0

0
0

文字

分享

0
0
0

藥到,病除!─淺談藥物輸送型態與新開發

活躍星系核_96
・2013/06/04 ・4568字 ・閱讀時間約 9 分鐘 ・SR值 552 ・八年級

-----廣告,請繼續往下閱讀-----

文 / 王躍達 (台北科技大學生物資訊系)

圖片摘自http://www.meb.uni-bonn.de/Cancernet/CDR0000258035.html

沒有人喜歡打針,這是無庸置疑的;為什麼討厭打針?因為會產生疼痛。

纖細而長的針刺穿皮膚的表皮、真皮與皮下組織到達血管進一步執行注射的過程中,針頭將經過真皮區域的神經,壓迫的力量會使神經受器獲得刺激,痛覺由此產生。姑且不論大腦對於這個痛覺的評價是如何-繼續分析下去將會持續離題,痛覺本身就是保護生命體的一環;因此,痛覺有可能會觸發反射神經,肌肉收縮而顫動。而在皮下的針頭則會受到外力的擠壓而偏移無法定位導致受傷面積增大,想當然爾,產生的自然是難看的傷痕……別忘了,還有更多,你所不會想要的疼痛。

既然會疼痛,那麼侵入式注射有甚麼好處?我知道你還有很多問題想問,然而,先擱下那令人恐懼的「感覺」,在繼續談論侵入式注射的功過以前,我們有必要先認識一下藥物傳輸的種類。

-----廣告,請繼續往下閱讀-----

常見的巨觀藥物傳輸途徑可藉由進入的方式約化為服用侵入非侵入三項。

顧名思義,服用是將藥物吞入消化系統,藉由吸收的方式攝取藥物分子;侵入,則是透過器材將藥物直接輸入人體內部;非侵入則反,既不是透過服用,也非使用器材侵入來達成藥物的投遞。藉由這些手段配合恰當而合適的藥物,醫師可以將治療送抵患部,同時更為理想的,能控制藥物傳輸所需要的時間、過程與其負面影響。

是的,想想看毫無阻礙、直接地將絕大部分的藥物以不會受到腸胃道蛋白質、pH值破壞,以最純粹的方式直接輸入血液造成藥效,你就覺得橫豎挨上一針的確不意外了。單純的貼片也需要花時間擴散,但藥物等不了那麼久或者是沒必要等待的時刻,兩害相權取其輕,挨上那一針換得速效與藥物保護,注射,自然而然成了不二選,聽起來就沒那麼令人恐懼了。

然而藥學家們仍然認為,這些方式仍然未竟成功。

-----廣告,請繼續往下閱讀-----

想像一下:藥物滲入身體之中,不論注射的針筒的體積或者點滴的體積是有限的。注射的瞬間,全部的注射物濃度全部集中於侵入點,直到血流沖散到全身為止;擴散原理下,要等到一段時間之後,整體內濃度才會重新達成水平。藥物最高的濃度永遠會在注射侵入的點處最高,若標靶點處距離注射位置越遠,則注射後產生藥效的時間則空窗越久;有限的體積對於侵入點來說濃度過高,而對整體而言體積有可能尚嫌不足。

即便是採取點滴式的注入,也只不過是把針筒的容積變大由毫升計算成了公升計算罷了。況且打針與點滴並不是病患能夠簡易親自操作的技術,必須受過一點訓練的。考量到藥物注射後最快抵達患部的距離,有時候必須搭配更多專用的體內植入物與配套手術,如可重複使用的皮下注射連接器來提升藥物注射的品質。不想使用這些高分子加工固體輔助器材?好吧,你可能少挨一刀,少損失那麼一點血量;但你得每次都被扎不同地方一針。重複同一點注射,或者注射口持續在該處停留會導致體內組織-免疫也好,新生組織也罷-嘗試堵塞、抗拒與排斥,注射的穿刺所需的力道要更大,而注射口可用的時間也會越短。

