0

0
0

文字

分享

0
0
0

垂直起降無人機──《知識大圖解》

知識大圖解_96
・2015/11/02 ・1997字 ・閱讀時間約 4 分鐘 ・SR值 572 ・九年級

起降無人機
本圖出自《How It Works知識大圖解 國際中文版》第13期(2015年10月號),全見版請點擊圖片放大。

從現今習以為常的直升機到未來世代的自動無人機,垂直起降科技已逐漸崛起並躋身主流。

打從人類開始夢想飛行之際,便開始想像替飛機加上垂直起降的功能;其中李奧納多.達文西(Leonardo da Vinci)就是這類科技的創始者之一,他手擬了一款現代最常見的垂直起降飛機──直升機。達文西的設計雖未經實際測試,也從未真的飛離地面,但這種俗稱「空氣螺旋槳」的機器採用螺旋設計,其實早已用上了壓縮空氣製造升力的基本原理。

自那時起,有一大票發明家都希望能將自己的原型機送上藍天,但接下來五百年間,垂直起降的科技似乎沒什麼進展。達文西的自轉旋翼機(gyrocopter)儘管已經落伍許久,這位義大利天才所採用的飛行原理基本上卻沒什麼改變。

二十世紀初可說是飛行世代的開端,1907年,法國的垂直起降科技終於順利通過測試,這可是史上頭一遭。飛行界的領頭先鋒雅各.寶璣(Jacques Breguet)、路易.寶璣(Louis Breguet)與保羅.柯努(Paul Cornu)發明了可以短暫低空盤旋的垂直起降飛機,垂直飛行技術首度向成功邁開了一小步。

-----廣告,請繼續往下閱讀-----

接下來的數十年間,航空科技發展迅速,各式各樣的設計如雨後春筍般自世界各地湧現。第一次世界大戰期間,各國對於更新、更快、更有效率的戰機需求激增以便深入敵軍,因此直升機大抵上仍然不受重視,直到1940年代與第二次世界大戰期間,情勢才改觀。德國納粹早期會運用直升機進行偵察、運輸與傷患後送等任務,但直到1944年直升機才開始量產。

數百架由工程師伊戈爾.西科爾斯基(Igor Sikorsky)設計的R-4、R-5、R-6直升機在二戰最後一年間陸續完工出廠,提供同盟國部隊諸多支援,二戰剛結束時,垂直起降飛機更是聲名大噪。與達文西的自轉旋翼機不同,新型直升機的主旋葉可以迅速將空氣向下壓擠,製造出升空不可或缺的升力,尾端也有一組尾旋翼,可以避免直升機原地打轉。

隨著國際局勢陷入冷戰時期,許多人認為垂直起降飛機會是未來的趨勢。當時全球的確有遭受核子爆炸摧殘的可能性,災難一旦成真,所有可用跑道都將遭到摧毀,因此若有飛機能夠在任何地方隨時起降,必可稱霸天空。因此,美軍後來便陸續嘗試許多古怪的垂直起降飛機,如實驗性戰鬥機洛克希德XFV鮭魚機(Lockheed XFV Salmon),或甚至是受到飛碟啟發的飛行車(Avrocar),但絕大多數都失敗,計畫也隨之中斷,唯一成功挺過冷戰時期的只有英國航太公司(BAE)製造的海鷂戰鬥攻擊機。

海鷂機也叫鷂式戰鬥機,是第一款研發成功的垂直起降噴射機;四管向量噴嘴可以將噴射機的引擎推力導向90度內的任何角度,讓飛機能夠縱向、橫向飛行,在空中改變行進方向,或甚至滯空盤旋。

-----廣告,請繼續往下閱讀-----

海鷂機具備了垂直起降能力,所以特別適合在航空母艦上執行任務,其渦輪風扇引擎由勞斯萊斯(Rolls-Royce)製造,搭配卓越的靈活性與先進武器系統,令人不敢小覷。

