0

0
0

文字

分享

0
0
0

幾個世界之最…

timd_huang
・2013/06/13 ・6094字 ・閱讀時間約 12 分鐘 ・SR值 529 ・七年級

沒想到,我們一篇《自然》的論文(2013年4月11日,封面論文),竟然創了幾個記錄,我把它們記錄下來,不是要 ㄏㄧㄠˇㄅㄞ˙,而只是自己做個人記錄,人老不留白。

世界之最古老的恐龍胚胎

2003 年無意間在「百戰天龍」活動到雲南祿豐恐龍營撿到的一塊石頭,竟然引起了如此的「風波」,先是透過微型電腦斷層掃描,得知是很早期恐龍胚胎,後經兩度同位素定年,得到 1.95 億年的數字,證實為世界最古老的恐龍胚胎,比南非的大椎龍 (Massospondylus) 還早了 500 萬年;2010 上半年找到了這些恐龍胚胎出土的層位,展開三年的深入探討,終於建立了「恐龍胚胎學」;這些小小的恐龍胚胎,正是世界最古老的恐龍胚胎。

世界之最古老的陸相脊椎動物胚胎

恐龍是中生代最具有代表性的陸相(活在陸地上面)脊椎動物,但是,那個時代,在陸地上生活的,除了恐龍之外,還有其它的脊椎動物,如三列齒獸和早期哺乳動物,也都是陸相脊椎動物,所以,我這個無意間的發現,除了是世界最古老的恐龍胚胎之外,同時也是所知世界最古老陸相脊椎動物胚胎,一個發現,同時佔有兩項記錄,撿一送一,卯到啦!按:我並沒有說是最古老的脊椎動物胚胎,因為如魚類,也是脊椎動物,但牠們是海相的,所以「陸相」這兩個字不可漏失。

世界之最古老的恐龍胚胎骨床/孵育場

在 2010 年 3 月我再度探訪該地,除了恐龍胚胎骨頭和找到其層位之外,同時也在那個地方撿拾到成龍的爪子和肋骨終端,導致我認為此處是恐龍孵育場;不會飛的恐龍 (Non Avian Dinosaur) 和會飛的恐龍 (Avian Dinosaur,亦即鳥類) 有共同的特性,到了繁殖期間,大家會回到相同的地點交配、下蛋、孵蛋、育幼,因此,我同時找到恐龍胚胎骨頭和成龍骨頭,不得不讓我有此「孵育場 (Hatching Ground)」的推論;不過,從我們所做的埋藏學來說,這個地點,出土了至少三個不同孵化期的胚胎骨頭,應該是來自三窩,而且有很小水流稍微移動胚胎骨頭的跡象,所以稱為胚胎「骨床 (Bonebed)」,也說得過去;到底這邊快兩億年前的真相如何,還有待我們把那個小山包打開,才能見真章。

-----廣告,請繼續往下閱讀-----

目前的推論和判斷是:這個恐龍孵育場,鄰近水邊,可能是湖邊或河邊,中生代只有乾季和雨季兩個季節,在某次雨季,讓水位升高,氾濫出岸淹沒了這個孵育地區,靠水邊恐龍孵育場內正在孵化中的恐龍蛋胚胎,都被淹死肌肉腐爛蛋殼破碎,淹沒的水有些流動,造成某些較大骨頭排列成相同的方向(骨床特徵),可是水的移動很緩慢力道很小,所以像直徑不到一毫米 (mm) 的肋骨,還都保存下來,如果水流力量稍大一些,只有較大骨頭,如股骨、肱骨、脊椎骨等才可能會被保存下來,纖細的骨頭,如肋骨、上下頜骨等,會被沖刷破壞掉不會被保存下來,而我們兩種證據都有,既有相同方向排列的大骨頭樣本,也找到好些小肋骨、帶著尚未長出來牙齒的上頜骨,所以先做如此存疑的推論。

至於,到底這是單次,或是多次的淹水現象,從我們現有的證據來說,還無法完全定論;我們手頭上有的材料,有廿多根胚胎大腿骨,明顯地可區分為三個不同孵化階段,從小(孵化早期)到中到大(孵化晚期),它們應該是來自三個不同的窩,這一點可以肯定;可是,到底是不是同一次事件呢?在沒有更大規模深入探討之前,這就說不准了;目前我們只開挖了估計總共有 1,000 平方米中的 1 平方米面積而已,誰知道還有什麼驚喜等著我們?