最後,注射對你就不怎麼管用了。為了讓注射這類大量、迅速的藥物輸送方式保持一定的效力,無論如何,你都必須保持你自己的生理結構一定程度上的「新鮮可用」。

聽起來像是待宰的雞鴨牛羊哀傷而不快,基於治療的原則,你又必須不得在必要之刻執行必要之惡。於是你問起了貼片這產物。

-----廣告,請繼續往下閱讀-----

藥劑貼片的結構相當單純-覆蓋黏性聚合物的彈性聚體或織物成為基底,留下沾黏皮膚的部分後將攜帶藥物的材料覆蓋於一個區域後組合而成。毫無特色的結構所造就的正是簡單而純粹的物理特性;運用濃度差造成的滲透力,促使藥物穿越皮膚的障礙進入血液,透過循環系統到達理想的患部。聽到此想必你又有問題了:貼片完全迴避掉人體的抗拒性與排斥力,結構簡單而易於量產,這樣美好的東西,為什麼不多用呢?

藥物傳遞可不是武俠小說:重劍無鋒,大巧不工?沒有人會想用玄鐵劍削蘋果的;而玄鐵劍之所以無雙,除了楊過的功夫外,還得依賴他巨大的質量與動量才能造成超絕的破壞力呢。如果已無鋒的刀刃來做為比喻,那麼在一罐一公升的點滴面前,真正像是「水果刀」等級的,恐怕就是貼片了。有限的面積、有限的藥物溶解度和吸收力、有限的承載藥物分子量等等,全是制衡它成為殺手級應用的問題。況且要穿透皮膚的角質等直達血液,要讓藥物濃度達到有效的時間太過漫長,面對迫在眉睫的藥效終點戰來說,那已經是「未來」的「未來」了。

好吧。

聳了聳肩,然後必然帶有那麼點御都和主義的嘆氣。你覺得是時候該放棄了。越是分析越多缺點,都給你這專業的損完一圈,那藥物還有別的方式來拯救人類嗎?自暴自棄的,你做出了那樣的質詢。

-----廣告,請繼續往下閱讀-----

答案是:當然有。如果就這樣放棄尚嫌太早,從激進一路下推到溫和,介入於貼片與注射之間這塊模糊的區域,正是科學家所瞄準的灰色地帶-既然注射是打入皮下組織的血管,貼片僅只在於表皮層的角質之上,有沒有能夠侵入一定深度真皮層卻不會觸動感覺神經而造成痛覺的解法?你得到他了,他的名字是「微創」技術。這次,再也不會有更多令人失望的發展,我們終於在痛苦之後,打開了另外的一條嶄新通往桃花源的可能性道路。

我們終於在漫長的分析與前言之後,跟著轉折進入了主題的領域:微創設備。

顧名思義,為低創傷程度-不會有痛覺的反應,不需要麻醉的前置,不留下任何顯而易見的永久痕跡-的器材設施。依循其基本設計構思,微針陣列高度多半限制於50~900μm之間,密度多落於100針/每平方公分(針頭頂點計算)為常見的設計。有了這樣的輪廓,為了建構實體的微針陣列,我們必須參照生物相容性與毒性測試來做針身材質的選擇;透過訪問FDA的資料庫,研究者們將可以獲得想要的答覆。不想要這麼抽象而不切實際的選擇方案嗎?那麼換個說法:只要你能吃下他而無副作用,可被分解不囤積不造成負擔的,都會成為FDA認可,而被實際應用於鑄造的材料。縮小點範圍;這些用以輸送藥物的微針成品的體積的大半部分以上的成分,其實就出沒於我們的生活之中。諸如減肥用的海藻糖,用來包裹藥物的糊精(澱粉分解成小分子前的中間物,分子量稍小),更甚至是單純的澱粉,以及一些特定的假牙黏著劑等,都是被選的材料─沒錯,它們無所不在,妙用無窮。

那麼,有鑄造針的配方了,模具呢?既然FDA認可,可以進入人體的材料可以簡約成「可以吃的」,那麼不須進入人體的範疇就自然放寬了點,變成了「可以盛裝一定溫度來用的」。陶瓷,如紫砂;金屬,如黃金、鋁、不鏽鋼;矽晶圓;還有一些其他的光可塑性環氧高分子(SU-8)與有機矽化合高分子(PDMS)。這些材料除了前述的特點外,往往也兼顧耐用與便宜,可長期保存等特性。而製作模具的過程,依照鑄造設定的步驟,可以由化學向性蝕刻、離子反應蝕刻、注塑、表面/體微機械加工、微成型與光─電鑄複製等方法產出陣列。

-----廣告,請繼續往下閱讀-----

複雜而無趣的鑄造步驟與其改良足以長篇大論成為國際論文;而在眾人即將再次闔上雙眼睡著之前,我們換個話題─微針如何攜帶藥物?侵入皮膚但不深入的流程簡單易懂,要怎麼攜帶藥物使藥物進入人體?

