0

0
0

文字

分享

0
0
0

植物內建計算機

活躍星系核_96
・2013/07/10 ・2323字 ・閱讀時間約 4 分鐘 ・SR值 460 ・五年級

一直以來,談到植物,我們大多是著眼於它們的產物:種籽、花、果實、根、塊莖、木材,甚至是氧氣。如今,人們逐漸對於植物本身感興趣,例如:當環境產生變化,植物會如何因應,而這又是如何進行的。在過去的印象裡,植物總被借來比喻、形容較無生氣、平淡的樣子,以「木」字為例,植物缺乏行動能力,常被用來形容反應欠靈敏、遲鈍,例如「像塊木頭似的」、「木訥」;或是「木然」、「麻木」,形容受到刺激也無動於衷的樣子。但是植物的這種形象現今已經改變,事實上,和動物一樣,植物具有多種感覺能力,植物間能夠互相傳遞消息,特別是在出現危險需要防禦的時候。

«植物的夜間模式»

我們知道植物能夠表達,如今,我們還知道他們甚至會計算!在今年6月25日出刊的eLife 雜誌披露了這個最新發現,這份報告來自英國的研究中心 John Innes Centre,這是一個以植物學與微生物學為重點的研究機構。

如同我們從學校裡的基礎教育學到的,植物行光合作用,利用從陽光裡取得的光能,藉由捕捉、消化與吸收大氣中二氧化碳的碳,用以合成生存所需的有機物質。

然而,植物並非無時無刻都在工作,夜裡沒有陽光,便無法取得光能,但植物在夜裡並不是停止生長,而是吸收他們白日工作時儲存下的碳水化合物(例如澱粉),從中獲取養分,好供給本身新陳代謝與生長所需。

以阿拉伯芥(Arabidopsis thaliana,一種在植物學上被廣泛研究的模式植物)為例,白日時半數的碳會被消化並儲存到葉子內部的澱粉顆粒裡,並且在晚上消耗殆盡(95%),即使研究人員刻意調整了日照時間,使夜晚的到臨提前或是延後,這個消耗率95% 的數字仍維持不變。

注意到這個現象的研究人員,提出一個假設:在阿拉伯芥的內部,存在一個計算機制,它先計算出澱粉存量,然後計算距離破曉剩餘的時間,接著將第一個值除以第二個值,用以計算澱粉被消耗殆盡前應該採用的速率。

他們的想法是,植物在每一個晚上都在安全範圍內(最後剩餘5%)用最大的消耗速率消化醣類存糧。另一個可能的推測:植物在夜裡隨著時間推進,調整消耗的速率。在第一個假設裏,存糧消逝的速率是個常數,第二個假設裏,這個速率將在一條時間線上不停變動,有加速或是減速的可能。

«其實它們都知道,沒那麼好騙!»

為了證實這個假設,生物學家們做了很長一系列的實驗,以下簡單說明部分內容。首先,他們改變了夜晚的長度(植物們原本習慣12 小時白晝與12 小時夜晚的生活環境),白晝的長度分別被調整為8、12、16 小時,於是夜晚的長度變成16、12、8 小時。每一次調整,阿拉伯芥都能夠立刻因應新狀況調整自己,在夜晚結束的時候留下5% 的存糧,而且存糧的消耗速率是常數,也就是說存糧的遞減是線性的。值得注意的是,這條線的高低,取決於夜晚的長度,及白日儲下之澱粉的存量。

這個實驗結果顯示,植物除了做一次除法運算之外,還會執行一次減法運算。事實上,根據植物的內部時鐘(horloge interne),它知道兩次黎明之間應該相隔24 小時,如果夜晚不是在白晝開始的12 小時後降臨,而是突然提早於8 小時後降臨,它有能力算出夜晚新的長度是16 小時,不再是原先的12 小時,並且同時調整消耗速率好適應新的夜長。

研究人員(有點沒人性地)嘗試了另一種較為激烈的研究方式:日照時間不變,減弱光的亮度,藉光能的減少來削減能夠製造出的澱粉量。植物們雖然的確因此合成了較少量的醣類存糧,但於夜晚進行的穩定線性消耗則沒有被擾亂。

另外,他們還使用了一阿拉伯芥的突變種來進行實驗,此突變種的生理時鐘異常,它「認為」一天只有21 小時,在實驗過程中我們注意到,從黎明前三小時開始,也就是它認知的一天已經結束之後,由於天還沒亮,它仍持續用原有的速率消耗存糧,就和其他正常的植物一樣,但由於一開始它認知的資訊就是錯誤的,於是它計算失誤,在夜裡耗盡了所有的儲備糧食。

為了鑽更深的牛角尖(或者說更確定這研究結果), 研究人員繼續嘗試新的實驗方式,這一次他們在夜晚時段裡插入一段光照期,想知道黑夜的暫時消失會不會讓植物的內部時鐘重置歸零,但結果使他們失望了,即使植物在插入的光照期裡的確重新開始工作累積存糧,但它並沒有掉入陷阱,恢復夜晚狀態之後,它會計算接下來還剩多少屬於黑暗的時間,並且用更熱烈的新節奏運轉,好消化剛才多儲備下的存糧!