有一種可能,說這是同一毀滅事件,有些祿豐龍爸爸媽媽迫不及待先來到此處做牠們喜歡做的事,有些來得晚一點,還有一些吊車尾,姍姍來遲,好不容易找到配對的對象(台語說:(女生)撿啊撿,撿到個賣龍眼的),所以在此孵育場總共有三批,有些恐龍蛋比較早開始孵化,有些晚了一些,導致三種不同孵化階段的大腿骨化石。

可是還有另外一種可能,此處前後總共最多有三次的淹水滅絕事件:在此情境中,得假設這些恐龍爸爸媽媽,大家都一起行動,成群性致高昂 (horny) 的成龍,來到此地同時上演活春宮,下了蛋也孵化到某個階段,沒預料到水漲掩埋毀了這次努力的結晶(造成了某孵化階段的化石);俗語說,不孝有三,無後為大,辛苦做愛的結晶被老天爺毀了沒了,只好等水退陸面乾了之後,繼續回到此地努力,不能絕後啊!如此的反覆,總共三次;當然,這種情況,並不一定是在相同的季節,有可能是一年兩年後、也可能是幾十年或幾百年後重來的;恐龍孵育行為,已經證實有地點忠實性 (Site Fidelity),也就說,牠們會回到相同的地點來做這件事情,其它動物,如鮭魚和某些鳥類,也有類似的行為,牠們會回到出生地點完成牠們傳宗接代的生命任務。

-----廣告,請繼續往下閱讀-----

世界之最古老的陸相脊椎動物胚胎骨床/孵育場

前面說過,恐龍也只是陸相脊椎動物之一,所以我們推論的世界最古老胚胎骨床/孵育場,也得把這一記錄算進去,在還沒有發現其它非恐龍陸相脊椎動物胚胎骨床/孵育場證據之前,這是完全是合情合理合法的「灌水」自我榮耀。

世界之最古老恐龍蛋殼

從上述的嘮叨描述可能的埋藏學(Taphonomy,又戲稱為「死相學」),大致可以知道,楚雄州祿豐大洼恐龍山這個胚胎點的祿豐龍蛋和胚胎,有受到相對於其它出土完整還保存在蛋殼裡面的胚胎,稍微比較大的外力(水流)影響,因此,希望能找到還保存完整蛋殼與胚胎的機會,實在不大;到如今,除了賴茲院士研究的南非大椎龍胚胎恐龍蛋之外,全世界上還沒有找到其它大約相同時期(早侏羅紀)的恐龍蛋,也就是說,早侏羅紀恐龍蛋長得什麼樣子,真的沒人知道,特別是祿豐大洼這個恐龍胚胎點,都是一堆沖散的孤魂野鬼死骨頭,期望能找到此處的恐龍蛋殼,希望渺茫;不過,人生有時候也很有趣,就如我 2003 年 1 月無意間撿起了一塊爛石頭,揭開了這個世界最古老的恐龍胚胎大戲;在我們研究過程中,賴茲院士寄了一些我們採集到的樣本給德國波昂大學的孔恩 (Koen) 博士,要他做脊椎骨的組織學切片,寄給他的樣本中,有一塊很不起眼的圍岩團塊,孔恩也不知吃錯了什麼藥無什麼聊,竟然把這塊樣本也切開了,放在偏光顯微鏡下去看,怪怪,竟然看到類似於恐龍蛋殼的東西,幾經反覆查證,終於確定這真的是此胚胎點這些孵化中恐龍蛋殼,賓果!證明這些小骨頭是恐龍胚胎骨頭,又得到一個絕對強而有力的證據,孔恩,你幹得好啊!

世界之最古老孵化中恐龍胚胎在蛋內運動證據

懷孕中的媽媽都會經歷到胎兒在肚子裡面、其實是「無時得靜」,會動來動去,這是為人(父)母者體會新生命的奧祕驚喜;從生理學來說,胎兒的運動,攸關他/她的骨頭和肌肉成長,胎兒浮在羊水裡面,比較不受地心引力的影響,肌肉的發展拉扯運動,也因而會影響到骨頭的發育,造成骨頭兩邊厚度的不對稱性,這種情況,到了小貝比出生之後開始爬走,受到地心引力作用,終而變成(如大腿骨)骨頭(橫切面)兩邊厚度對稱性;鳥類和其它哺乳類胚胎,也都可觀察到這種現象。

可是,恐龍胚胎,特別是如此早期的恐龍胚胎,是否也有相同的證據呢?證明恐龍在孵化階段的胚胎骨頭發育,受到肌肉成長的拉扯運動,導致(大腿骨橫切面)骨頭發育的不對稱性?從我們研究不同階段的祿豐龍胚胎,我們找到了世界最古老孵化中恐龍胚胎在蛋內運動的證據!