微針,顧名思義即是微小的針形。不論有無機與有機,基本上均遵守「針」的外觀為主要核心。
微針,顧名思義即是微小的針形。不論有無機與有機,基本上均遵守「針」的外觀為主要核心。

藥物是靠著溶解或壓力差擠壓而離開針身,然後藉由皮膚表面的微孔道流入並滲透執行擴散的。藥物攜帶的形式眾多,塗佈法運用表面覆蓋另一層藥物的雙層結構,將針的機構與功能分層;微孔洞氣壓法則是讓藥物受氣壓關閉於針體內的管道內,應用壓力差受力而使之離開。這兩種多常見於金屬微針陣列,有部分研究也嘗試實作高分子類的產品。至於廣泛見於高分子為針的技術,則為以疊三明治般的讓可溶解高分子─藥物─高分子重疊的夾層式、以及直接將藥品混入針身材料一體成形等技術。運用這些設計與技術所產出的微針,其最大的特點在於比貼片擁有更好的藥物傳輸效率,並且比傳統注射強化了給藥的時間與維持藥物穩定。

不免俗地走到此,醜媳婦總得見個婆娘較量一番。理想中的微針陣列在藥物分子大小上的選擇比起注射小,但仍貼片大。而給藥時間的長短與釋放速度控制上,相對貼片差但比注射有效。中庸的目的就此達成,目前常見用於證明可透過此一方式運輸藥物為茶鹼、氨基酮戊酸、炭疽疫苗、β-半乳糖苷酶、鈣黃綠素、牛血清白蛋白、Desmospressin (DDAVP,去氨加壓素),促紅細胞生成素、Meso-tetra (N-methyl-4-pyridyl)porphine tetra tosylate、卵清蛋白、胰島素和質體DNA。

該是讓這漫長的故事迎接終點了嗎?不,還沒結束。即使是沒有稿費,也還沒到末路。

-----廣告,請繼續往下閱讀-----

在這轉折之前,我是將所有種類的微針通通當作一個類別進行闡述─而明眼與高學歷閱覽百卷的你想必已經知道會在此唐突的出現這段話的用意為何。如果還有什麼細節我還沒說著的話,那大概是微針的本身的分類與各自的優缺。

是的,在論文種類的界定上,微針陣列本身仍有各自的分類。使用無機物與有機物構成的陣列彼此獨具一格,也各有其長短之處。無機微針陣列下,儘管製作在鑄造面上相對簡單明快,足以大量生產,但物理抗性再強也有極限。使用貼片後肌肉的收縮仍有微針破碎斷裂的風險,那些比較寬鬆的材料選擇是否長期下來會造成不良的副作用,一直留有爭議。

此外,由於是兩種截然不同的材料彼此接合,只依賴弱作用力有限而攜帶藥物的藥物種類變得狹隘、質量也有所降低至約於1毫克甚至更差;同時,塗布藥物的黏度必須極高,不利於一些特定藥物的配置;藥物於陣列表面無法在常溫與環境空氣中持續保存等等問題,使陣列一度走到瓶頸。另一個殺手級的問題則出現在使用的難度之上─只有醫療人員能負擔繁雜的前處理,並且擁有足夠的藥理與病理知識可以避免微針孔多半在兩小時內會堵塞,用以維持連續不間斷給藥的效果。

為了突破瓶頸而產生的有機微針就是為了改善上述的缺點而誕生的產物。但這樣的改變卻反而造成了其他方向的問題─依賴水溶的高分子只能與水溶性藥物相容,而微針的形狀保持能力隨環境濕度影響而不穩定,繁雜的鑄造過程不能保證品質的絕對性等等,層出不窮、意想不到、花樣百出的問題,時至今日仍舊困惑著科學家們,成為最終理想鄉的大敵。