«到底植物是怎麼進行計算的?»

植物內部的這種運算機制是怎麼運作的,仍然有待我們去了解。毫無疑問的,這個問題無關真實機器,也不是如我們理解的那樣,是一個出於意識的計算。

研究人員推測,在兩種不同的分子間,存在一種相互的化學作用。第一類分子的濃度提供給植物作為距離天亮還有多少時間的判斷;另一種分子的濃度變化和儲糧的存量呈正比。在植物處於沒有其它能量來源的時候,這兩種分子間的相互作用控制它決定要用甚麼速度來消耗存糧。

«在動物體內也有類似的計算機»

研究人員強調,這種化學機制也能在候鳥身上看見,這個錙銖必較的精確庫存管理機制讓牠們可以平安回到繁殖地。

皇帝企鵝身上也有類似的狀況,這種不能飛的鳥類有一個瘋狂的行為:「在南極洲嚴酷的冬天繁殖下一代」,母企鵝生下蛋後,將蛋轉移到公企鵝的腳上,然後出發到海裡捕獵食物,這段時間企鵝爸爸只能在沒有進食的狀態下耐心等待。如果幾個星期後(此時企鵝爸爸已經挨餓超過一百天了),而牠的伴侶還沒有回來,將會啟動一個內在的警鈴,告訴牠身體裡儲存的能量與時間所剩不多,僅夠它挽救牠的皮膚(或者更確切地說,牠的羽毛),遺棄牠的小孩任其在冰天雪地裡死亡,然後走過幾十公里路到海裡覓食,這是一個殘酷的計算,但卻是為了生存的必要。

參考新聞與資料:

本文轉載自 Taiwan EU Watch 臉書專頁

文章難易度
活躍星系核_96
754 篇文章 ・ 93 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

1
0

文字

分享

0
1
0
長達 5 億年的空白:真核生物從何而來?「洛基」是人類起源的解答嗎?──《纏結的演化樹》
貓頭鷹出版社_96
・2022/08/06 ・2927字 ・閱讀時間約 6 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

有細胞核的真核細胞,究竟從何而來?

當渥易斯去世時,還在爭議中的最大謎團之一便是真核細胞的起源,也就是說,我們生命最深處的開端,直至今日仍然沒有定論。

當時真核細胞的起源目前還沒有一個定論,不過可以確定的是,粒線體扮演著相當關鍵的角色。圖 / Pixabay

如果像渥易斯在一九七七年宣布的那樣,存在三個生命領域,其中一個領域是真核生物,包括所有動物、植物、真菌,和所有細胞裡面含有細胞核的微生物,那麼這個最終演化出人類和我們可見的所有其他生物的譜系的基礎故事是什麼?是什麼讓真核生物如此不同?

是什麼讓牠們走上如此不同的道路,從細菌和古菌的微小和相對簡單,走向巨大而複雜的紅杉、藍鯨和白犀牛,更不用說人類和我們對地球的所有特殊貢獻,像是美國職棒、抑揚五步格和葛利果聖歌?哪些部分以及哪些過程組合在一起,形成了第一個真核細胞?

如此重大的事件大概發生在 16 億到 21 億年前之間。這個足足有 5 億年之久的窗口,反映當前科學不確定性的程度。

最關鍵的線索?粒線體與「內共生理論」

不同陣營的意見強烈分歧,都提供了一些假設。

岩石中早期微生物形式的化石證據,並沒能提供多少解答,科學家還是從基因體序列中發掘出更精確多樣的線索,並且其中一些線索仍然來自 S 核糖體 RNA,這要歸功於渥易斯當初的洞察力,以及後來四十多年間他的追隨者的心血。

但是這些數據的涵義為何則見仁見智。現在所有的專家都同意,當年內共生作用發揮了重要作用:不知何故,某個細菌被另一個細胞(宿主)捕獲並且在體內被馴化,然後成為粒線體

它們一旦存在早期真核細胞中並且數量變多後,就會提供大量能量,遠遠超出當時可用的任何能量,讓這些新細胞可以增加體積與複雜性,進而演化成多細胞生物。

粒線體的構造,成為了生物學家探索原生生物起源的重要線索。圖/Elements Evato

複雜性增加的一個顯著特徵,就是控制,特別是對遺傳材料的控制。

從生命的起源之地尋找答案——前往深海

更具體地說,這意味著將每個細胞的大部分 DNA 包裝在一個內部胞器中,也就是由膜包圍住的細胞核。

因此,真核生物起源之謎包含三個主要問題:

一,原始宿主細胞是什麼?

