣告,請繼續往下閱讀-----

他看見海因希斯被自己也在讀的文章搞得激動不安,這位匹茲堡工業家翹起頭問他:「好啦,為何那麼急?」

「您不認為我們應該說些什麼來反擊這些誹謗和錯誤陳述嗎?」海因希斯永遠不會忘記西屋看他那幾秒的眼神。這時,只有壁爐台上方的木鐘在寂靜中發出滴答滴答響。

西屋笑了。「海因希斯,他們告訴我,你是玩惠斯特牌戲的高手,對嗎?」

他承認了。

-----廣告,請繼續往下閱讀-----

「好,那你明白這個說法的含義吧?不要人云亦云。」

惠斯特牌源自於英國,後來演變成為橋牌。圖/Charles Goodall@wikipedia

海因希斯聽後很困惑,紙牌遊戲與愛迪生的誹謗又有什麼關係?

西屋解釋:「現在說正經的,所有這些交流電的敵人都在幫我們大忙。我們正在獲得許多免費廣告……就實用性與商業性來說,交流電系統比直流電領先多了,兩者無法相比……宣傳『交流電致命』是在幫我們忙,我們以巧撥千斤。」

-----廣告,請繼續往下閱讀-----

他們希望仰仗自己的勢力、自己的影響力,就能阻止事態前進。這在自然法則中是做不到的……那些對我個人的攻擊當然很無恥,但是我的尊嚴與良心不會讓我用相同的武器去反擊。」

西屋接著解釋:「此外,我覺得自己的道德品質和商業聲望已經很好,不會不堪一擊。但是我將準備一篇文章給《北美觀察》,回答愛迪生先生對交流電的指責,除此之外,我沒有什麼讓你發表的……讓別人暢所欲言,只要不降低自己的人格與惡意攻擊者一樣水準,我們反而會得到更多朋友。」

西屋樂於使用媒體,發揚自己的商業成果,或是與競爭對手隔空嗆聲。圖/Unknown@wikipedia

《答愛迪生先生》強硬反駁電力危險的論述

《北美觀察》十二月號沒有改變愛迪生對西屋的敵意,因為西屋寫了一篇直率強硬的文章《答愛迪生先生》

-----廣告,請繼續往下閱讀-----

電流之戰進入長期「控制電力生意的階段,激烈程度超過史上任何商業之爭。數以千計的人與此有金錢利害關係,而且可以想像,許多人完全是站在個人利益角度來看這場戰爭」。

西屋做了以下歸納:一八八八年,紐約市有六十四人死於街車事故,五十五人死於公共汽車與貨車事故,二十三人死於煤氣中毒,總共只有五個人死於觸電。

大膽的西屋這樣描述愛迪生珍愛的直流中央發電站,「許多有能力的電力工程師認為,它在許多方面都有根本缺陷;事實上它的缺陷只有用交流電能彌補。它注定被更科學和無論哪方面(取決於用戶或建築物所有人)都更安全的感應系統取代。」

愛迪生、特斯拉、西屋的電流大戰在2017年翻拍成電影,讓我們有機會在大螢幕一睹這場大戰之精彩。圖/The Current War (2017)@imdb

迄今為止的爭論都受到銅價漲跌影響,因為銅價決定變壓器的造價,但是西屋(在文章中)以兩記重拳結束了對愛迪生的反擊。

-----廣告,請繼續往下閱讀-----

第一是愛迪生陣營中痛苦的內訌。西屋說,八月在尼加拉大瀑布召開的愛迪生公司年會上,通過一項底特律分公司經理提出的決議。它要求母公司提供「一種靈活方法讓他們的發電站擴大經營規模,為此應有比三相系統更高的電壓和相對較少的銅耗」。愛迪生自己的陣營在分裂──在要求交流電!

西屋最有力的重磅炸彈是:「三年來購買電燈照明裝備的客戶有充分自由從任何公司購買產品,但其中大部分傾向使用交流電系統,所以如今交流電系統的中央發電站電燈照明規模起碼是直流電的五倍。」

 

 

 

本文摘自泛科學 2018 年 1 月選書《光之帝國——愛迪生、特斯拉、西屋的電流大戰》,商周出版

 

 

 

商周出版_96
119 篇文章 ・ 360 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。