-----廣告,請繼續往下閱讀-----

世界之最古老的有機殘留物

在我們研究中,最令我們老中次團隊興奮,也是所發表論文兩行題目中獨佔一整行的(第一行:Embryology of Early Jurassic dinosaur from China 「中國早侏羅紀恐龍胚胎學」,第二行:with evidence of preserved organic remains 「帶著保存的有機殘留物證據」) ,就是我們從這些將近兩億年的胚胎骨頭中,發現了有機殘留物,這是我們台灣團隊很值得 ㄏㄧㄠˇㄅㄞ˙ 的特點;當初,我知道我這個無意間的發現是如此重量級之後,立即考慮到一個很現實的問題,賴茲院士與他所組成的國際團隊成員,都是國際上響噹噹的古生物恐龍學者,我自己學化學的,根本是門外漢,台灣也找不到能搬上檯面的古生物學者,我們憑什麼和人家一起玩下去?在整個計畫中,完全沒有我們說話的餘地,想要插嘴都沒有機會,那怎麼辦?後來我想到了一個方向,可以讓台灣團隊從不同領域好好發揮一下,這就是我提出「看進骨頭裡面」的思維,玩傳統的古生物學,我們連幼稚園都沒入門,甭想了,可是,若從「看見骨頭裡面」來下手,正是我們可以打開一片天地的機會,台灣有各領域的專家學者一大堆,只要能說服他們放棄「隔行如隔山」的自我設限觀念,我們台灣學者專家可以玩出名堂來!在諸多領域,我們有不輸人洋人的人才群,也有些世界先進的科研設備,一點也不怕,也不會輸給其它人家;看骨頭外面的部份,我們有國際團隊,一點兒也不輸別人,所以台灣團隊從這個角度來切入,把恐龍胚胎骨頭裡面的成份組織等研究顯示出來,正好與「看到骨頭外面」的傳統古生物學,相輔相成,兩者相益得彰,也擴展了古生物學的視野範疇;其它想競爭的國際競爭團隊,肯定沒法做到這個地步,我們已經把古生物學擴展提升到另一個超高的水準,別人只能忘洋興嘆。

果真皇天不負苦心人,在十年 (2003-2013) 寒窗之後,我們團隊這幾年來努力在這些快兩億年的恐龍胚胎骨頭內,透過國家同步輻射研究中心 BL-14A 光束站的傅立葉轉換紅外線光譜 (Fourier Transformation Infrared Spectroscopy) 分析,特別感謝該工作站主任李耀昌博士的協助,我們找到了保存殘留有機物的證據,也寫入我們論文標題的第二行;這一點,除了證實我幾十年來切割化石聞到特殊味道的懷疑之外,也證實了,只要用對的方法、有足夠靈敏度的科研儀器設備,很多非常古老的化石,都可以找到有機殘留物。

如此一來,雖然回答了我個人幾十年的困惑問題,可是也立即引發更多幾個問題,如:一般的認知,化石都是古代的生物轉換成為(無機)的石頭了,怎麼有可能還保存著有機殘留物?接著,這些被保存的有機殘留物,到底是什麼?原本生物體內的有機物,到底裂解了多少?有沒有可能找到這些古生物的 DNA(〈侏羅記公園〉科幻電影)?這些複雜有機化合物之間,有什麼交互的作用;?最後,一個最重要的問題,也是可能屬於「抽地毯」(最根本)式的問題:從古代生物到變成化石的過程與機制如何?或說,這些有機物是如何被保存下來的?

能夠回答因我們找到世界最古老有機殘留物而引發以上這些相關問題,除了可修改過去石化過程的含糊認知之外,還可能大幅改寫人們對於古生物的認知--這又是一個屬於原子彈級的大好科研課題。

-----廣告,請繼續往下閱讀-----

世界之最先創的恐龍胚胎學

 

先看一下上面這兩張圖片,這是賴茲院士在 2005 年研究發表的南非大椎龍胚胎,非常完整漂亮,不是嗎?沒錯,多少古生物學者,窮一輩子之力,不就是渴望能有機會發現和研究如此罕見又珍貴的樣本嗎?人生的福氣啦!