二,粒線體的獲取是否觸發了最關鍵的變化?或者,是由它引起的嗎?

三,細胞核是從何而來的?

更簡化的提問方式則是:一個東西跑到另一個東西裡面,形成複雜之類的東西?這些「東西」到底是什麼?

關於前兩個問題,最近的新證據來自一個意想不到的地點:大西洋底部。它來自於格陵蘭和挪威之間,一個近兩千四百多公尺深的區域所挖掘出的海洋沉積物,這地區附近有一個稱為洛基城堡的深海熱泉。

洛基是北歐神話中既狡猾又會變形的神;挪威主導團隊在發現這個熱泉後取了這個名字,因為這個礦化的噴口看起來就像一座城堡,而且所在位置難以尋找。

為了尋找證據,科學家將目光投向了一般生物無法安然生長的海底熱泉,而科學家也把這個發現洛基古菌的地點命名為「洛基城堡」(Loki’s Castle)。圖 / Youtube

他們與其他科學家一起分析這些海洋沉積物裡面所包含的 DNA,發現這代表了一個全新的古菌譜系,這些細菌的基因體與已知的任何東西都截然不同,似乎代表一個獨特的分類門(門是非常高的分類位階;比方說,所有脊椎動物都同屬於一個門)。

帶領這項基因體研究的生物學家,是任職於瑞典一所大學的年輕荷蘭人,名叫艾特瑪。他結合深處城堡和狡猾神祇的語義,將這個族群命名為洛基古菌

全新的發現!最接近真核生物的古菌:洛基古菌

艾特瑪團隊於二〇一五年公布這項發現。這項發現具有廣泛報導的價值,因為洛基古菌的基因體,似乎與我們人類譜系起源的宿主細胞非常接近。

實驗室培養出來的洛基古菌在顯微鏡底下的樣貌。圖 / biorxiv

《華盛頓郵報》的一則標題說:「新發現的『失落的環節』顯示人類如何從單細胞生物演化而來。」這些從深海軟泥中提取的古菌,真的是二十億年前那些,自身譜系在經過激烈分化後,變成現代真核生物的古菌的表親嗎?這些古菌是我們最親近的微生物親戚嗎?也許真的是。這一點引起大眾的注意。

但是,使艾特瑪的研究在早期演化專家當中引發爭議的,還有另外兩點。

首先,艾特瑪團隊提出證據,表明洛基古菌等細胞在獲得粒線體之前,就已經開始發展出複雜性。也許是重要的蛋白質、內部結構、可以包圍並吞噬細菌的能力。

若是如此,那麼偉大的粒線體捕獲事件,就是生命史上最大轉變的結果,或一連串變化其中之一的事件,而不是原因。某些人,例如馬丁,會強烈反對。

雖然科學家發現了洛基古菌,但也引起了許多爭議和討論,真核生物的演化謎團仍然沒有被完全解答。圖 / Pixabay

其次,艾特瑪團隊將真核生物的起源置於古菌中,而不是古菌旁邊。如果這個論點正確的話,便意味著我們又回到一棵兩個分支的生命樹,而兩大分支不管哪一支,都不是我們長久以來珍而重之、視為己有的。

這也就是說,我們人類就是古菌這種獨立生命形式的後代,這在一九七七年之前是無法想像的。(這種情況會產生錯綜複雜的糾葛,牽扯到在我們的譜系開始之前,細菌的基因水平轉移到我們的古菌祖先中,結果導致細菌也混入我們的基因體內,但本質仍然是:喔,我們就是它們!)

