0

0
0

文字

分享

0
0
0

《蛋白質殺手》:狂牛病與普利子

PanSci_96
・2013/09/27 ・1608字 ・閱讀時間約 3 分鐘 ・SR值 600 ・九年級

DJAO1A-A43317989000_4a9e2f7614fc4文/李讚虔

《蛋白質殺手-狂牛病、致死性失眠症與普利子的糾葛之謎》這本書的內容可以從它的原文書名(The Family Couldn’t Sleep- A Medical Mystery)略知一二,主要是介紹在義大利有個家族成員受到致病性的普利子[1](Prion)侵襲,而無法進入睡眠狀態(這不是普通的失眠;此病的症狀還包含汗流不止,體內腎上腺素失調,使得神經隨時處於亢奮的狀態),最後死亡的案例。

普利子這個致病原,在台灣因為「狂牛病」(正式譯名為:牛海綿狀腦病)為大眾所知。普利子其實是一種存在於生物體內的蛋白質(注意:它不是細菌,也不是病毒),在每個人身上都有,它的基因位在人類第20號染色體上。大致可分為正常型與致病型兩大類。普利子症的傳染,是因為正常的普利子被致病性的普利子改變結構後,成為致病性普利子。在同種動物間,很容易進行傳染,像是藉由人吃人而感染。但是兩種不同的物種間要傳染就比較不容易,要看者兩種動物之間普利子是否能產生反應。例如:豬跟雞吃了從狂牛病致死的肉所製成的蛋白質餅,到目前為止沒有病例出現,可能顯示這些動物體內的普利子不會被牛的普利子轉變成具有致病性的蛋白質結構。另外,普利子在神經細胞及特定的免疫細胞上表現量非常高。因此,致病型普利子所引起的疾病,多半屬於慢性神經退化疾病。但最重要的是,致病型普利子與自身體內的普利子的胺基酸序列幾乎一模一樣,只是蛋白質結構不同,所以不會引起免疫反應,也不會被免疫細胞消滅。

但是,如果要問「引發狂牛病的普利子是否會影響到正常人的普利子?」目前,沒有直接證據,再加上普利子引起的疾病,病發時間也很難預測,短則5年,時間較長的要等個十幾年才會出現病徵,要證實是因為吃了病死牛才導致的疾病,也很難有直接證據。但是,從許多英美民眾吃過了病死牛隻後,患病人數有「些微」增加的情勢來看,筆者認為,在歐美人種,普利子的遺傳形式屬於異型合子者居多,會因為吃病死牛肉而病發的機會相對較低。但在亞洲國家,普利子的遺傳形式屬於同型合子者居多,相對地若能與病死牛的普利子發生反應,發病機會相對較高,而且病情發展也會較為快速。總結來說「因為吃了病死牛肉而發病的情形或許不普遍,但一發病就會致命,所以還是不得不防」。

作者除了記錄在義大利那一個罹患致死性失眠症的家族史之外,本書另一個重頭戲就是介紹了由普利子引起的其他症狀。例如:因為特殊的吃人習俗所傳染的疾病-庫魯(Kuru)症(“Kuru”原意為顫抖的意思);以及動物間的傳染,像是:羊搔癢病、狂牛病、北美糜鹿群間的慢性消耗病。從內容不難理解到,普利子的相關疾病是起因於人為經濟活動所採用的近親交配及病態餵養方式所引發,違反自然常態,導致許多生物深受其害。書中雖然也提及了一些曾經被拿來治療普利子相關疾病的方法,但依照目前情況看來,普利子相關疾病依舊是無藥可治。

本書除了深入淺出地介紹「普利子」這個致病原,也以時間為順序,將許多關於「普利子相關疾病」的由來以及歷史發展過程、來龍去脈與人文活動之間的關聯性,寫成一本精彩的科普書籍,內容簡明易懂。如果您想了解「普利子」這個引起狂牛病恐慌的致病原,本書很值得一讀。

1:目前已知它的中文譯名有很多種:普利昂(Prion的音譯)、普恩蛋白(音譯加上本身是蛋白質的特質)、朊毒體、慢病毒(研究初期因為找不到病原,而且病原難易消滅,但卻又不像病毒在一個區域間迅速的傳染速度),所指的都是同一個物質。

延伸閱讀:

  • 莫瑞‧華德曼,瑪裘莉‧蘭姆 (2005) 吞噬大腦的食物 先覺出版社
  • Aguzzi A, Heikenwalder M, Polymenidou M. (2007) Insights into prion strains and neurotoxicity. Nature Reviews Molecular Cell Biology 8: 552-561.
  • Aguzzi A, Polymenidou M. (2004) Mammalian prion biology: one century of evolving concepts. Cell 116: 313-327.
  • Chakrabarti O, Ashok A, Hegde RS. (2009) Prion protein biosynthesis and its emerging role in neurodegeneration. Trends in Biochemical Sciences 34: 287-295
  • Caughey B, Baron GS. (2006) Prions and their partners in crime. Nature 443: 803-810
  • Ross ED, Minton A, Wickner RB. (2005) Prion domains: sequences, structures and interactions. Nature Reviews Molecular Cell Biology 7: 1039-1044
  • Soto C, Estrada L, Castilla J. (2006) Amyloids, prions and the inherent infectious nature of misfolded protein aggregates. Trends in Biochemical Sciences 31: 150-155.
文章難易度
PanSci_96
1037 篇文章 ・ 1358 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