另一架於冷戰時期出線的飛機則是V-22魚鷹機。在貝爾與波音兩公司聯手之下,具備縱向推力的魚鷹運輸機搭載了兩組傾斜式旋翼,能像直升機一樣盤旋或垂直降落,也能轉換推進方式,像渦輪螺槳飛機一樣飛行。

魚鷹機的飛行距離超過740公里,能夠迅速運送30人的部隊,在美國海軍陸戰隊執行重大潛入與撤離任務時扮演了重要角色;魚鷹機甚至還能將25公尺長的機翼收攏,將機身縮到只剩5.6公尺寬,因此非常適合停放在航空母艦上。

時代不同,工程師須克服的挑戰也隨之不同。軍方現今面臨的問題除了製造飛機要經濟實惠,靈活性高,飛機還要具備智慧才行;未來軍火商與國防部會愈加重視將垂直起降科技應用到軍用無人機上。

-----廣告,請繼續往下閱讀-----

雖然目前操控這些機器的電腦已經走在時代尖端,但讓機器升空與平安落地的物理學基本上並未改變。

不管是透過遠端遙控還是自動飛行,垂直起降無人機能完成的任務將相當多元,包括運輸、偵察或甚至發起攻擊。到目前為止我們已經介紹了幾項令人振奮的願景,這些都是航空產業中最棒也最聰明的發明,垂直起降科技勢必稱霸下個世代。

NASA垂直起降無人機正式啟航

美國航太總署(NASA)的混合式電動飛機別名「滑溜閃電GL-10」(Greased Lightning GL-10),翼長僅三公尺,但卻把垂直起降科技利用得淋漓盡致。十具獨立螺旋槳可加大垂直攀升的效率,接著機翼與尾板可一同傾斜改變角度,並轉為橫向飛行;兩具螺旋槳提供全部動力以節省能源,其他螺旋槳則依據空氣動力學的概念暫時收攏。

由於動力來自潤滑油般的燃料與電池電力,所以GL-10才得到滑溜閃電的別名。引擎採混合動力設計,代表這架飛機不會像一般的噴射機一樣笨重,機體設計自然俐落得多,能源消耗也減低不少。

-----廣告,請繼續往下閱讀-----

GL-10原型機顯然體積太小,運輸酬載量不大,但NASA透露,GL-10屬於「無尺度」(scale-free)設計,亦即其重量與量度規格也能套用到更大的尺寸;也就是說,如果進一步測試順利,與GL-10相似的大型機種將愈來愈普及。

 

本文節錄自《How It Works知識大圖解 國際中文版》第13期(2015年10月號)

更多精彩內容請上知識大圖解

文章難易度
知識大圖解_96
76 篇文章 ・ 11 位粉絲
How It Works擅長將複雜的知識轉化為活潑有趣的圖解知識,編輯方式以圖像化百科呈現,精簡易懂、精采動人、深入淺出的圖文編排,讓各年齡層的讀者們都能輕鬆閱讀。

0

0
1

文字

分享

0
0
1
無人機攻擊,療傷用魚皮
胡中行_96
・2023/10/23 ・2546字 ・閱讀時間約 5 分鐘

2020年9月27日到11月10日,亞美尼亞與亞塞拜然發生第二次納戈爾諾-卡拉巴赫戰爭(Nagorno-Karabakh War)。新時代的戰爭科技,舉凡偵察和攻擊用的無人機,以及長程武器跟探測器等,全都用上了。無人機使用的火藥含有白磷,爆炸會造成致命的化學燒傷、冗長的住院期,還有高死亡率。臉、手等皮膚暴露的部位,最常遭殃。其他類型的爆炸創傷和槍傷,也時有耳聞。[1]

亞美尼亞(Armenia)、亞塞拜然(Azerbaijan)和納戈爾諾-卡拉巴赫(Nagorno-Karabakh)地區的約略範圍,部份邊界因戰爭而不時變動。圖/Aivazovsky on Wikimedia Commons(Public Domain)