可是,再仔細看一看,好好想一想,「福氣 (Blessing)」與「詛咒 (Curse)」,有時是一體兩面同時存在著;我說這話,絕對沒有對賴茲院士的任何丁點不敬,而是理智地來分析討論;試想,一、如此完整漂亮的樣本,有誰會讓你我取下任何一根骨頭來切割研磨深入研究?恐怕連用手碰一下都不允許,給你看外表、或甚至只看照片,已經是很大的恩惠了,不可能有機會讓研究人員想幹什麼就幹什麼,不是嗎?二、這麼漂亮的恐龍胚胎化石,是不是只是在整個恐龍蛋孵化過程中被凝結的某短暫剎那?此胚胎在漫長孵育過程中的此剎那之前和在此之後,完全沒有,它僅有這個短暫片段時刻的紀錄,沒有連續的資料,這也就是說,如此的樣本,同時是「福氣」也是「詛咒」。

相對來說,我在祿豐所發現、比大椎龍稍微早了 500 萬年的祿豐龍胚胎,除了我最早在 2003 年初找到的那個樣本之外,其餘的都是鬆散開 (Disarticulated) 的孤魂野鬼零星骨頭,完全沒有整體胚胎的型態保存下來,從胚胎完整性的角度來說,這是個「詛咒」,無法和人家在完整度方面來做任何比較;然而,也因為它們是零散的骨頭,我們卻因「禍」得福,把「詛咒」變成了「福氣」;怎麼說?

就是因為我們找到了很多鬆散開的胚胎骨頭,我們可以進行對骨頭的切割研磨,做各種具有破壞性的實驗,而讓我們能好好地「看進骨頭內」;就以上述的有機殘留物來說,如果沒有把那根大腿骨切割研磨到大約 150µm 的厚度薄片,大約一張影印紙厚度,根本無法進行紅外線掃描,我們也就無法說這些胚胎骨頭化石內還保存著大約二億年前的有機殘留物了:這不是因「禍」得福嗎?完整的大椎龍胚胎,有可能如此讓你我做嗎?不可能啦!

-----廣告,請繼續往下閱讀-----

再者,從我們的初期田野考察所採集到的樣本,有超過 20 根大腿骨,其中 14 根是右腿,也就是說,至少有 14 個個體;這些大腿骨粗略以大小來分,大致上有三種不同的大小,代表著三個不同的孵化階段,很有可能來自三個不同的窩;相對於完整大椎龍胚胎化石的死亡剎那,我們有整個孵化期間更多的材料,讓我們探討胚胎孵化比較完整的發育過程;在我們發表的論文中,右邊這張圖裡面的那條直線,是整篇文章中最美麗的線條。

總加起來說,藉由以上所說的這一大堆,我們我們團隊在賴茲院士睿智的領導之下,把原本是「詛咒」(「禍」)的發現,很漂亮地轉換成「福氣」,我們因「禍」得福,才能在全球首創「恐龍胚胎學」,這是別人沒法做到的,更該好好珍惜,並且在各方的協力之下,特加發揚光大,更上層樓。

75年來,雲南楚雄祿豐龍首次榮登 Nature,而且是封面論文

就在我們台灣三位作者和賴茲院士參加第二屆「雲台會」的期間,雲南省考古所的吉學平博士指出:中國恐龍學在 1938 年從大洼開啟了,可是,這麼漫長的 75 (1938-2013) 年以來,從來沒有雲南恐龍登上 Nature 而且是封面論文,即便非封面的 Nature 論文也沒有;哇!這真是一個很有趣的觀察;依照他的說法,我們這篇 Nature 封面論文,正式而且很顯要地把雲南的恐龍標示在世界恐龍地圖上;對於十年寒窗的我來說,真是個莫大鼓勵,對於團隊其他的成員而言,也是臉上很大的光彩。

稍微做一些文獻搜索,發現到現在為止,其實以前比較有學術份量的學術期刊,曾經有兩度刊登雲南的脊椎動物:一是 2001 年中科院古脊椎與古人類研究所徐星在〈古脊椎動物期刊(Journal of Vertebrate Paleontology, 21(3): 477–483)〉發表鐮刀龍超科的出口峨山龍 (Eshanosaurus deguchiianus);不過,早在 1971 年,趙喜進就在中國雲南省峨山彝族自治縣發現一些恐龍化石,他所命名的峨山龍是一種植食性的原蜥腳類恐龍;但是後來徐星又命名了肉食性的峨山龍,他所依據的樣本是一個部分下頜骨頭與牙齒,發現於中國雲南省的下祿豐組,地質年代為侏儸紀早期的赫塘階,約 1 億 9600 萬年前;也就是說,一方面「峨山龍」這個命名鬧了雙胞,趙的是吃素的恐龍,而徐的卻是吃葷的恐龍;另一方面來說,〈古脊椎動物〉期刊的份量,其 SCI 點數,遠遠低於 Nature 的 36.28 點;另外一篇報導出現於 1963 年的 Nature 期刊,H. W. Rigney 報導了歐氏摩爾根獸 (Morganucodon oehleri);可是,這種動物是哺乳形類,而根本不是恐龍。