某些人,例如佩斯,會強烈反對。渥易斯也不會同意,只是他在世的時間不夠長,無緣被艾特瑪二〇一五年發表在《自然》期刊上的論文激怒。

六月的一個早晨,在多倫多的一間會議室裡,艾特瑪向一屋子全神貫注的聽眾描述這項研究,其中包括杜立德和幾十名研究人員,還有我。

當我之後與杜立德碰面時,他用一貫的自嘲式幽默說:「我有點被洗腦了。」也是後來,我坐下來與艾特瑪對談。我們談到他當時仍未發表的最新研究,這會把同樣的涵義推得更進一步:粒線體是大轉變的次要因素,人類祖先植根於古菌中,位於兩分支的生命樹上。他很清楚反對的觀點,也清楚自己將會遭遇何等激烈的爭論。

他說:「我真的有在為某些可能迎面撲來的風暴做準備。」

——本文摘自《纏結的演化樹》,2022 年 7 月,貓頭鷹,未經同意請勿轉載。

貓頭鷹出版社_96
47 篇文章 ・ 20 位粉絲
貓頭鷹是智慧的象徵。1992年創社,以出版工具書為主。經過十多年的耕耘,逐步擴及各大知識領域的開發與深耕。現在貓頭鷹是全台灣最重要的彩色圖解工具書出版社。最富口碑的書系包括「自然珍藏、文學珍藏、台灣珍藏」等圖鑑系列,不但在國內贏得許多圖書獎,市場上也深受讀者喜愛。貓頭鷹的工具書還包括單卷式百科全書,以及「大學辭典」等專業辭典。貓頭鷹還有幾個個性鮮明的小類型,包括《從空中看台灣》等高成本的視覺影像書;純文字類的「貓頭鷹書房」,是得獎連連的知性人文書系;「科幻推進實驗室」則是重新站穩台灣科幻小說市場的新系列,其中艾西莫夫的科幻小說,已經成為台灣讀者的口碑選擇。

0

2
1

文字

分享

0
2
1
就是想知道十萬個植物的為什麼!解開植物生長之謎的駭客兼翻譯——蔡宜芳專訪
鳥苷三磷酸 (PanSci Promo)_96
・2022/04/06 ・3848字 ・閱讀時間約 8 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

本文由 台灣萊雅L’Oréal Taiwan 為慶祝「台灣傑出女科學家獎」15周年而規劃,泛科學企劃執行。

2018 年「台灣傑出女科學家獎」傑出獎第十一屆傑出獎得主

  • 中研院分子生物研究所特聘研究員蔡宜芳,畢業自台灣大學植物系,在美國卡內基美隆大學(Carnegie Mellon University, CMU)取得博士,後於加州大學聖地牙哥分校(University of California, San Diego, UCSD)進行博士後研究,研究專長為植物分子生物學。主要從事細胞膜蛋白的功能研究,在硝酸鹽轉運蛋白研究領域有卓越貢獻。2021 年蔡宜芳特聘研究員榮獲美國國家科學院(National Academy of Sciences, NAS)外籍院士(international members)。

如果妳撿到蔡宜芳掉的手機,可能很難立即知道失主是誰,甚至有點摸不著頭緒:因為她手機裡超過 80% 的照片,都是植物。為何會選擇植物作為研究領域?身為中研院分子生物研究所特聘研究員,在植物分子生物學領域貢獻卓著的她卻說,這個決定其實「不太科學」,因為起心動念是自己「真的很喜歡植物」。

因為喜歡所以好奇,因為好奇而想要知道更多:許多 love story 都是這樣開始的,而研究領域的開展又何嘗不是一場超浪漫故事呢?也因為一般人都不夠認識植物,聽不懂植物的細語呢喃,更需要蔡宜芳這般熱愛植物的科學家,擔任植物駭客兼翻譯,讓不辨菽麥者也能偷聽花開的聲音。

故事,從一株異變的阿拉伯芥開始說起。

植物對於氮肥的攝取機制與調控方法正是蔡宜芳的研究主題。圖/劉志恒攝影

分子生物學突破:發現植物吸收硝酸鹽的關鍵蛋白 CHL1

上世紀 50 年代起的「綠色革命」,大幅提升了糧食生產量,餵飽了激增的地球人口,「氮肥」在其中功不可沒。它對植物開花結果至關重要,然而植物透過什麼機制攝取氮肥?如何調控才能更有效地吸收?蔡宜芳研究的正是其中的分子機制。

氮,是生物存活的重要元素;從推動光合作用的葉綠素、各種代謝反應的酵素,到與遺傳相關的核酸中,都有氮的存在。但對植物來說,要取得氮元素卻出乎意料地困難;大氣的組成中近五分之四為氮氣,但是除了藉由少數有固氮能力的微生物以外,植物只能使用在土壤中非常少量的氮源,吸收的型態有「氨鹽」與「硝酸鹽」,其中又以硝酸鹽為主。