-----廣告,請繼續往下閱讀-----

你問我們會不會放棄?答案顯而易見的:不。

所謂逆境,就是要給人突破才被稱為逆境。科學就是因為不曾放棄的趨近於完美、沉溺於對於完美的追求、終極邊疆的渴望而茁壯的。一路粗淺的介紹與討論就到此畫下句點。

新的藥物運輸系統在這開發環境下已逐日趨近完整;儘管前方仍有眾多未明的實驗陷阱與技術障礙,但身為學術者的一員,我們將繼續勇往直前,直到終點不肯罷休。人類與疾病的抗戰是沒有終點的─眼前的結束只不過又是下一場戰鬥的開端,科學家們將永不停歇的前進,燃燒著生命與魂魄,高舉著幸福美滿的夢想大旗!

看得出這張OCT有機高分子微針有什麼缺點與隱憂嗎?
看得出這張OCT有機高分子微針有什麼缺點與隱憂嗎?

文獻參照:

  • 我正在撰寫的某篇國科會計畫論文,我自己,尚未發表
  • Multidrug release based on microneedle arrays filled with pH-responsive PLGA hollow microspheres, Cherng-Jyh Ke, Yi-Jou Lin, Yi-Chen Hua, Wei-Lun Chiang, Ko-Jie Chen, Wen-Cheng Yang, Hao-Li Liu, Chien-Chung Fu, Hsing-Wen Sung, 2012
  • A low-invasive and effective transcutaneous immunization system using a novel dissolving microneedle array for soluble and particulate antigens, Kazuhiko Matsuo, Yayoi Yokota, You Zhai, Ying-Shu Quan, Fumio Kamiyama, Yohei Mukai, Naoki Okada, Shinsaku Nakagawa, 2011,UNCORRECTED PROOF
  • Nano-Layered Microneedles for Transcutaneous Delivery of Polymer Nanoparticles and Plasmid DNA, Peter C. DeMuth , Xingfang Su , Raymond E. Samuel , Paula T. Hammond , and Darrell J. Irvine, 2012
  • Carboxymethylcellulose–Chitosan-Coated Microneedles with Modulated Hydration Properties, Alexander Marin, Alexander K. Andrianov, 2010
  • Hollow Out-of-Plane Polymer Microneedles Made by Solvent Casting for Transdermal Drug Delivery, Iman Mansoor, Urs O. Häfeli, and Boris Stoeber, 2012
  • 其他論文不及備載。
文章難易度
活躍星系核_96
752 篇文章 ・ 126 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

2

16
5

文字

分享

2
16
5
為什麼疫苗要打在手臂上?
Aaron H._96
・2021/06/15 ・2001字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

即便你可能還沒有注射過 COVID-19 疫苗,你也一定看過許多人在電視新聞裡,挽起袖子,讓醫護人員消毒手臂注射疫苗的畫面。但你有想過,為什麼疫苗要打在手臂上,而不是其他部位嗎?

疫苗能不能打在臀部?打疫苗為什麼不能像是打針一樣,直接打進人體的血管呢?

疫苗為什麼一定要打在手臂上?圖/envato elements

各種注射藥物的方式

藥物或疫苗最常用的注射方式有六種:靜脈注射(Intravenous)、皮下注射(Subcutaneous)、肌肉注射(Intramuscular)、動脈注射(Intra-arterial)、脊椎腔內注射(Intrathecal)以及腹腔注射(Intraperitoneal)。

其中「動脈注射」多半用於緊急輸血、化療等;而「脊椎腔內」並沒有免疫保護,多半用於腰椎麻醉用;「腹腔注射」則多半用於實驗動物,這裡暫不討論。

下面就接著來看另外三種常見的注射方式。

-----廣告,請繼續往下閱讀-----

靜脈注射:抽血、施打點滴藥物

無論你是否打過疫苗,多數人一定都有過打針抽血的經驗。靜脈注射是使用最廣泛的注射方式之一,常用於健康檢查、抽血或是施打點滴藥物等使用。

一般靜脈注射選擇的血管是周邊的靜脈,例如通過手肘的貴要靜脈、正中靜脈、頭靜脈或是手背、足背、腳踝等位置較淺層的血管。醫護人員在注射過程中,有時甚至會輕輕拍打注射位置,讓血管較為浮現,讓下針位置更為明顯。