醫院爆滿

亞美尼亞與亞塞拜然雙方皆死傷慘重。當時亞美尼亞的軍醫院爆滿,連普通醫院都加入救治受創士兵的行列。儘管多數傷患都有部份皮層或全皮層燒傷,醫療量能不足的情況下,他們得等上1個禮拜,才能接受手術。於此之前,只好先進行普通包紮,並投以高劑量的鴉片類止痛藥物。此外,理想上燒傷的地方應該全部切掉;偏偏戰爭期間,許多都只是部份切除,較容易在術後感染,而需要抗生素,甚至進一步手術。[1]

無細胞魚皮敷料

眼看再這樣下去不是辦法,有位亞美尼亞的國會議員,向冰島醫療用品公司Kerecis求助。[註1]短短72小時內,產品運送和專業支援都安排好了:冰島Hilmar Kjartansson醫師與英國Steven Jeffery醫師,帶著該公司的無細胞魚皮敷料(acellular fish skin graft),來鄰近戰區的亞美尼亞首都葉里溫(Yerevan),教大家處理傷口。[1]

大西洋鱈魚。圖/Hans-Petter Fjeld on Wikimedia Commons(CC BY-SA 3.0

此敷料用野生大西洋鱈魚(Gadus morhua)的表皮與真皮製作,[註2]含天然的Omega 3脂肪酸,因此具有制菌、消炎的效果。儲藏於室溫下的乾燥環境,保存期限3年。其厚度約0.6 mm,最大尺寸為300 cm2,形狀可依需求修剪。使用前添加生理食鹽水,便能撐到540 cm2的覆蓋面積。通常要釘住無細胞魚皮敷料,並配合負壓傷口治療(negative pressure wound therapy)或填塞敷料(bolster dressing),[1]吸走滲出的液體,[2, 3]直至傷口恢復到能開刀的程度。皮膚移植手術後,則要每3到5天換一次敷料。[1]

-----廣告,請繼續往下閱讀-----
負壓傷口治療:蓋上海綿和膠膜,再用機器抽除分泌物。影/3M Health Care on YouTube
Kerecis無細胞魚皮敷料。影/Kerecis on YouTube

個案報告

冰島和英國醫師總共去了亞美尼亞兩趟。他們救治的傷患大多已經燒傷3到5天,接受過初步清創,[1]並且早用濕紗布覆蓋,再任其自然乾燥,即所謂的濕至乾敷料(wet-to-dry dressings)包紮。[1, 4]視傷口情況,可能得再度清創,然後才舖上無細胞魚皮敷料,並施以負壓傷口治療。7日後,檢查可否移植皮膚。[1]

戰爭結束後,亞美尼亞和上述外籍的醫師,共同於美國外科軍醫協會(Association of Military Surgeons of the United States)的《軍事醫學》(Military Medicine)期刊發表論文。他們挑了下列幾個案例介紹:[1]

  • 19歲男性,遭爆破攻擊,含軀幹在內,大面積全皮層燒傷,其中左腳跟傷至見骨。於受傷第8天敷上魚皮前,已經接受過清創手術。(照片[1]
  • 32歲軍人,原文未提性別。骨骼外固定器支撐著右小腿的開放性骨折,傷口面積為15 cm × 21 cm。歷經3次清創,才蓋上魚皮。每3天檢查一次,順便換敷料。換過3次後,進行皮膚移植手術。(照片[1]
  • 28歲男性,白磷爆炸所致的全身燒傷,佔總體表面積的75%。以高壓水刀(water jet;hydrosurgery)清理後,進行10次清創手術,再敷上魚皮代替人類皮膚移植。(照片[1]
高壓水刀吸走壞死的組織。影/smithandnephewUKI on YouTube