但是,硝酸鹽是帶電離子,無法自行通過脂質構成的細胞膜,那到底植物如何利用硝酸鹽呢?為了解開這個長年來的謎題,蔡宜芳將目光投向一棵無法正常吸收硝酸鹽的阿拉伯芥突變株,並利用當時最新發展出來的分子生物技術,試圖找到出關鍵基因。蔡宜芳表示,這個無法正常吸收硝酸鹽的突變株,在她約 10 歲時就被荷蘭研究者發現,這麼多年來在傳統技術底下被研究得相當透徹;卻直到她開始進行博士後研究,伴隨植物分子生物相關技術發展,才有方法找到關鍵的轉運蛋白。

這樣的研究自然充滿了挑戰,因為新技術還不穩固,就連實驗室老闆都曾勸她放棄。不願投降的她,決定一邊持續研究氮代謝,一邊到其他研究室學細胞膜研究的新技術,1994 年,蔡宜芳從美國回到台灣,持續研究進一步發現, 位在植物細胞膜上的 CHL1 硝酸鹽轉運蛋白,除了作為硝酸鹽的「搬運工」,還有其他異想不到的功能。在你我的印象當中,植物是被動的吸收養分:但其實當土壤中的的硝酸鹽變化時,植物會主動改變硝酸鹽的運作模式,這就是蔡宜芳團隊在 2003 年的重大發現。運作模式的改變正來自於 CHL1 蛋白的磷酸化轉換,因此 CHL1 蛋白也具備作為「傳令兵」的功能。透過 CHL1,植物便能感應周圍的硝酸鹽濃度,幫助植物調控基因表現,以便能更有效率地利用硝酸鹽。

掌握硝酸鹽吸收的調控,在農業領域十分有發展潛力,蔡宜芳的研究進一步轉向,對接實際應用,期盼為農業的永續未來提供新解方。除了 CHL1硝酸鹽轉運蛋白的機制外,她也針對阿拉伯芥如何吸收與輸送硝酸鹽到不同組織的分子機制展開探索。近期更研究探討是否能以育種或基因調控的方式,增進植物吸收硝酸鹽的效率。由於硝酸鹽非常容易在環境中流失,因此多數的氮肥施放到田間後,植物也往往吸收不了;如果可以改善植物的吸收效率,就能減少施肥的浪費,連帶減少製造氮肥耗用的能源,也讓農作物長得更好。

好消息是,透過基因調控,蔡宜芳團隊已經在阿拉伯芥、菸草及水稻上實驗成功,並取得相關專利,期待未來將授權給生物科技公司進行下一步。

培養科學研究必備品:好奇心、科學思辯與毅力

蔡宜芳從事研究的初衷是因為對植物的喜愛與好奇心,對她來說和植物有關的十萬個為什麼,猶如始終永遠拼不完的大型拼圖,從小時候就在蔡宜芳的心中佔據了重要位子,於是她「追根究柢」(如字面上意義),想靠自己解開植物現象背後的秘密。

人們對自己不了解又無法回嘴的植物充滿了誤解,往往覺得植物跟動物一點也不同,然而在蔡宜芳看來絕非如此,她表示,已經有研究發現,當我們這些動物咬下蔬菜的瞬間,植物裡頭負責傳導的的鈣離子就會產生變化。「大家都覺得植物不會動不會叫,但其實植物是有感知的。」蔡宜芳表示,植物其實都知道,只是用我們不懂的方式在表達,要靠研究才能一句一句地破解植物的密語。

圖/劉志恒攝影

當然研究也不能自己埋頭苦幹,交流非常重要。蔡宜芳擔任植物學期刊 《Plant Physiology》 編輯多年,但回憶起剛建立獨立實驗室的階段,面對那麼多來自審稿人的刁鑽問題,當時的自己也難免生氣。一旦轉換身份成為審稿人,被審的經驗也讓她更明白審查論文時該注意的重點,一來一往的思辨與答辯,反而讓她覺得很好玩。

「我自己有個突破,是因為被質疑的時候很生氣,可是不能光氣,也要想辦法解決。就在生氣的時候,想出來的方法,最後變成我們實驗室很新的工具。」而她也認為自己在替《Nature》等重要期刊審稿時,認真地給出言之有物的評論,幫她累積了領域內的信譽,才讓期刊編輯的位置找到了她。