-----廣告,請繼續往下閱讀-----

總結來說,上述的兩篇文獻,一篇問題很大,也非 Nature 論文,另一篇根本不是雲南的恐龍,吉博士所說的沒錯,雲南所有的恐龍,自從發現 75 年以來,從來沒有上過重量級的學術期刊過,而我們這篇論文,的的確確是第一篇榮登科學界最權威學術期刊 Nature 的論文,而且還當了封面論文,更是不簡單;嗐,提出一個疑問:為何如所謂的中國恐龍王,繼承了中國恐龍學之父的衣缽,怎麼會把這麼重大的機會承讓給我這個撈河撈過界的門外漢?再者,如果我們國際兩岸團隊,還是照著傳統古生物界的遊戲規則來玩人家訂規矩的遊戲,而非不按牌理出牌,採用「看進骨頭內」的思維,我們國際兩岸聯合科研團隊,能有此小成就嗎?值得深思

本文原發表於作者部落格「催眠恐龍

文章難易度
timd_huang
24 篇文章 ・ 0 位粉絲
跟我玩恐龍去!

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

3

8
1

文字

分享

3
8
1
侏羅紀公園的場景可能真實發生?生物複製技術有哪些發展?複製人要出現了嗎?
PanSci_96
・2024/06/15 ・5062字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

如果用我們的基因製造複製人,可以代替我們上班上課嗎?想像一下,如果世界上每個人都有一個雙胞胎分身?或者,如果我們可以克隆出已故的名人?甚至複製已故的寵物或親人?

當然,這些都是幻想,但複製生物技術的發展正在讓這個幻想漸漸變為現實⋯⋯

科幻小說的故事照進現實,在技術層面上有哪些困難?道德上又會引發哪些問題呢?

讓我們一起探索這項驚人技術的曲折歷程吧!

-----廣告,請繼續往下閱讀-----

今天的文章將會回答以下問題:

  1. 複製生物技術的早期實驗有哪些?又帶來什麼影響?
  2. 基因複製技術最大的困難是什麼?
  3. 複製技術面臨哪些主要挑戰和倫理道德問題呢?
  4. 複製生物技術除了複製生物還能有哪些應用?

克隆實驗早期的探索與突破?

複製生物技術的發展是一個漫長而曲折的過程,從 19 世紀末的早期實驗,到 20 世紀中葉的技術突破,再到 21 世紀的應用與挑戰。

胚胎實驗的歷史可以追溯到 19 世紀末,當時德國生物學家杜里舒(Hans Driesch,1867-1941)進行了一項開創性的實驗。他通過搖晃的方式將四個海膽胚胎細胞分離,並觀察到每個分離的細胞都能發育成完整的幼體,儘管體型較小。這一實驗證明了早期胚胎細胞具有全能性(totipotency),即早期胚胎的每個細胞都能發展成完整個體,這為後來的細胞核移植技術奠定了基礎。

圖/giphy

在 20 世紀初,植物學家發現通過嫁接和分裂植物組織可以產生與母體相同的植物。奧地利植物學家戈特利・哈伯蘭特(Gottlieb Haberlandt,1854-1945)提出了「植物細胞全能性」(totipotency)的概念,即每個植物細胞都具有發育成完整植物的潛力。哈伯蘭特的實驗主要是通過無菌技術培養植物細胞,雖然當時他並未成功培育出完整的植物,但他的理論和研究為後來的植物組織培養和克隆技術奠定了基礎。

-----廣告,請繼續往下閱讀-----

1914 年,德國生物學家漢斯・斯佩(Hans Speman,1869-1941)進行了另一個具有里程碑意義的實驗。他利用了一根嬰兒頭髮製作的環狀結,將其繫在受精的蠑螈卵細胞上,並將細胞核推到一側。當細胞核所在的一側開始分裂成多個細胞後,他鬆開結讓一個細胞核滑回未分裂的細胞一側,從而產生了兩個獨立的細胞群,這些細胞群最後發育成了兩個完整的胚胎。這是最早的核移植(nuclear transfer)實驗,顯示了細胞核在胚胎發育中的重要性​。

20 世紀中葉,科學家們進一步推動了克隆技術的發展。1952 年,美國科學家羅伯特・布里格斯(Robert Briggs,1911-1983)和湯瑪斯・金恩(Thomas Joseph King,1921-2000)首次成功地將青蛙胚胎細胞的細胞核移植到去核的卵細胞中,並培育出蝌蚪,雖然這些克隆青蛙無法存活至成年,但這實驗證明了細胞核可以在去核卵母細胞中重新編程,進而發育成新個體。