戰時療傷利器

整體而言,他們照顧的傷患無人感染,而且無細胞魚皮敷料加速肉芽生長,傷口復原快了幾天到數週不等。[1]不僅使單純填補的皮膚移植手術能提早進行;甚至讓自帶血液供應的皮瓣移植,必要性減少。[1, 5]這篇論文的部份作者或許代表廠商立場,分析的樣本數又有限;[1]然而《Cureus》期刊的文獻回顧,也指出無細胞魚皮敷料的療效,對於燒傷和糖尿病的足部潰瘍,優於許多其他敷料。[6]更重要的是,亞美尼亞的這篇論文,提到無細胞魚皮敷料輕盈,容易運輸、儲存,使用方法又簡單。這在物流受阻的戰爭時期是相當關鍵的優點。[1]

  

-----廣告,請繼續往下閱讀-----

備註

  1. 根據2023年7月7日的新聞稿,丹麥公司Coloplast已經併購冰島公司Kerecis。[7]另外,臺灣的衛生福利部食品藥物管理署,於2018年8月核發二級醫材藥證,給美時公司引進的Kerecis 無細胞魚皮敷料。[8]
  2. 大西洋鱈魚和尼羅吳郭魚(Nile Tilapia)的魚皮,都可以用來製作無細胞魚皮敷料。[6]

參考資料

  1. Reda F, Kjartansson H, Jeffery SLA. (2023) ‘Use of Fish Skin Graft in Management of Combat Injuries Following Military Drone Assaults in Field-Like Hospital Conditions’. Military Medicine, usad028.
  2. Zaver V, Kankanalu P. (09 SEP 2022) ‘Negative Pressure Wound Therapy’. In: StatPearls. Treasure Island (FL): StatPearls Publishing.
  3. Lee E, Park SI, Kim D, et al. (2018) ‘Modified bolster dressing with continuous suction improves skin graft survival for an oral cavity wound’. Journal of Otolaryngology – Head & Neck Surg, 47, 68.
  4. DG Wechter, DC Dugdale. (11 MAR 2023) ‘Wet-to-dry dressing changes’. MedlinePlus, U.S.
  5. Prohaska J, Cook C. ‘Skin Grafting’. (16 AUG 2023) In: StatPearls. Treasure Island (FL): StatPearls Publishing.
  6. Ibrahim M, Ayyoubi H S, Alkhairi L A, et al. (2023) ‘Fish Skin Grafts Versus Alternative Wound Dressings in Wound Care: A Systematic Review of the Literature’. Cureus, 15(3): e36348.
  7. Coloplast announces agreement to acquire Kerecis and raises long-term growth expectations’. (07 JUL 2023) Kerecis.
  8. 韓婷婷(08 OCT 2018)「美時新藥迎接開花期 股價價量齊揚」中央通訊社
胡中行_96
169 篇文章 ・ 65 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

4
3

文字

分享

0
4
3
讓你一看就懂的無人機原理!——《世界第一簡單無人機》
世茂出版_96
・2022/03/23 ・2311字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

為什麼無人機飛得起來?

不管是載人的直升機,還是無人機,飛起來的原因都相同。轉子可帶動螺旋槳旋轉,使螺旋槳上下的氣壓產生差異。當螺旋槳上方的氣壓比下方的氣壓低,就會有一股拉力將螺旋槳往上拉(升力,將物體垂直向上拉升的力量),如此一來便能讓機體上升。

再來,同時使用多個螺旋槳,並分別調整各螺旋槳的轉速,就可以讓無人機自由上升 / 下降、前進 / 後退、左 / 右移動。事實上,仔細觀察飛行中的無人機螺旋槳,會發現相鄰的螺旋槳旋轉方向剛好相反。

想讓無人機前進時,會讓機體前方下傾。左右移動時也一樣,會讓前進方向的機體部份下傾。只要讓其中一側的螺旋槳轉速下降,就可以讓那一側的機體下傾,往那個方向移動。如果要讓四軸無人機旋轉,則需讓其中一條對角線上的螺旋槳轉速降低。