17
6

文字

分享

0
17
6
染色體「X 檔案」解密!——談談女性「X 染色體去活化」機制
賴昭正_96
・2021/04/03 ・4338字 ・閱讀時間約 9 分鐘 ・SR值 566 ・九年級

在數學和科學中,男人和女人的智力沒有差異。男性和女性之間基因的差異只是Y 染色體,與智力無關。

Christiane Nusslein-Volhard(1995年諾貝爾醫學獎)

當過父母親的讀者大概都注意到,男、女孩在非常早期,就已經顯示出非常不同的特質:例如將玩偶女娃與玩具汽車擺在他們之前,大部分的女孩都會選擇前者,而大部分的男孩則會選擇後者。這到底是後天受影響還是天生的「演化」結果,大概將永遠爭論不休。但男女身體構造不同(最明顯的當然是生殖器官),則是一個無所否認的事實!

現在科學家已毫無疑問地確定男女間的生理差別是因為「遺傳因子」不同造成的,這些遺傳因子就存在細胞核的染色體內。檢視比較男女的染色體,可以清楚地看出,在 23 對染色體中,男女之間有一對明顯地非常不同的「性染色體」:女性那對外表相似的性染色體為 X;而男性除了一條 X 外,另一條則被一位身材矮小、被稱 Y 的染色體取代!顯然造物者是有點不公平,但是對誰不公平呢?

本文擬探討,性染色體 XX 與 XY 的發現與運作機制,男女之間多(少)一條 X 染色體,是怎樣的機制使其正常運作的呢?

遺傳物質藏身處:染色體的發現

德國生物學家弗萊明(Walther Flemming, 1843-1905)為研究細胞的遺傳物質及染色體之「細胞遺傳學」(cytogenetics)的創始人:他首先觀察並系統地描述正常細胞分裂期間之細胞核中染色體行為的人。1879 年時,弗萊明發現在細胞分裂過程中,細胞核中呈顆粒狀的結構能大量吸收紅色合成苯胺染料,並從希臘語「顏色」一詞中將這些結構命名為「染色質」(chromatin)。

四年後德國解剖學家瓦爾德耶爾(Heinrich Waldeyer)改稱為「染色體」(chromosome)。染色技術使弗萊明能夠詳細地觀察到在細胞分裂的過程中,這些染色體呈線狀縱向分裂產生兩個相同的兩半,因之將此過程稱為「有絲分裂」(mitosis)[註一]

有絲分裂示意圖。圖/wikimedia

儘管弗萊明有敏銳的觀察力,但他並未意識到細胞分裂可能與遺傳有關。1865 年,被稱為「遺傳學之父」之孟德爾(Gregor Mendel)的豌豆實驗顯示遺傳應以離散單位傳輸,每個單位有上代父母親之半個單位組成。1902 年,美國遺傳學家和醫師薩頓(Walter Sutton)謂孟德爾遺傳定律可以應用於生物體細胞內的染色體(現稱為 Boveri-Sutton 染色體理論)。他描述了現代遺傳學的細胞基礎:細胞含有父母雙方每個染色體中的一個;後代從每個父母那裡透過卵子受精各獲得一條染色體,從而形成一對染色體。當然,我們現在知道孟德爾的遺傳單位就是 DNA 裡面的基因,而 DNA 就是「躲藏」在染色體內。

男女有別,差在染色體

人類細胞內有多少對染色體呢?1923 年,美國動物學家潘特耳(Theophilus Painter)由他所謂的「最佳細胞」或人體睾丸的最佳部分「證明」了人類具有 48 條染色體。這錯誤一直持續到 1956 年,才由瑞典隆德(Lund)遺傳研究所的齊歐(Joe H. Tijo)和雷面( Albert Levan)確定實際數目是 23 對(46條)染色體。

這 23 對染色體當中,有一對非常突出不同於其它的:那就是男性具有稱為 X 及 Y 的不同染色體,而女性則具有一對相似的 X 染色體!

男女生理上的差異源自性染色體的組成不同:男性具有 X 及 Y 染色體,女性則有一對相似的 X 染色體。圖/pexels

當然,因為男女有別,這一發現應該不會讓令人驚奇。X 染色體相當大,約含 1300 個基因;這些基因在大腦功能上佔了不成比例的重要性,在卵巢或睾丸形成的各個階段、以及雄性和雌性的其他生育能力上也扮演了許多必要的角色。而 Y 染色體則特別小,只含 40 – 50 個基因而已:當然其中許多是雄性生殖所必需的。 

就性別決定而言,Y 染色體中最重要的是一個稱為 SRY 的基因;SRY 蛋白激活胚胎中決定睾丸的途徑,促使產生最重要之「男性」睾丸激素,使胚胎男性化。萬一 Y 染色體內缺​​少了SRY 基因或 SRY 基因受損,則該男性的外表將出現女性化。而如果父親的精子在形成過程中,Y 染色體中的 SRY 基因的一小部分「不小心」地轉移到 X 染色體上,則性染色體為 XX 染色體的孩子,也會出現男性的特徵。

前面提到,X 染色體中的基因在大腦功能上佔在有相當重要的地位。因此亞當可能會反對為什麼上​​帝只賜給他一個 X 染色體,但卻給夏娃兩個!還好生物學家發現染色體多並不是好現象!事實上除了編號為 21 的染色體外,任何其它多一條染色體的胚胎都沒辦法正常發展,只有胎死腹中一途!而多了一條 21 號染色體的胚胎呢?那正是出生後患有「唐氏病」(Down’s syndrome)的原因!