蔡宜芳曾擔任植物學期刊《Plant Physiology》編輯。圖/《Plant Physiology》網頁截圖

像投稿審稿這般來回思辨的訓練,對科學家的養成非常重要,然而蔡宜芳觀察,科學思辨在台灣教育裡比較缺乏。她舉例,在美國課堂上,老師會要學生先讀一篇論文,接下來整堂課則要學生批評論文有什麼問題。「我們在台灣被訓練的人,都會把 paper 當作傳世經書在讀,讀懂它就覺得很開心了——要去批評它,我們真的沒有習慣。」蔡宜芳坦言那過程對她來說曾經非常痛苦,但會痛就代表該變。

她就此改變了思路:面對知識,蔡宜芳要求自己不僅要讀懂,還要有餘力批評它,說出對、錯在哪裡。蔡宜芳認為,科學就是得永遠抱持著質疑的態度,在不疑處有疑,才能找到真正的答案。「在我自己的實驗室裡面,我也一直在逼學生要去思考」。

蔡宜芳在實驗室中,會不斷要求學生思考、批判。圖/劉志恒攝影

而除了好奇心及思辨能力之外,蔡宜芳認為「毅力」也是科學家在科學界持續前進的重要特質。經驗告訴她,在科學研究中遇見失敗比遇見成功的次數多太多了,革命十次稀鬆平常,如何二十次甚至三十次之後還能繼續往前走?那絕對需要強大的毅力來抗壓才行。

說到壓力,身為科學界的女性,蔡宜芳認為,自己的成長環境中,性別造成的影響並不大,以她所在的中研院分生所為例,研究人員性別比例很平均。但若深入細究,「無意識偏見」(unconscious bias)仍難以避免。她以自己帶過的學生為例,生科領域在大學時期男女比例大約是各半,但隨著碩士、博士一路往上,男性的比例逐漸多於女性。因為許多女學生在面臨職涯選擇的時候,往往會被迫以家庭或是男性伴侶的事業為優先,這種狀況回過頭來又讓部分老師覺得「教育女生有時會是浪費」,成為惡性循環。

榮獲過許多科學成就獎項的她,時常是唯一獲獎的女性,而就在接受採訪不久前,她又獲頒一個獎項,直到頒獎當天的照片寄回到所上,「一片黑西裝裡面,就我穿黃色!」她笑道。所上第五屆台灣女科學家傑出獎得主鍾邦柱老師看到照片時,也對她苦笑說:「哎,革命尚未成功,同志仍需努力。」

「先不要去想會有這個東西,做該做的事情。真正不平的時候,不要安靜不講。」儘管環境仍待改變,蔡宜芳建議女科學人自己先跨出一步,就如同她自己一路走來的態度。

一株莫名異變的阿拉伯芥,遇上一位不放棄的科學家兼植物迷,造就了改變農業、甚至是整體生態未來的契機。如果妳的手機也跟蔡宜芳一樣,裝的幾乎全是自己感興趣、想研究的東西的照片,請別質疑自己是不是怪怪的,或許妳也將靠著研究,改變世界,這是我能想到最浪漫的事了。

台灣傑出女科學家獎邁入第 15 年,台灣萊雅鼓勵女性追求科學夢想,讓科學領域能兩性均衡參與和貢獻。想成為科學家嗎?妳絕對可以!傑出學姊們在這裡跟妳說:YES!:https://towis.loreal.com.tw/Video.php

本文由 台灣萊雅L’Oréal Taiwan 為慶祝「台灣傑出女科學家獎」15周年而規劃,泛科學企劃執行。

鳥苷三磷酸 (PanSci Promo)_96
147 篇文章 ・ 268 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

5
1

文字

分享

1
5
1
花粉揭秘:黑死病災情,歐洲各地很不一樣
寒波_96
・2022/02/21 ・4340字 ・閱讀時間約 9 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

14 世紀中葉,歐洲各地陸續爆發鼠疫。瘟疫在當時的歐洲並不稀罕,可是這回實在嚴重,大量人口慘遭消滅,後世稱之為「黑死病」。疫情主要發生在公元 1347 到 1352 年,有些學者估計令歐洲在短期內減少 30 到 50% 人口,或許高達 5000 萬人之多。

一項新上市的研究根據花粉分析,卻得到結論:黑死病對歐洲各地的影響差異不小,有些區域確實大受打擊,但是有些地區輕微得多。我們該怎麼解讀這些研究呢?

受到義大利黑死病爆發為背景的《十日談》啟發的畫作。圖/wiki 公有領域

瘟疫殺死歐洲一半人!真的嗎?