一般抽血、打點滴,都是使用靜脈注射。圖/envato elements

靜脈注射可以是單次短期使用,也可以建立管路,供較長時間的藥物滴注使用。與一般抽血或是靜脈注射與接種疫苗的目的不同,肌肉注射的目的希望將少量的藥劑,留存在時間內緩慢地釋放;而靜脈注射需要維持血管的通暢,讓藥物能夠藉此快速地通往全身。依照血管注射位置不同,會留置不同粗細的軟針。較粗的留置針可以用在輸血或是急救時緊急輸液用。

抽血時針頭會刺進血管,如果血管比較脆弱或是細小,局部可能會有些微出血。所以醫護人員會建議靜脈注射後,請壓住抽血點一段時間止血,不要搓揉破壞結痂,必要時可以用冰敷的方式減緩疼痛。

-----廣告,請繼續往下閱讀-----

某些洗腎或是化療患者需要更頻繁地進行藥物注射,甚至會考慮裝設動靜脈廔管、中央靜脈導管或是人工血管等管路。

肌肉注射與皮下注射:疫苗、刺激性藥物

相對於靜脈注射將藥物直接打入循環系統,可以追求快而強效的藥物反應;由於訓練免疫反應需要時間,接種疫苗最重要的目的是希望身體能夠用緩慢、相對溫和的方式接受抗原刺激,誘發免疫反應。

由於人類皮膚中的表皮層、真皮層、脂肪組織都有「樹突細胞」或「巨噬細胞」等免疫細胞——所以多數的疫苗會將藥劑選擇注射在肌肉中,使疫苗和緩地接觸這些免疫細胞,誘發免疫反應。也有的疫苗可以皮下接種,少數是皮內、鼻內或是口服疫苗。肌肉注射常見注射在上臂三角肌、臀部的位置;而皮下注射則有可能注射在手臂、腹部、大腿和臀部。

皮下注射給藥,雖然藥品的吸收均勻而緩慢,可維持較長之作用時間,但和肌肉注射相比產生免疫反應的能力稍差,撐開皮膚的痛感較強烈,副作用也較明顯。

-----廣告,請繼續往下閱讀-----

肌肉富含血管,能夠讓疫苗的佐劑(使疫苗更穩定安全、提高效力的副成分)快點被帶離注射部位,減低局部不良反應的風險。肌肉的彈性也比較大,能夠接受較大的注射劑量,比較不會有組織被撐開的痛感。

因此,多數劑量較大的疫苗或是較刺激的藥物,都會傾向選用肌肉注射。

肌肉裡的血管多,能快速將疫苗佐劑帶離注射部位、減少疼痛。圖/envato elements

疫苗注射要注意哪些事?

在肌肉注射疫苗藥物後,一樣不建議搓揉注射部位。搓揉注射部位,會加速疫苗吸收,反而可能會誘發注射部位紅腫熱痛等副作用更為劇烈。

雖然接種 COVID-19 疫苗並沒有對注射部位有特別限制,但不建議注射在臀部的理由除了希望能夠加速接種流程、減少尷尬外,臀部的脂肪量也比上臂厚很多,藥物不容易打進肌肉。

-----廣告,請繼續往下閱讀-----

所以除非患者有截肢或是因為做治療等考量,不適合接種在手臂上,才會考慮臀部注射。

另外 COVID-19 疫苗要打在慣用手還是非慣用手,也是依照個人的選擇,並沒有哪一種特別好。慣用手活動較多,能夠加速帶走疫苗佐劑;但也有人會考量到施打後的副作用,打在慣用手,可能會對日常生活產生影響。

疫苗打在慣用或非慣用手都可以,有不同的優缺點。圖/envato elements

某些人接種 COVID- 19 疫苗的反應較為明顯,可適度冰敷,但勿揉、抓接種部位,如果發現接種部位化膿或紅腫部位擴大,則可能需要就醫進一步檢查。

參考文獻

-----廣告,請繼續往下閱讀-----

1. Zuckerman, J. N. (2000). The importance of injecting vaccines into muscle. BMJ, 321(7271), 1237–1238. https://doi.org/10.1136/bmj.321.7271.1237

所有討論 2

0

0
0

文字

分享

0
0
0
Microneedles–無痛的智慧化注射技術
PanSci_96
・2016/03/06 ・1324字 ・閱讀時間約 2 分鐘 ・SR值 531 ・七年級

-----廣告,請繼續往下閱讀-----

圖/Public Domain Image
嗚嗚我不要打針啦!圖/Public Domain Images

文/蔣維倫

我、不、要、打、針!