「唐氏病」是由第 21 號染色體出現三體現象造成的遺傳疾病。圖/wikimedia

由此看來,細胞的基因表現上,一對染色體中多 50% 顯然不是什麼好事,那麼女性的 X 染色體比男性的 X 染色體整整地多了一倍,那上帝不是在故意給夏娃找麻煩嗎?

過猶不及—— X 染色體的去活化

英國遺傳學家瑪莉.里昂(Mary Lyon)。圖/wikimedia

沒有 X 染色體當然是不行,但顯然太多也不是福。在 1960 年代初期,英國遺傳學家瑪莉‧里昂(Mary Lyon)提出了 X 染色體「劑量補償」(dosage compensation)的假設。 她預測:

  1. 正常雌性的細胞僅含一條活性(active)X 染色體;
  2. 另一條 X 染色體在早期胚胎發展過程中就被「去活化」(inactivation)了;
  3. 被去活化的 X 染色體可能是父親或母親的版本,在每個細胞內個別隨機發生;
  4. 發生在「體細胞」[註一]內的去活化是不可逆的,隨細胞分裂一代一代地傳下去。

經過半個世紀多的研究,這些預測現在被證明是完全正確的,因此有些教科書稱此一「去 X 染色體活性」「里昂化」(Lyonization)⎯⎯不少生物學家、細胞學家、遺傳學家認為里昂有資格獲得諾貝爾獎。看來上帝還是公平的:夏娃雖然有兩條 X 染色體,但只有一條具有活性,另外一條看來只是裝飾用的。

由於 X 染色體與其他染色體有所不同,我們的身體顯然有特別辨識及計數的機制,如前面所介紹的,除了 21 號染色體外(唐氏症),多出任何其它染色體的胚胎都沒辦法正常發展。因為這個辨識、計數、及去活化的機制,多條 X 染色體的胚胎常常可以生存下來,只是生理機能上會出現某些缺陷!

突變的性染色體的遺傳疾病

在筆者在蘇俄最後沙皇與血友病 (科學月刊 2020 年 6 月號) 一文中,提到血友病通常是一種因 X 染色體中單個基因突變造成的遺傳性出血疾病。男性因為只有一個 X 染色體,所以只要它不正常,就足以引起血友病。女性因有兩個 X 染色體,加上血友病基因為「隱性 」(recessive),故兩個拷貝都必須發生突變才能引起這種疾病(非常罕見)。

著名血友病基因攜帶者亞歷山德拉和俄羅斯帝國末代沙皇尼古拉二世的訂婚照。圖/wikimedia

女性每個細胞內確實是有兩個 X 染色體,但是只有一個具活性!還好去活化的過程是隨機的,因此對帶有一個拷貝血友病基因的女性來說,機率上應該有半數的基因表現正常!但就幫助受傷後之血液凝結卻已經足夠了!

但在雷特綜合症(Rett syndrome)這方面,就是另一個故事了。雷特綜合症是一種罕見的神經系統疾病[註二],主要發生在女孩中,常造成語言和協調障礙,以及重複性動作,影響了孩子各方面的生活。

雷特綜合症的起因與血友病相似:X 染色體上的一個名為 MECP2 的基因突變引起的。但與血友病不同的是:具有類似突變的男孩通常會在出生後不久就死亡,因此很少看到患有此症的男孩。只有一條正常 X 染色體的女性就不像血友病那麼幸運:經 X 染色體去活化後,只有一半正常 MECP2 基因來製造蛋白質已不能阻止雷特綜合症了!可想而知,正在研發中治療此病的一個方法是設法活化被去活化的正常 X染色體。

與諾貝爾獎失之交臂的瑪麗·里昂

「里昂化」,即 X 染色體去活化,彌補了 XX 雌性和 XY 雄性之間基因劑量的差異。提名里昂為 1984 年英國皇家勳章得主之推薦信謂:「它(X 染色體去活化)為雌性哺乳動物長期存在的 X 劑量補償問題提供了解決方案,揭示了細胞中存在異常數量的性染色體的本質,改變了人類某些腫瘤和慢性粒細胞白血病起源的觀念,並為思考關閉基因的基本機制提供了參考。正如科學家很快將其稱為里昂化一樣,它也許比任何最近之生物學概念開闢了更多的研究領域,及激發了更多的工作。」

儘管做出了重大的貢獻,卻不知道為什麼里昂與諾貝爾獎無緣?如果是因帶兩個 X 染色體的關係,那顯然諾貝爾獎委員不了解她的 X 染色體去活化理論。里昂於 1984 年獲得英國皇家勳章獎,1997 年獲得被稱為是貝爾獎重要預測指標的沃爾夫醫學獎(Wolf prize)[註三]

沃爾夫基金會標志。圖/wikimedia

本稿完成於「淡淡的三月天,杜鵑花開在山坡上,… 」[註四]之際:適逢 3 月 8 日為全世界婦女節,三月為美國、英國、及澳洲的婦女歷史月,僅以此文獻給被諾貝爾獎委員會遺忘的瑪麗·里昂。