圖/giphy

桃莉羊的誕生:克隆技術的重要里程碑

克隆技術的重大突破出現在 1996 年,當時英國羅斯林研究所的伊恩・威爾穆特(Ian Wilmut,1944-2023)和基思·坎貝爾(Keith Campbell,1954-2012)成功地克隆了第一個成年哺乳動物,也就是廣為人知的——桃莉羊(Dolly)。他們使用的是一隻成年綿羊的乳腺細胞核,將其移植到一個去核的卵細胞中,最終培育出桃莉。這一成就震驚了全世界,因為它證明了成體細胞的基因信息可以被重置為胚胎狀態,並成功發育成為一個完整的生物體,標誌著克隆技術的一個重要里程碑​。

1996 年,成功地克隆了第一個成年哺乳動物,也就是廣為人知的——桃莉羊(Dolly)。圖/wikipedia

桃莉羊的誕生引發了廣泛的科學和倫理討論。一方面,科學家看到了複製技術在醫學研究、保護瀕危物種以及農業中的潛力。另一方面,社會各界對複製技術的倫理問題表示擔憂,特別是人類複製的可能性。

-----廣告,請繼續往下閱讀-----

桃莉羊的成功開啟了克隆技術的新篇章,此後,小鼠、牛、山羊等多種哺乳動物相繼被成功複製,展示了這一技術的廣泛應用潛力。同時,科學家們將目光投向了更為複雜的靈長類動物。

靈長類動物的複製技術在 21 世紀取得了進一步的突破。2018年,中國科學家成功利用與桃莉羊相同的「體細胞核轉植」技術複製出兩隻有相同基因的長尾彌猴「中中」和「華華」,標誌著克隆技術的又一個突破​。2020年中國又成功複製了恆河猴,並取名為「ReTro」,不同於印象中印象中複製動物壽命都很短或是飽受疾病之苦,ReTro 在今年(2024年)已經要滿四歲了,是首隻平安長大成年的複製恆河猴。

複製技術的挑戰?

儘管克隆技術在基因層面上已經相對成熟,但要複製出健康的個體仍然面臨巨大挑戰。許多克隆動物都表現出健康問題,如免疫系統缺陷、心血管問題、早衰、壽命縮短或在在肝、腎、肺、大腦、關節等地方產生發育上的缺陷,也有部分出現體型異常巨大的問題​​。例如綿羊的正常壽命約在 12 年左右,但桃莉羊在 6 歲時,就因關節炎與肺部感染而去世。

這主要是因為,細胞核在卵細胞中的重新啟動過程容易出現問題,導致克隆個體可能存在基因表達異常。即便是中國科學院成功複製的 ReTro 也只是難得成功的個案。

-----廣告,請繼續往下閱讀-----

基因複製出的人類會和本人完全一模一樣嗎?

克隆技術,特別是克隆人類,涉及複雜的倫理和道德問題。一方面,克隆技術可能會被用來治療某些疾病,或是用於治療遺傳疾病和器官移植,甚至延長壽命;但另一方面,它也可能被濫用,導致倫理危機。例如,克隆人類可能引發身份認同問題,並挑戰現有的社會和家庭結構​,反對者擔心擔心這樣的技術會對社會和人類本質造成不可預見的影響。

如果突破細胞核重新啟動的困境,複製出來的克隆人會和本人完全一樣嗎?

答案是:「不會」。

圖/imdb

美國演化生物學家阿亞拉(Francisco J. Ayala,1934-2023)在《美國國家科學院院刊》上提出,我們目前進行的生物複製實驗複製的只是「基因型」而非「表現型」。基因型指的是基因組成;而表現型指的是包含個體外表、解剖結構、生理機能以及智力、道德觀、審美、宗教價值觀等行為傾向和屬性,還有透過經驗、模仿、學習所獲得的特徵。表現型是基因與環境間複雜作用下的產物。基因型的複製就像是同卵雙胞胎,就算長得再像,他們怎麼樣都不會是「同一個人」。透過生物複製技術基因複製出的克隆人,其實也只不過是跟你擁有相同基因的雙胞胎而已。

-----廣告,請繼續往下閱讀-----

不過目前世界上也存在一種能複製表現型的技術,那就是——「AI」。

隨著人工智能技術的進步,模擬人類個性和行為變得越來越現實。例如,AI 可以通過學習大量數據來模擬特定個體的行為模式,甚至在某些情況下,AI 克隆可能會比生物克隆更具實用性。然而,這也帶來了新的風險,包括隱私泄露、數據濫用等​​。

複製技術在生物醫學領域來能有哪些應用?