無人機的運動機制

無人機需靠轉子(馬達)轉動螺旋槳才能移動。大疆 Phantom 系列的多軸無人機所搭載的馬達,是所謂的無刷馬達(brushless motor)。

-----廣告,請繼續往下閱讀-----
大疆「精靈4」民用無人機。圖/維基百科

無刷馬達顧名思義,就是沒有電刷的馬達。相對的,學校自然科課程中提到的電刷馬達則是需要讓電刷與整流子持續摩擦旋轉,使用時會逐漸磨損。無刷馬達則是透過特殊電路驅動其旋轉,可以減輕維護的負擔。而且,無刷馬達可以透過名為 Hall IC 的磁場感應器持續監測馬達狀態,故可穩定控制其速度,當發生馬達負荷過重、線路接觸不良、斷線等異常狀況,可以馬上停止馬達運作,並發出警告訊號,以提高無人機的安全性。其他還有速度可控範圍廣、均勻扭矩(flat torque)、高功率等優點。

另外,將訊號送至轉子的零件叫做 ESC(Electric Speed Controller)。也可以說,ESC 就是控制轉子旋轉速度的零件。原則上,無人機搭載的 ESC 數量會與轉子數量相同。

ESC 的輸出端有三條電線,電流可控制轉子的旋轉。隨著轉子位置的不同,ESC 會輸出不同方向、不同大小的電流,使轉子能夠持續旋轉。也就是說,無刷馬達中的 ESC,扮演著一般馬達中整流子及電刷的角色。

相對的,ESC 的輸入端也有三條電線,分別是連接到電源正負極的電源線,以及從 FC(Flight Controller)接收訊號的訊號線。其中,FC 會蒐集來自陀螺儀感應器、加速度感應器、氣壓感應器、超音波感應器、磁場方位感應器、GPS 等裝置的資訊,以控制機體的行動。

-----廣告,請繼續往下閱讀-----
A generic ESC module rated at 35 amperes with an integrated eliminator circuit。圖/維基百科

無人機的感應器

  • 陀螺儀感應器與加速度感應器

陀螺儀感應器可以計算機體傾斜的角度,是穩定機體時不可或缺的感應器。相對的,與陀螺儀感應器十分相似的加速度感應器,則用於檢測速度。陀螺儀感應器與加速度感應器的組合,可以同時計算「傾斜狀況」與「速度」兩者的變化量,並控制機體往傾斜方向的反方向拉回,保持機體平衡,懸停於空中。簡單來說,陀螺儀感應器與加速度感應器就是能夠保持無人機姿態平衡的重點感應器。

  • 氣壓感應器與超音波感應器

高度越高時,氣壓感應器會測到越低的氣壓,故無人機可參考氣壓數字,以維持在特定高度。不過畢竟這只能用來偵測氣壓,要是遇到陣風或其他原因造成的氣壓變化,就有可能會失去功能。

超音波感應器可以利用超音波的回聲來感應自身高度。在無人機起飛或降落時,如果位於地表附近的無人機沒辦法透過氣壓感應器蒐集到足夠的高度資訊,就會用到超音波感應器。在高空使用氣壓感應器,在地表附近使用超音波感應器,兩種感應器的組合搭配,便可讓無人機在每個高度區間都能維持一定高度。

  • 磁場方位感應器與 IMU

磁場方位感應器有時也直接稱做羅盤,可感應地球的磁場(地磁),藉此瞭解無人機目前朝向東西南北哪個方向。不過,地磁的北邊(磁北)與地圖的北邊有一定差異,即磁偏角。而且隨著時間與地點的不同,磁偏角也不大一樣。舉例來說,札幌的磁北比地圖北邊往西偏了 9°,那霸卻只偏了 5°(參考自日本國土地理院網站)。因此,若換一個地方飛無人機,就需進行「羅盤校正」,重新確認磁場感應器所指示的北方,與實際北方間的差異。