注解

  • 註一:有絲分裂即是一般執行普通身體功能之體細胞(somatic cell」的分裂方法。多細胞生物體內尚含有負責傳遞遺傳信息的生殖細胞(germ cell);它們可以分裂產生精子和卵子。1883 年,比利時細胞學家 Eduoard van Beneden 發現精子和卵子只含半數染色體。為了說明性細胞中染色體的減半,德國生物學家魏斯曼(August Weismann)在 1887 年提出必須有另一種不同類型的細胞分裂;到1900年,生物學家終於了解了此一減數分裂(meiosis)的細胞分裂過程。
  • 註二:大部分是因為突變造成的,不到 1% 是遺傳的。
  • 註三:沃爾夫基金會成立於 1978 年,設立每年頒發一次的醫學、農業、化學、數學、物理、和藝術六項沃爾夫獎。 該獎項被認為是科學界第二負盛名的獎項,為諾貝爾獎的重要預測指標。但因諾貝爾獎不發給死人,因此即使諾貝爾會員現在想發給里昂(1925-2014),也是「樹欲靜而風不止,子欲養而親不待」了!
  • 註四:《杜鵑花》是1950 年代台灣孩子耳熟能詳的一首歌,其實它卻是原籍廣東省的作曲家黃友棣創作於 1941 年,中國「對日抗戰」中期,描述烽火時代兒女情長的歌曲,在四川、雲南等大後方受到青年學子的喜愛而流行一時、廣為傳唱,是一首「抗戰時代歌曲」(取自 2015-03-25民報 )。是筆者小時候非常喜歡的一首歌。

延伸閱讀

  • Nessa Carey, 「The Epigenetics Revolution」,Columbia University Press, New York, 2013。
賴昭正_96
35 篇文章 ・ 36 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

1

19
1

文字

分享

1
19
1
倒楣的愛滋病毒,一住到基因沙漠、不得翻身
miss9_96
・2020/12/21 ・2721字 ・閱讀時間約 5 分鐘 ・SR值 580 ・九年級

約有 0.5% 的患者,不需要服藥、體內病毒絕少發作,猶似永遠被冷凍著。那些人,被稱為「菁英控制者 (elite controllers) 」

上世紀末發明的抗反轉錄病毒療法 (antiretroviral therapy / ART),扭轉了人類和愛滋病毒之間的關係註1、有效地控制了病毒在人體內的肆虐。但科學界驚奇地發現,有些患者不需要吃藥,體內的病毒也幾乎不會爆發,這是怎麼回事呢?

好奇怪啊,「菁英控制者」患者,為什麼不用吃藥?

愛滋病毒將自己基因鑲入宿主細胞的 DNA 中,數年後再大肆複製、產生巨量後代。而約有 0.5% 的患者,不需要服藥、體內的病毒似乎絕少發作,猶似永遠地被冷凍在細胞中。那些天生就能壓制病毒的患者,被稱為「菁英控制者 (elite controllers) 」。

有些患者不需服藥,病毒也絕少發作,像是有魔法控制一樣。圖/giphy

《自然 (Nature) 》期刊近日發了兩篇文章 [1, 2],闡述了菁英控制者體內的病毒,很可能是住到染色體的冷門地段,無法從基因被轉錄成病毒蛋白質,變成一段永無功能的病毒基因。

哈佛–麻省理工和波士頓布萊根婦女醫院 (Brigham and Women’s Hospital) 團隊研究了「菁英控制者」和服用藥物的一般患者,她們體內的被感染細胞 DNA 。想了解菁英控制者裡的病毒基因,發生了什麼事?以及「住到」了宿主 DNA 的那些位置?

「菁英控制者」體內的病毒,沒有壞掉啊。那為什麼不發作?

團隊發現,在「菁英控制者」細胞裡,病毒基因的拷貝數較少。換言之,鑲入宿主染色體裡的病毒量較低(如下圖 1a )。此觀察合乎常理(「菁英控制者」絕少發病),然而,接下來的發現就耐人尋味了。

和一般服藥的患者相比,「菁英控制者」細胞裡的病毒基因們,完整、不帶缺陷的比例反而比較高(如下圖 1c )!顯示了「菁英控制者」細胞裡的病毒基因,具備複製、被轉錄能力;然而,這群不吃藥的「菁英控制者」鮮少發病,血中的病毒量長年維持在低點。體內的病毒基因雖然完整,但它們彷彿被冷凍了一樣,似乎從來不發病(或鮮少)(如圖 2 )。為什麼?

圖 1:(a)「菁英控制者」和一般服藥者細胞裡,病毒基因數的頻率。
(b)「菁英控制者」和一般服藥者細胞裡,病毒基因狀態的比例。圖/參考文獻2
圖2:兩名「菁英控制者」的 CD4 T細胞(藍線),和血中病毒濃度變化(紅線) 註2
箭頭為患者抽血、提供數據的時間。圖/參考文獻2

「菁英控制者」體內的病毒基因,住到不能被轉錄的沙漠裡了

進一步觀察,「菁英控制者」體內的病毒基因多樣性,發現極低的多樣性。彷彿病毒鑲入宿主 DNA 後,從此不再複製、被轉錄;僅能透過受感染 T 細胞的有絲分裂增加病毒基因,無法透過產生大量子代病毒、感染更多新細胞。因此只能以最原始的狀態保留病毒基因。

這些病毒基因鑲入宿主 DNA 後,從此不再被轉錄,只能以最原始的狀態保留病毒基因。圖/giphy

而基於上述觀察,團隊假設這些病毒基因,可能鑲入到染色體裡某些不轉錄的區域。檢視病毒基因在「菁英控制者」染色體的位置,團隊證實了她們的假設。病毒的基因集中在不轉錄的區域(作者暱稱:基因沙漠/gene deserts)(如圖3),如:

  • DNA 的非蛋白質編碼區域 (non-protein-coding regions ) 註3。DNA 序列裡,擁有龐大的區域,並不會轉錄成蛋白質。部分人類已知其功能(如:端粒區域的 DNA ),部分仍未知。
  • DNA 的著絲點 (centromere)。該區域負責在有絲分裂時,和紡錘絲 (spindle fiber) 連結的位置。此區域的 DNA 和染色體蛋白質緊密包裹,難以被轉錄
  • 鋅指蛋白質家族 (zinc-finger protein family) 註4
圖3:一名「菁英控制者」的細胞中,病毒基因在染色體裡的位置。圖/參考文獻2

微觀上,「菁英控制者」體內的病毒基因也被抑制

而「菁英控制者」裡的病毒基因,除了住到不轉錄的 DNA沙 漠外;在微觀上,也發現到被甲基化、沉默的特徵。如下圖 4,和一般服藥者相比,「菁英控制者」裡的病毒基因,大幅度被甲基化(超過 90% )的比例更高

圖 4:「菁英控制者」和一般服藥者裡,不同程度被甲基化的病毒基因的比例。圖/參考文獻2

「菁英控制者」體內的病毒住到爛套房,是因,還是果?

最後,團隊討論了「菁英控制者」體內病毒基因的差異,以及她們長期不發病的關係,是因(因為病毒基因住到爛套房,使「菁英控制者」不發病),還是果(其他因素抑制了病毒,而基因住到爛套房現象,是結果)呢?

團隊討論裡,偏向「是原因,同時也是結果」。她們認為「菁英控制者」最初被感染時,部分被感染的細胞,病毒基因可以被轉錄,因此被辨認而清除;而其他被感染的細胞,牠們體內病毒基因被蛋白質緊密包裹、不被活化、轉錄;因為沒有表現出病毒的蛋白質,反倒沒有被認出來,因此沒有被殺害。隨著時間流逝,牠們殘活下來,並帶著病毒基因持續地活下去。

圖5:作者推論「菁英控制者」體內病毒和細胞共生的過程。圖/參考文獻1

註解

  1. 嚴格來說,引發愛滋病的病毒的名稱是人類免疫缺陷病毒 (HIV) ,感染此病毒的人類稱為 HIV 帶原者,而如果此病毒在人體內肆虐,使疾病惡化後才會被稱為愛滋病,又稱後天免疫缺乏症候群 (AIDS) 。因此嚴格來說愛滋病是患者病況惡化後的名稱,而非病毒的稱呼。但在中文的使用者習慣中,似乎會將兩者混用。為符合多數中文讀者的閱讀習慣,本文暫不區分。
  2. 愛滋病病發時,CD4 T 細胞會巨幅下降,低於200 Cells / mm3時被認為發病,必須服藥;血中病毒濃度會快速上升。
  3. DNA 序列裡,擁有龐大的區域,並不會轉錄成蛋白質,如:端粒等。
  4. 為何鑲入鋅指蛋白質家族,為何會降低病毒基因被轉錄的機會?此部分我並沒有讀懂,期許有高手能解讀和分享。

參考文獻

1. Nicolas Chomont (2020) HIV enters deep sleep in people who naturally control the virus. Nature. DOI: 10.1038/d41586-020-02438-7

2. Chenyang Jiang, Xiaodong Lian, Ce Gao, Xiaoming Sun, Kevin B. Einkauf, Joshua M. Chevalier, Samantha M. Y. Chen, Stephane Hua, Ben Rhee, Kaylee Chang, Jane E. Blackmer, Matthew Osborn, Michael J. Peluso, Rebecca Hoh, Ma Somsouk, Jeffrey Milush, Lynn N. Bertagnolli, Sarah E. Sweet, Joseph A. Varriale, Peter D. Burbelo, Tae-Wook Chun, Gregory M. Laird, Erik Serrao, Alan N. Engelman, Mary Carrington, Robert F. Siliciano, Janet M. Siliciano, Steven G. Deeks, Bruce D. Walker, Mathias Lichterfeld & Xu G. Yu -Show (2020) Distinct viral reservoirs in individuals with spontaneous control of HIV-1. Nature. DOI: https://doi.org/10.1038/s41586-020-2651-8

miss9_96
170 篇文章 ・ 767 位粉絲
蔣維倫。很喜歡貓貓。曾意外地收集到台、清、交三間學校的畢業證書。泛科學作家、科學月刊作家、故事作家、udn鳴人堂作家、前國衛院衛生福利政策研究學者。 商業邀稿:miss9ch@gmail.com 文章作品:http://pansci.asia/archives/author/miss9

0

0
2

文字

分享

0
0
2
香蕉也有身分證!找到抗黃葉病品種的 DNA 特徵,保護台蕉專利權
研之有物│中央研究院_96
・2020/03/05 ・4093字 ・閱讀時間約 8 分鐘 ・SR值 545 ・八年級

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

  • 採訪編輯|張容瑱、美術編輯|林洵安

「以前只會吃香蕉,不會特別關心香蕉。」中研院農業生物科技研究中心陳荷明副研究員,過去研究主題無關香蕉,也沒有想過自己有一天會研究香蕉,但有鑑於香蕉黃葉病影響甚鉅,加入了研究的行列。她帶領團隊運用基因序列資料分析,找到鑑定台灣抗黃葉病香蕉品種的分子標誌,保障台灣香蕉的品種專利權。跟著研之有物一起來了解!