複製技術的應用範圍廣泛,涵蓋了醫學研究、農業、生態保護等多個領域。

複製技術在生物醫學領域具有巨大的潛力。幹細胞治療可以利用克隆技術培育出患者自身的幹細胞,從而避免免疫排斥反應。製藥公司可以利用克隆動物來進行藥物測試,提高藥物研發的效率和準確性​。科學家也可以生產出大量具有相同基因組的細胞,用於研究疾病機制和開發新藥。克隆技術被用於創建動物模型,這些模型有助於研究人類疾病的機制和治療方法。例如,科學家利用克隆技術創建了患有阿爾茨海默症和帕金森症的動物模型,這些模型為藥物開發和治療策略的研究提供了重要的工具。

-----廣告,請繼續往下閱讀-----

在農業領域,複製技術被用於繁殖優良品種,增加牲畜的生產力和抗病能力。通過克隆優秀的畜禽個體,農民可以提高產量,降低疾病風險,從而提高農業生產的效益。

此外,複製技術在生態保護方面也有重要的應用。許多瀕危物種由於種群數量減少,面臨滅絕的危險。科學家們利用複製技術試圖保護這些物種,例如,已經有研究成功克隆了瀕危的野生動物,為保護生物多樣性提供了新的方法。

圖/imdb

結論

總結而言,複製生物技術的發展歷程充滿了挑戰和機遇。從早期的胚胎細胞分離實驗,到 20 世紀中葉的核移植技術,再到 1996 年桃莉羊的成功,科學家們在不斷探索和突破。儘管技術上取得了許多進展,但複製健康個體的挑戰仍然存在。此外,倫理和道德問題也不容忽視。未來,隨著技術的不斷進步,克隆技術在生物醫學領域的應用將更加廣泛,但我們也必須謹慎對待其可能帶來的社會和倫理影響,我們需要謹慎管理這項強大的技術,在發揮其潛力的同時,避免可能帶來的社會和倫理風險。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

所有討論 3

0

0
0

文字

分享

0
0
0
胚胎發育必不可少的兩位舞者:胚胎幹細胞與滋養層幹細胞——《生命之舞》
商周出版_96
・2023/10/22 ・2668字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

細胞工程如何進行?

如果我們真的要進行細胞工程的話,我們就得要以孩童拼樂高積木的方式,一次一個地將細胞組合成胚胎。但我們並沒有經由口吸管的方式(請參考第五章)來這樣做,而是把一切都留給機率來決定。

我們在培養皿中混合了不同濃度的兩種細胞,並讓它們自由接觸。我們在第二天透過顯微鏡看到,有些細胞確實開始相互作用並形成結構。但為數不多,因為這取決於無法預測的機率。不過當胚胎幹細胞與滋養層幹細胞結合時,它們就會以驚人的方式進行自我建構,它們好像知道自己要做什麼,也有個目標。

胚胎發育過程經歷了什麼?

我們在實驗室暗房的顯微鏡下,看到許多胚胎發育的基本過程。我們首先看到細胞極化。接著幹細胞會自我建構,胚胎幹細胞會聚集在一端,而滋養層幹細胞則聚集在另一端。由於胚胎幹細胞衍生出的胚胎部分與滋養層幹細胞衍生出的胚外部分會進行對話,所以在每個細胞群中的空腔後續會打開並創造出三維的 8 字形。我們發現這涉及到一個名為 Nodal 的蛋白所傳送的訊號。這兩個空腔之後會融為一體,最終形成一個對胚胎發育至關重要的大型羊膜腔。這種體腔形成的過程似乎就跟真正胚胎在著床不久後會發生的情況一樣。我們看見了自我建構的驚人創舉。

不過,我們當然總是想要更進一步,讓合成胚胎中胚胎幹細胞所衍生部位裡的那些類胚胎細胞,能夠適當地打破對稱性。我們的意思是讓這些細胞設法進行原腸化,也就是提供未來身體體制基礎的關鍵步驟。
我們發現若是可以讓胚胎幹細胞與滋養層幹細胞結構再發育久一點,它們確實會打破對稱性。

-----廣告,請繼續往下閱讀-----

像 Brachyury 這類基因就會在胚胎與胚外部位之間開始表現,就跟真正胚胎的情況一樣。Brachyury 基因至關重要,因為它會影響中胚層的形成與前後軸線。 這個發現不但讓我的心跳差點停止,也讓實驗室中的每個人都大為驚奇。