-----廣告,請繼續往下閱讀-----
  • IMU

GPS 是全球衛星導航系統(GNSS:Global Navigation Satellite System)的一種,是美國的衛星系統。就像汽車的導航系統與智慧型手機的位置資訊服務一樣,無人機可接收 GPS 的電波,藉此判斷自身所在位置,並設定好飛行路線的經緯度自動飛行,或是可以懸停在某個固定位置。這就是所謂的「衛星定位系統」,用於戶外飛行的無人機多會裝設相關的電波收訊器。不過,就像汽車在進入隧道後,導航系統會失效一樣,無人機使用 GPS 時也有可能會突然收不到訊號。因此,為了維持無人機的安全飛航,操控者需隨時注意 GPS 電波的接收狀況。

另外,包括 Phantom 在內的某些多軸無人機,不僅會接收 GPS 訊號,也會同時接收俄羅斯衛星系統 GLONASS 的訊號,偵測機體本身的位置。

這些控制機體姿態的感應器通稱為 IMU(慣性測量單元:Inertial Measurement Unit)。

當出現「IMU 錯誤訊息」「機體不穩定」「羅盤方向不對」「穩定器傾斜」等狀況,就需進行「IMU 校正」。請養成攝影前以及在他處飛行前,一定要進行 IMU 校正的習慣。

-----廣告,請繼續往下閱讀-----
——本文摘自《世界第一簡單無人機》,2021 年 9 月,世茂出版
世茂出版_96
1 篇文章 ・ 1 位粉絲
旗下有三家出版公司,分別是世茂出版有限公司、世潮出版有限公司及智富出版有限公司。出版品以養生保健、銷售管理、親子幼教、簡易圖解科學、芳香精油、寵物教養、心理勵志、NLP等類為主。

0

7
1

文字

分享

0
7
1
想知道鯨魚健不健康?首先,你需要牠們的「鼻涕」!
Lea Tang
・2022/03/07 ・2203字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

為了瞭解鯨豚的健康狀況,科學家們正試圖用更好的方法,來蒐集牠們的鼻涕。

來觀察鯨豚囉!

鯨豚的背鰭,是牠們最容易被人們觀察到的部位,類似於人類的指紋,背鰭是鯨豚的辨識區,可以作為研究人員個體種類辨識上的依據【註1】。然而,若想進一步了解鯨豚的演化史,就不得不仰賴含有 DNA 的活體組織。

不同種類的鯨豚,背鰭都不同。圖/成功海洋環境教室 X ㄈㄈ尺

早期,科學家採集鯨豚活體組織的方式稱作「活體組織切片飛鏢」。如同字面上的意思,他們會向動物投擲飛鏢,獲得牠們的小部分組織作為樣本。但是,這種光用聽的就很痛的方式,不僅會讓鯨豚對研究船隻感到畏懼,更會使得牠們在水中生活時,成為傷口感染的高風險群。

值得高興的是,隨著科技進步,現在科學家已有了新的採集方式。這回,他們自製非侵入性的工具,而且決定改成採集「鼻涕」。

此鼻涕非彼鼻涕

說到鼻涕,我們容易聯想到感冒生病時,從鼻孔裡流出來的東西,不過這裡所提到的「鼻涕」,和那個可不一樣。鯨魚呼氣時所吐出的黏液並非來自呼吸孔,而是來自肺部【註2】。

-----廣告,請繼續往下閱讀-----
當鯨豚換氣時,會以相當大的力道呼氣,進而向空中發射鼻涕。有趣的是,不同種類的鯨魚也有不同的吐氣型態。圖/north-atlantic-society.com

藉由蒐集鯨豚呼吸孔吐出的氣,可以得到許多關於牠們的資訊——包含肺表面活性物質(一種蛋白質和脂質的混和物)、呼吸液與肺細胞。同時,這些樣本也可以用來檢測疾病以及皮質醇【註3】、孕酮【註4】等荷爾蒙,幫助研究者知道一頭鯨魚是否染病,甚至可以知道雌鯨是否有孕。