抗黃葉病品種的分子標誌

處處買得到的香蕉,好吃、便宜又很方便,剝開皮就可以吃,兩三口就吞下肚,因為果肉裡沒有籽,不需要一邊吃一邊吐籽…… 等等!你有沒有想過:香蕉沒有籽,怎麼繁衍下一代?

香蕉便宜又美味,不需要一邊吃一邊吐籽。台灣的香蕉在國際上更是高級蕉代表,被譽為香蕉王國。
圖片來源│iStock

香蕉,其實有籽……

切開香蕉,果肉中軸附近有一些黑點,有些比較明顯,有些幾不可見。這些黑點正是香蕉已退化或發育不良的種子。因為市面上的食用香蕉大多是三倍體,也就是有三套染色體的華蕉。三倍體的香蕉會開花、會結出果實,但沒辦法發育出正常的種子。

人類是二倍體,有兩套染色體,一套來自父親、一套來自母親。像香蕉這樣染色體超過兩套的,稱為「多倍體」,這在動物界很少見,在植物界卻相當普遍,像小麥是六倍體,草莓則是八倍體。由於多倍體結的果實通常比較大,而且相較於二倍體來說,有更多染色體可儲存基因,具備比較多樣的性狀,在農業上有許多應用價值。而且三倍體的香蕉種子會退化,能讓果肉吃起來柔軟滑順。

有些香蕉仍有明顯種子,它們是二倍體、四倍體,種子又黑又硬、大小如木瓜籽。三倍體的香蕉,則是二倍體和二倍體,或是二倍體和四倍體香蕉雜交而來,例如:一個二倍體親代提供一套、另一個二倍體親代提供兩套,結合成三倍。三倍體香蕉種子不能正常發育,只剩下種皮。資料來源│ 蘇柏諺 (陳荷明實驗室)圖說重製│林洵安

沒有種子,怎麼繁殖?香蕉採用「營養繁殖」,利用從塊莖冒出來的「吸芽」產生新的植株。栽種時,農民可直接挖取母株旁邊由吸芽發育長成的小香蕉樹,移植到另外的田地上,或是向蕉苗場購買利用組織培養產生出來的香蕉苗。無論用哪一種方式栽種,母株和子株的基因幾乎是一樣的,保障香蕉的優良品種。

但,保留品種的反面,即缺乏基因多樣性。一旦現存品種對於某種疾病沒有抵抗力,即將面臨全面性的滅種危機……

黃葉病:香蕉的瘟疫

香蕉大滅絕,沒有香蕉吃——這可不是危言聳聽,而是真實發生過。一百多年前中南美洲主要栽種的香蕉品種是「大米七」,雖然外皮比較厚,但是香氣濃郁,果肉超甜,據說比現在的華蕉更美味。 1900 ~ 1960 年間,香蕉黃葉病肆虐,導致大米七幾近滅絕。

香蕉黃葉病又稱「巴拿馬病」,是一種叫做「尖孢鐮刀菌古巴專化型」的真菌所引起,這種真菌能以(厚壁)孢子的型態在土壤裡存活超過三十年,經由土壤、灌溉水或附著在農具或車輛上,四處傳播、感染栽種在田裡的香蕉。罹病的香蕉會由下方老葉葉緣先黃化,然後逐漸擴大,最後整株枯萎死亡。罹病的香蕉植株如果隨意丟棄,也會傳播病菌,難以防治。

所幸,後來可抗黃葉病的華蕉取代了大米七,成為目前全世界主要栽種的品種,人們才又有香蕉可以吃,臺灣的主力品種「北蕉」就是屬於華蕉。

然而,黃葉病的威脅並沒有遠離。1967 年台灣屏東縣佳冬地區的蕉園首次出現熱帶第四型黃葉病,罪魁禍首是尖孢鐮刀菌古巴專化型的第四型生理小種。華蕉雖然可以抵抗舊型的黃葉病,卻無法抵抗這種新型黃葉病。1990 年代,新型黃葉病繼續入侵東南亞,2013 年證實已入侵南亞、中東、非洲及澳洲的香蕉園!

香蕉研究所,培育抗黃葉病品種

至此,全世界無不想辦法拯救香蕉的滅種危機,其中包括培育能抵抗新型黃葉病的香蕉新種,例如:台灣香蕉研究所培育的寶島蕉(又稱台蕉四號)、台蕉五號和七號,其中台蕉五號在台灣、寶島蕉在菲律賓皆已有商品化,除了抗病,也直接有經濟產值。一旦華蕉全面性的毀滅降臨時,這些可抗新型黃葉病的品種將會成為蕉農的救星。因為尖孢鐮刀菌很難用殺真菌劑殺死,又能潛藏在土壤中數十年,難以從田地中清除,改種抗病品種可說是解除黃葉病威脅最好的策略之一。

三倍體的華蕉,雖然會開花,但花無法受孕產⽣種⼦,因此必須以組織培養孕育新種。台灣香蕉研究所的研究員,在香蕉苗的組培階段,誘導植株突變,增加基因多樣性,再將香蕉苗種回疫區田間,挑選出存活的抗病栽培種,最終培育出可抗黃葉病的寶島蕉、台蕉五號、台蕉七號。
資料來源│蘇柏諺 (陳荷明實驗室)
圖說重製│林洵安