打針、拔牙、照胃鏡,大概是討厭去醫院的前三理由。光是想像閃亮的針尖上滲出液體,筆者的臂膀就不自覺地酸了起來!對醫院來說,更麻煩的是針頭的處理,因為使用過的針頭屬感染廢棄物,無法隨意丟棄。光在台灣,每年可能會產生數十萬支的廢棄針頭,無法回收,無法掩埋,成了一個既頭痛又麻煩的問題。

-----廣告,請繼續往下閱讀-----

用紫外光刻出針頭

科學家也是一種無時無刻在追求極致的人類,盡力地縮小針頭的尺寸以減輕注射的疼痛感。其中一項技術是以矽晶圓為底,用UV在晶圓上蝕刻出一根根細小的針頭(國內的晶圓代工廠也是利用類似的技術),再灌入如葡萄糖等可在人體內溶解的生醫材料,翻模後就能得到一根根細小的微針陣列microneedles)了 。

圖/Devin McAllister, Georgia Tech
Microneedles。 圖/Devin McAllister, Georgia Tech

微針陣列的外觀很像OK绷,使用上也非常的簡單,只要往皮膚上一貼就完成了,因此無須煩勞醫護人員。並且由於針頭短(通常<0.5mm),所以病人不會有疼痛感,而葡萄糖等製備成的針體會自行溶解在皮膚內,也無須處理醫療廢棄物,非常環保。

-----廣告,請繼續往下閱讀-----

Microneedles不須醫護人員操作,自己一貼就可以完成注射。圖/Rob Felt Georgia Tech
Microneedles不須醫護人員操作,自己一貼就可以完成注射。圖/Rob Felt Georgia Tech

智慧型投藥系統-創意十足的微針陣列

美國Jicheng Yu學者團隊集盡巧思,將內藏醣氧化酶glucose oxidase)的奈米膠囊填入微針中,以此做出了能感測血糖濃度的智慧型微針 。當糖尿病患者血糖濃度低時,膠囊按兵不動,而血糖濃度高時,膠囊能立即反應,刺激微針釋出胰島素,進而控制血糖,以達到智慧型投藥的目的。

而國內的創意也不遑多讓,成功大學的陳美瑾老師團隊,將微晶體鑲入微針內,而晶體有特殊的性質,能將紅外光轉換為熱能 。我們能從熱顯像儀的螢幕中,可看到針尖發出代表高熱的紅光(高溫約達50 °C),而從顯微鏡的螢幕上可以觀察到針尖隨著時間逐漸的消融。因此陳老師團隊所設計的微針,同時具備生熱釋放藥物的功能。

而鄰國日本Sachiko Hirobe學者等人,直接將微針推進了人體試驗。該團隊利用玻尿酸微針製作了流感疫苗貼片 ,並且在志願者身上使用後,發現能提高人體對病毒的免疫力,並且玻尿酸針體在數十日內會自行溶解,算是十分的成功。

-----廣告,請繼續往下閱讀-----

筆者碎碎念:最後一段當然要來講講壞話囉~微針被研究了數十年仍未商品化的問題有很多:承載藥量低;每個人的皮膚厚度不同,吸收程度各異。因此推向人體試驗的多是疫苗型微針,少許抗原就能產生免疫力。而陳老師的系統也讓筆者對未來有了想像,具備給藥及產熱的微針貼片,未來也許可往抗菌敷料 (抗生素+高溫殺菌)或肌膚再生 (生長激素+高溫刺激再生)發展,甚至混入少許變色的物質(例:有細菌感染就變藍色)也能加入感測貼片的行列呢!

(本文由科技部補助「新媒體科普傳播實作計畫-智慧生活與前沿科技科普知識教育推廣」執行團隊撰稿)

責任編輯:鄭國威
審校:陳妤寧