黑死病的病原體是鼠疫桿菌(Yersinia pestis),可藉由老鼠和跳蚤輔助傳播。近年來由遺骸取得古代 DNA 的研究大行其道,令我們得知超過五千年前,便有人感染鼠疫桿菌。鼠疫桿菌能搭乘跳蚤便車,關鍵在於 ymtYersinia murine toxin)基因,晚於四千年前的鼠疫桿菌皆已經具備。

歷史上三次大爆發:6世紀的查士丁尼瘟疫,14 世紀的黑死病,以及 19 世紀末的全球流行,人們面對的都是傳染力升級的細菌版本;除此之外,還有多次規模較小的流行。 遺傳變化有限的病原體,在不同時空的疫情差異很大。

歷次鼠疫桿菌導致的疫情中,黑死病的衝擊最大,有些研究甚至認為它消滅當時歐洲 50% 人口。這類死亡率的評估,主要來自歷史資料,如文書、稅務等紀錄;然而,這類資訊來源未必準確,有時文字會誇大不實,和實際數字有所差異。

還有一點侷限在,歷史資料主要紀錄人口聚居的城鎮,可是黑死病那個時候,歐洲超過 75% 人住在城市之外。人擠人的城市碰上鼠疫這類傳染病,通常受害較大,所以根據城市評估而得的結果,也許會高估瘟疫的危害。

另一方面,不同地區的受災程度很可能不同,就像正在進行的 COVID-19(武漢肺炎、新冠肺炎)疫情,遺傳上相同的病毒重擊秘魯,對澳洲的傷害卻相對有限。而黑死病也是如此,既有資料已經足以看出,相比於義大利深受打擊,波蘭更加輕微。幾處地區的狀況,不能擴大代表整個歐洲。

概念:在黑死病死亡率低的地區,農耕不太受到影響;死亡率高的地區則影響較大,產業轉為畜牧,甚至是恢復野生狀態;這些植物變化會反映在沉積物中的花粉。圖/參考資料 3

花粉大數據

要評估黑死病這類歷史大事件的影響,沒有一種理想辦法,一定要從不同方面尋找證據切入、互補,而環境變化可以作為切入點。突然爆發的疾病,導致大量人口死亡之後,也將造成經濟與社會的動盪,可想而知,自然環境也會受到牽連。

歐洲各地花粉的取樣地點。圖/參考資料 3

新發表的研究選擇以花粉作為指標,探討黑死病的影響,還創造一個看似 fancy 的新名詞描述:「大數據古生態學(big data palaeoecology,簡稱 BDP)」,反正大數據就是那樣。

概念是,受到黑死病負面影響愈嚴重的地區,人類活動會減少愈多,可以由花粉變化看出。具體樣本來自歐洲各地 261 處遺址,一共 1634 個沉積層樣本;年代介於公元 1250 到 1450 年,大致涵蓋黑死病發生之前到之後的各一百年,也就是前後約 4 代人。短時間內大量人口死亡,影響可能延續數代。

不同植物會生成不同花粉,有些花粉落到湖泊等環境,變成湖底的沉積物,有機會保存下來,成為歷史切片的見證。而人類活動影響環境,使得植物生態有別,便會留下不同的花粉組合。

例如農耕發達的地區,會留下大量農作物的花粉,畜牧業普及區則會是另一種風貌;若是人口減少令農牧活動降低,野生植物的花粉便會增加,不同階段又會生長不同野生植物。

地段,地段,地段!

新的分析思維看似很有道理,但是能相信嗎?研究者首先分析資訊最豐富的兩處地點:瑞典、波蘭。許多證據表示黑死病過去後,瑞典慘遭打擊,波蘭反而明顯成長;倘若花粉呈現的狀況一致,便說明這套分析是可靠的。結果花粉分析順利通過考驗。

波蘭和瑞典的比較,瑞典在黑死病之後明顯衰退,波蘭則否。圖/參考資料 3

花粉分析擴大到歐洲全境,最肯定的結論是:各地差異不小。黑死病前後,一些地區差異有限,有些甚至逆風高飛;農牧活動減少最多的地區位於斯堪地那維亞(北歐)、法國、德國西部、希臘、義大利中部。

有個假設是:瘟疫使人口減少以後,產業可能由勞力密集的農耕,轉向較不需要人力的畜牧。但是這回研究指出,所有農耕下降的地區, 畜牧也跟著減少;唯一例外是德國西南部,畜牧反而增長。

考察文獻得知,義大利、法國深受黑死病危害,這也反映在當地的花粉中,證實歷史紀錄的準確。農業開墾往往是森林的敵人,黑死病過後,義大利的森林甚至重新蓬勃復育;慘烈至此,難怪有薄伽丘《十日談》的誕生。