問題來了!未來如果將抗病品種推廣到其他國家,必須防範別的國家買了少量香蕉幼苗後,利用組織培養大量盜用。但過往作物多由植株或果實的外型做為分類,不容易分辨,爭議時也較難舉證。

為此,陳荷明研究團隊發揮基因序列資料分析的專長,找到了寶島蕉、台蕉五號和七號 DNA 上特殊的序列,一旦有人盜用,就能從這些獨特的 DNA 序列,也就是分子標誌,鑑定出該品種是否源自台灣香蕉研究所。

香蕉的身分證:具專一性的分子標誌

想要正確區隔出品種,分子標誌必須有專一性,以達到可信任的辨別度。陳荷明的研究團隊先把香蕉會表現的基因定序出來,利用電腦程式比對北蕉和抗病品種,找出哪些 DNA 序列不一樣,將有差異的序列一個個挑出來,進一步比對各個品種之間的差別,從中選出單一品種特有的分子標誌,作為鑑定品種的依據。

定序之後,比對寶島蕉與北蕉的基因序列,找出不一樣的地方做為寶島蕉的分子標誌候選者。再將候選的分子標誌和台蕉五號、台蕉七號及常見的栽培品種的序列比對,找出只有寶島蕉才有、其他品種都沒有的最佳分子標誌。研究團隊會為一個品種挑選大量分子標誌,再三確認,以確保可信度。
資料來源│蘇柏諺 (陳荷明實驗室)
圖說重製│林洵安

找到各個品種特有的分子標誌之後,陳荷明的團隊開發出兩種鑑定分子標誌的方法。

方法一:使用限制內切酶切割特定 DNA 片段。限制內切酶可與特定的 DNA 序列結合,將序列從中間切斷。它的專一性很高,如果序列有一點點不一樣,它就沒辦法結合、切斷序列。再用電泳法分離切割後的 DNA 片段,片段越小跑得越遠,如此一來,從電泳圖上條帶的數量和位置即可鑑定品種。

實際做法是:挑選一個 DNA 片段,如果受測基因序列屬於一般北蕉(不抗新型黃葉病),片段會被切斷,電泳會出現兩條線(代表被切斷後兩個較小片段)。如果這段基因序列屬於抗新型黃葉病的台蕉(如寶島蕉),片段無法被切斷,就會多出一條代表完整片段的線。這種方法費用相對便宜,而且不到三個小時就能知道結果。但不是所有找到的品種特有序列,皆能找到適當的限制內切酶來分辨。

以一般北蕉來說,用特定限制內切酶去切特定分子標誌所在的 DNA 序列,北蕉的 DNA 序列會被裁切成兩段,跑電泳後,電泳圖下方出現兩條條帶,表示較短的兩個片段。
資料來源│蘇柏諺 (陳荷明實驗室)
圖說重製│林洵安
寶島蕉該處的 DNA 序列與北蕉有差異,限制內切酶無法切斷 DNA 序列,跑電泳後,可發現電泳圖多出一條完整片段的條帶,形成三條色帶。為什麼不是一條線,而是三條線?北蕉有三套染色體,但變異通常只發生在其中一條染色體上,所以無法被裁切的序列大概只有三分之一,另外三分之二還是會被裁切。
資料來源│蘇柏諺 (陳荷明實驗室)
圖說重製│林洵安

方法二:經由聚合酶連鎖反應大量複製分子標誌的 DNA 片段,然後以「桑格定序法」(Sanger sequencing),進行專一性片段的定序。簡言之,桑格定序能直接檢測出 DNA 片段上 ATCG 四種鹼基的排列順序(一般交由提供定序服務的廠商處理),檢查序列上特定位置是否有變異,就可以確認品種。

桑格定序法費用較高,定序時間比較久,但準確性高,目前陳荷明提供香蕉研究所的品種特有分子標誌,都能以桑格定序來檢測。

舉例來說,北蕉有一段序列是 GAAT,台蕉五號為 GACT,第三個鹼基的位置,在北蕉為 A,在台蕉五號則突變為 C,以此段序列作為鑑定台蕉五號的分子標誌。把未知品種該處的 DNA 片段拿去定序,測定出來的序列如果包含 GACT,就能知道該品種為台蕉五號。
資料來源│蘇柏諺 (陳荷明實驗室)
圖說重製│林洵安

創新的檢驗方式,研發開端可謂篳路藍縷,除了要整合多種現有序列分析工具,嘗試不同參數設定,甚至得自行編寫程式!由於要比對的序列非常龐大,沒辦法用人工逐一比對,必須靠電腦運算。不是資訊背景出身的研究助理侯博瀚,自學程式設計,編寫程式比較北蕉與抗病品種間序列差異,實驗才能進行。之後,博士後江明豪和研究助理蘇柏諺針對找到的北蕉與台蕉差異序列,以多個在地及國際常見香蕉品種,進行廣泛地測試,終於驗證分子標誌的專一性。

那麼,陳荷明團隊的下一步呢?「既然找到抗病品種的特殊序列,是否能從其中找到抗黃葉病的基因呢?」事實上,確認抗病品種的分子標誌來區分香蕉品種,只是最基礎的工作。陳荷明和許多與黃葉病對抗的科學家正分頭努力,最終希望找到香蕉抗黃葉病的基因,掌握抗病的機制,幫助香蕉擊退黃葉病,讓蕉農有香蕉可種,民眾永遠有美味又方便的香蕉可享用。

延伸閱讀:

研之有物│中央研究院_96
255 篇文章 ・ 2480 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