這些類胚胎結構與正常胚胎結構非常相像,足以用於揭開在母體著床時期的某些發育謎團。很明顯地,胚胎幹細胞與滋養層幹細胞一同建造的結構所模擬出的胚胎形態與結構模式,要比只使用胚胎幹細胞要來得精確許多——這是更值得信賴的發育模型。

圖/unsplash

感覺起來,這兩種幹細胞就好像兩名舞者彼此都告訴對方,自己在胚胎中的所在位置。沒有這場雙人舞,正確形狀與形式的發育以及關鍵生物機制的適時運作就不會適當發生。我們也發現這個結構模式的發育,得仰賴 Wnt 與骨成形性蛋白質(bone morphogenetic protein, BMP)的訊號路徑,這與真正胚胎的發育情況一樣。

投稿論文的種種阻力與助力

我們將這篇論文投稿至《自然》。由於許多論文在初始階段就會被退回,所以我們知道編輯將稿子送去審閱時,士氣不由得為之一振。編輯們的知識淵博,經驗也豐富,能走到這一步就是一種重要的認可,所以我們有場小小的慶祝活動,因為即使是小小的成功也能做出改變。

-----廣告,請繼續往下閱讀-----

不過最終他們沒有接受我們的論文,除非得像一位審稿人要求的那樣,提供合成胚胎在自我建構時所用基因的詳細資料,以及這些基因的表現模式在自我建構的每個階段是如何變化的。這將會是一件大工程。然而這彷彿算不上是什麼壞消息,因為我的實驗室中並沒有技術可以研究這些基因所運用的轉變形態模式。我需要尋求經費來購買我負擔不起的設備,我們也需要找到合作夥伴。

我受邀到澳洲獵人谷為歐洲分子生物學組織大會進行講座。那時正值學校放假,所以我帶著賽門一起踏上這次的冒險旅途。我們在香港轉機,順便停留一天拜訪當時的行政長官梁振英,他是我最好的前博士生之一梁傳昕的父親。

圖/unsplash

我的演講是由小鼠發育生物學家譚秉亮(Patrick Tam)開場,我感到非常榮幸,因為我向來就對譚秉亮的研究極為崇拜。賽門與我加入譚秉亮與他太太伊莉莎白(Elizabeth)的行列,一起到雪梨的海邊走走,一路上譚秉亮告訴我有關他與上海生命科學研究院景乃禾(Naihe Jing)的合作,景乃禾利用雷射切割胚胎,揭露了胚胎基因的表現模式。我非常幸運,因為在我回到劍橋不久後,景乃禾就到劍橋來拜訪,所以我能夠親自與他見上一面。我們同意一起合作揭開我們類胚胎結構中基因表現的模式。景乃禾團隊的貢獻將是我下一章故事的重心。那時我們才意識到,可能要花上一年的時間才有辧法確實做到這一點,而我也不確定我們是否願意為了讓《自然》的編輯滿意(或者還是不滿意,誰知道呢)而等這麼久。

那時,莎拉與柏娜已經累積了更多的數據,所以我們決定將研究結果投稿到我比較不熟悉的《科學》。事實證明這是正確的選擇。跟過往一樣,審稿人要求我們再多做一點實驗。但這次的要求還做得到,只是我們就得在 2016 年的聖誕節假期長時間的工作,以便在新學期開始前完成手稿。大衛也一起下來幫忙,他成為這篇論文的共同作者。

-----廣告,請繼續往下閱讀-----

為「類胚胎模型」命名也是一門大學問

命名很重要,因為「珠子」那個命名的前車之鑑,所以我們對於要怎麼為我們的類胚胎模型命名進行了漫長的討論。這些模型讓我們知道胚胎結構是如何從幹細胞自我建構而成,所以我們想要給它們取個特別的名字。但是我們最後沒有得到共識。

圖/imdb

《科學》的編輯不喜歡「合成」類胚胎結構這個名字。我在期中假期得知這個消息,那時我正與家人及朋友滑雪度假中,所以我請他們一起來想想其他的名字。這或許就是為何我們會想到「ETs」這個名字的原因之一。史蒂芬.史匹柏有部科幻電影講述到從異世界來的訪客,而從幹細胞自我建構出的第一個類胚胎結構似乎也帶給我們這樣的感受。不過這個 E 不是代表「另外(extra)」的意思,而 T 也不是「地球人(terrestrials)」的意思。E 代表的是胚胎幹細胞(ES),而 T 代表的則是滋養層細胞(TS)。

——本文摘自《生命之舞》,2023 年 9 月,出版,未經同意請勿轉載。