不過,鯨豚的鼻涕藥怎麼蒐集呢?接下來讓我們一起來看看方法。

鼻涕機器人登場

隨著 DNA 提取技術的進步,研究員們從 2010 年起便開始使用新的工具採集。一但在海面上觀察到鯨魚蹤跡,他們便驅船前往,伸出長長的的竿子,利用末端的培養皿來收集鼻涕。

最初,蒐集樣本的工具是一種培養皿與竿子的組合。圖/bbc.com

另一種進階版的工具稱作「鼻涕機器人」(The Parley Snotbot),由無人機和培養皿所組成。鯨魚換氣時,機器人會從後方靠近鯨身,讓鯨魚的鼻涕因慣性往後落在無人機上的培養皿中。

-----廣告,請繼續往下閱讀-----

不過以上兩種方法通常用來蒐集座頭鯨等大型鯨魚的 DNA,對於體積、肺部容積較小的海豚則不易達成【註5】。

鯨魚躍升時,鼻涕機器人會迅速在牠後上方 standby,在不驚擾與傷害對方的狀況下蒐集鼻涕。圖/howstuffworks.com

鯨魚鼻涕在遺傳學上的貢獻

至於我們能不能利用鼻涕檢體來進行遺傳學相關的研究呢?答案是可行的。儘管小型鯨豚的鼻涕提取比預期中困難,科學家仍然能從樣本中回收一些粒線體 DNA。

正在分析的鼻涕樣本。圖/bbc.com

他們嘗試以聚丙烯製成的管子倒置在水族館豢養的海豚氣孔上,以得到每隻海豚體內的粒腺體 DNA 和微衛星 DNA ,收集到比野外樣本更加豐富的數據。此外,科學家也發現,從海豚鼻涕中獲得的 DNA 圖譜與從血液中取得的 DNA 圖譜相符,證明了在研究海豚遺傳學上,使用鼻涕的結果可能和抽血一樣好。

現在,科學家們要克服野外採集樣本量不足的挑戰,以期在未來能結合傳統的照片識別,建立有關海豚種群的遺傳學目錄

-----廣告,請繼續往下閱讀-----

【註】

  1. 不同種類的鯨豚會有不同形狀的背鰭。就算是同種,不同個體背鰭上的花紋也都不一樣。
  2. 由於鯨豚僅靠呼吸孔呼吸,呼吸孔的堵塞會使牠們窒息死亡。2016 年,研究員曾發現一條呼吸孔先天畸形的海豚在換氣時用嘴呼吸,但這是目前所知的唯一例外。
  3. 腎上腺皮質激素中的糖皮質激素,可以提高血壓、血糖水平和產生免疫抑制作用,有助身體調節壓力事件。
  4. 屬於孕激素荷爾蒙的一種,與懷孕、胚胎與月經週期有關。
  5. 座頭鯨的體型大,吐息也大,容易被船上的研究員發現。海豚因為個體嬌小,肺部僅有約兩個橄欖球大,因此採樣相對困難:牠們呼出的液氣混和物距離海表過近,常在竿子到達前就被海浪打散。另外,面對來勢洶洶的龐大漁船,牠們往往跑得飛快、「走敢若飛」(tsáu kánn-ná pue),不利採樣進行。

資料來源:

  1. 【鯨豚大小事】鯨豚背鰭說
  2. whales-do-not-catch-colds-but-they-do-get-snotty-blowholes
  3. ‘Dolphin snot’ used to look at health of pod off Gower
  4. Those snot-collecting drones are back, and this time they’re seeking dolphins
  5. The Usefulness of Dolphin Snot
  6. The ‘SnotBot’ Drone Is Making Scientific Research Easier on Whales

討論功能關閉中。

Lea Tang
20 篇文章 ・ 8 位粉絲
徜徉在極北之海的浪漫主義者。 喜歡鯨豚、地科、文學和貓。