0
0

文字

分享

0
0
0
《蛋白質殺手》:狂牛病與普利子
PanSci_96
・2013/09/27 ・1608字 ・閱讀時間約 3 分鐘 ・SR值 600 ・九年級

DJAO1A-A43317989000_4a9e2f7614fc4文/李讚虔

《蛋白質殺手-狂牛病、致死性失眠症與普利子的糾葛之謎》這本書的內容可以從它的原文書名(The Family Couldn’t Sleep- A Medical Mystery)略知一二,主要是介紹在義大利有個家族成員受到致病性的普利子[1](Prion)侵襲,而無法進入睡眠狀態(這不是普通的失眠;此病的症狀還包含汗流不止,體內腎上腺素失調,使得神經隨時處於亢奮的狀態),最後死亡的案例。

普利子這個致病原,在台灣因為「狂牛病」(正式譯名為:牛海綿狀腦病)為大眾所知。普利子其實是一種存在於生物體內的蛋白質(注意:它不是細菌,也不是病毒),在每個人身上都有,它的基因位在人類第20號染色體上。大致可分為正常型與致病型兩大類。普利子症的傳染,是因為正常的普利子被致病性的普利子改變結構後,成為致病性普利子。在同種動物間,很容易進行傳染,像是藉由人吃人而感染。但是兩種不同的物種間要傳染就比較不容易,要看者兩種動物之間普利子是否能產生反應。例如:豬跟雞吃了從狂牛病致死的肉所製成的蛋白質餅,到目前為止沒有病例出現,可能顯示這些動物體內的普利子不會被牛的普利子轉變成具有致病性的蛋白質結構。另外,普利子在神經細胞及特定的免疫細胞上表現量非常高。因此,致病型普利子所引起的疾病,多半屬於慢性神經退化疾病。但最重要的是,致病型普利子與自身體內的普利子的胺基酸序列幾乎一模一樣,只是蛋白質結構不同,所以不會引起免疫反應,也不會被免疫細胞消滅。

但是,如果要問「引發狂牛病的普利子是否會影響到正常人的普利子?」目前,沒有直接證據,再加上普利子引起的疾病,病發時間也很難預測,短則5年,時間較長的要等個十幾年才會出現病徵,要證實是因為吃了病死牛才導致的疾病,也很難有直接證據。但是,從許多英美民眾吃過了病死牛隻後,患病人數有「些微」增加的情勢來看,筆者認為,在歐美人種,普利子的遺傳形式屬於異型合子者居多,會因為吃病死牛肉而病發的機會相對較低。但在亞洲國家,普利子的遺傳形式屬於同型合子者居多,相對地若能與病死牛的普利子發生反應,發病機會相對較高,而且病情發展也會較為快速。總結來說「因為吃了病死牛肉而發病的情形或許不普遍,但一發病就會致命,所以還是不得不防」。

作者除了記錄在義大利那一個罹患致死性失眠症的家族史之外,本書另一個重頭戲就是介紹了由普利子引起的其他症狀。例如:因為特殊的吃人習俗所傳染的疾病-庫魯(Kuru)症(“Kuru”原意為顫抖的意思);以及動物間的傳染,像是:羊搔癢病、狂牛病、北美糜鹿群間的慢性消耗病。從內容不難理解到,普利子的相關疾病是起因於人為經濟活動所採用的近親交配及病態餵養方式所引發,違反自然常態,導致許多生物深受其害。書中雖然也提及了一些曾經被拿來治療普利子相關疾病的方法,但依照目前情況看來,普利子相關疾病依舊是無藥可治。

本書除了深入淺出地介紹「普利子」這個致病原,也以時間為順序,將許多關於「普利子相關疾病」的由來以及歷史發展過程、來龍去脈與人文活動之間的關聯性,寫成一本精彩的科普書籍,內容簡明易懂。如果您想了解「普利子」這個引起狂牛病恐慌的致病原,本書很值得一讀。

1:目前已知它的中文譯名有很多種:普利昂(Prion的音譯)、普恩蛋白(音譯加上本身是蛋白質的特質)、朊毒體、慢病毒(研究初期因為找不到病原,而且病原難易消滅,但卻又不像病毒在一個區域間迅速的傳染速度),所指的都是同一個物質。

延伸閱讀:

  • 莫瑞‧華德曼,瑪裘莉‧蘭姆 (2005) 吞噬大腦的食物 先覺出版社
  • Aguzzi A, Heikenwalder M, Polymenidou M. (2007) Insights into prion strains and neurotoxicity. Nature Reviews Molecular Cell Biology 8: 552-561.
  • Aguzzi A, Polymenidou M. (2004) Mammalian prion biology: one century of evolving concepts. Cell 116: 313-327.
  • Chakrabarti O, Ashok A, Hegde RS. (2009) Prion protein biosynthesis and its emerging role in neurodegeneration. Trends in Biochemical Sciences 34: 287-295
  • Caughey B, Baron GS. (2006) Prions and their partners in crime. Nature 443: 803-810
  • Ross ED, Minton A, Wickner RB. (2005) Prion domains: sequences, structures and interactions. Nature Reviews Molecular Cell Biology 7: 1039-1044
  • Soto C, Estrada L, Castilla J. (2006) Amyloids, prions and the inherent infectious nature of misfolded protein aggregates. Trends in Biochemical Sciences 31: 150-155.
文章難易度
PanSci_96
1037 篇文章 ・ 1358 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。