然而不少地區的農牧活動,黑死病前後的差異有限,或是顯著成長,像是伊比利、愛爾蘭,以及中歐、東歐多數地點。這些分析指出黑死病對歐洲各地的影響有別,整體死亡率大概沒有 50% 那麼誇張。

歐洲各地在黑死病前後的變化:穀物、畜牧、植被演替。圖/參考資料 3

其實還是不清楚黑死病的死亡率

該如何看待上述論點呢?花粉分析有優點,也有缺點。一如文字、稅務等切入方向,花粉也有自己方法學上的侷限。它能告訴我們歐洲各地的死亡率不均值,卻無法真正評估死亡率高低。

根據花粉組成在不同年代的相對變化,可以推論當地農牧活動的改變,卻不直接等同於人口的死亡程度。

一個地區在黑死病後一段時間,農牧活動明顯增長,不見得意謂瘟疫時沒有死很多人,也可能是恢復速度很快,或是還有黑死病以外的其他因素。

也要注意這兒的評估是相對的,某地相對的受災比較輕微,不等於災情不嚴重。一個地區在幾十年的時段內,如果損失 30% 人口當然是大災難,但是就算死亡「只有」5%,也不可能馬照跑,舞照跳。

歐洲各地在黑死病前後的變化統整,偏紅色為衰退,偏綠色為成長。圖中名號是當時的政權疆域。圖/參考資料 3

評估大瘟疫更廣泛的社會影響

儘管無法準確判斷死亡率,花粉能評估傳染病對社會更廣泛的影響。黑死病這類大瘟疫,不是只有鼠疫桿菌殺死多少人而已,還會牽連更廣泛的社會運作,累積間接傷害。

即使是一個較小的地理範圍,受災程度也可能有內部差異,如城鎮中心及其周圍的郊區、鄉村。沉積物中的花粉,是一個地區一段時間內的集合紀錄,似乎較能避免城鄉差距的影響。

有學者認為,黑死病過後一個地區之所以沒有衰退,也可能是外地人口填補所致,故質疑新研究的論點。就算真是如此,新遷入的人口也是來自歐洲其他地方,同樣支持新論點的大方向:歐洲各地受災程度有異,並非每處一樣嚴重。何況過往公認疫情嚴重的地區,新分析中也看得出來。

有趣的是,一項 2019 年發表的研究在檢視多重證據後,也認為查士丁尼瘟疫的災情言過其實,不如過往認知的那麼嚴重。提醒各位千萬不能忽略「沒有那麼嚴重,跟不嚴重是兩回事」。

花粉無法回答的問題是:黑死病為什麼在各地影響有別?有人推測是鼠疫桿菌的品系不同,在西歐的殺傷力較強,東歐較弱。但是此一論點缺乏遺傳學、病理學的證據。

2019 年底至今的全球瘟疫清楚告訴我們,遺傳上一模一樣的品系,在不同國家的傳播與傷害天差地別,涉及許多複雜的因素。黑死病比當下冠狀病毒造成的疫情嚴重很多,基本道理大概還是一樣的。

延伸閱讀

參考資料

  1. Susat, J., Lübke, H., Immel, A., Brinker, U., Macāne, A., Meadows, J., … & Krause-Kyora, B. (2021). A 5,000-year-old hunter-gatherer already plagued by Yersinia pestis. Cell Reports, 35(13), 109278.
  2. Spyrou, M. A., Tukhbatova, R. I., Wang, C. C., Valtueña, A. A., Lankapalli, A. K., Kondrashin, V. V., … & Krause, J. (2018). Analysis of 3800-year-old Yersinia pestis genomes suggests Bronze Age origin for bubonic plague. Nature Communications, 9(1), 1-10.
  3. Izdebski, A., Guzowski, P., Poniat, R., Masci, L., Palli, J., Vignola, C., … & Masi, A. (2022). Palaeoecological data indicates land-use changes across Europe linked to spatial heterogeneity in mortality during the Black Death pandemic. Nature Ecology & Evolution, 1-10.
  4. Black death mortality not as widespread as believed
  5. Did the ‘Black Death’ Really Kill Half of Europe? New Research Says No
  6. Mordechai, L., Eisenberg, M., Newfield, T. P., Izdebski, A., Kay, J. E., & Poinar, H. (2019). The Justinianic Plague: an inconsequential pandemic?. Proceedings of the National Academy of Sciences, 116(51), 25546-25554.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

所有討論 1
寒波_96
172 篇文章 ・ 609 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。