2

0
2

文字

分享

2
0
2

紅皇后與有性生殖

科學月刊_96
・2011/05/13 ・4501字 ・閱讀時間約 9 分鐘 ・SR值 580 ・九年級

紅皇后假設是演化學中知名的理論,原本只是提出生物因為彼此競爭而會有共同演化現象,後更引伸來解釋有性生殖的出現。

程樹德

英國作家卡洛(Lewis Carroll)在他的奇幻大作《愛麗絲鏡中奇遇》(Through the looking glass, and what Alice found there)裡,描寫小女孩愛麗絲在夢中變成棋子,與紅皇后博弈(圖一)。紅皇后腳步疾行如風,但人卻總留在原地,落後於她的愛麗絲喘著大氣說:「在我們家鄉,您走得這麼快,肯定早不知走到那去了!」紅皇后說:「那是多慢的國度,在這你光是費勁跑,也只能留在原地。如果想到別的地方去,你至少得跑兩倍快才行!」

化石堆裡窩出紅皇后

1973年,終日窩在美國芝加哥大學收藏的化石堆及書山中的范華倫(Leigh van Valen),在研究海洋化石多年後,得到一個結論:「一科動物,不管牠在地球史上已存活了多久,牠滅絕的機率依然不會更小,而是隨機的變動,其意義即是不管過去表現多佳,想要生存,未來依然是危機重重呢!」

多年浸淫在化石堆,沒有太注重邊幅的范華倫,提出理論時鬍子長得快要比老年時的達爾文還長了。他體會到物種之間的生存競爭一向不容易,一物種縱使再適應牠所在的物理環境,但牠的競爭者和敵人不會讓牠鬆一口氣,因為這些競爭者也要適應同一個環境。由於資源有限,生存成了一場兩方競爭者無法雙贏,趨向零和的博弈。

范華倫在自己的理論中提出兩個重點。首先,生物面臨惡劣的物理環境,如乾旱冰冷飢饉,對生存誠然是挑戰,但在造成生物死亡的原因當中,物理環境占的比例算小,大多讓生物致死或失去繁殖能力的,仍以寄生蟲、掠食者及競爭者為主,因此他在論文中把演化壓力的主方向,由物理環境轉到生物環境。

-----廣告,請繼續往下閱讀-----

其次,既然生物在需要生死搏鬥的競爭當中會不停變化,那為何有些物種的形態始終滯留不變,甚至長達百萬年呢?范華倫認為生物會變,是因為與其他生物的武裝競賽,其變的重點可能是內在的生理及生化結構。這競賽可能表面似乎不變,但底下「鴨子划水」較勁更殷呢!這讓范華倫回憶起兒時讀到的紅皇后一角,她跑得飛快卻始終留在原地,便以此為自己的這項理論取了個童話般的名字——「紅皇后假設」(Red Queen Hypothesis),用來表示物種必須不斷演化,才能在競爭中保持現有地位,不致於被競爭者淘汰。

圖一:愛麗絲在鏡中世界遇上紅皇后,被強迫跟她競技。這一幕讓范華倫有所感觸, 用來命名他的演化理論。

范華倫把紅皇后假設稱為一個新演化定律,向一流學報投稿,但都被退了回來,最後論文被一個當時新設立的期刊《演化理論》(Evolutionary Theory)所接受,成了該期刊第一卷的第一篇。由於此文甚受演化學界重視,《演化理論》便因這篇論文一砲而紅。

雖然范華倫起初以「演化的軍備競賽」為主軸立論,但其他學者將之延伸到「有性生殖」上,使這一個理論有了新的面向。與無性生殖相比,有性生殖比較麻煩,不但雌雄要互相尋覓,而且雄性對生殖的貢獻雖稱緊要,但相對於雌性而言,投入資源之比例較小。因此若一個物種內,同時存在著有性生殖與無性生殖方式,那讓兩者競爭後代數量,則對行有性生殖者是很不利的。舉個例吧:若無性生殖(孤雌生殖)每次生4個子代,每一子代又生4個,第二代即有16個個體;但有性生殖要雌雄合作,方生4子,4子之中只有兩雌,故第二代只有8個個體,才兩代在數量上就有此差異,再久些有性生殖者豈不被排擠光了?因此若其他條件不變,有性生殖恐怕鬥不過無性生殖,不太可能演化出來。

有性生殖優勢何在?

但有性生殖畢竟出現了,而且不少動物都以之為唯一的繁殖方式,那麼尋求它的優點,就是眾多演化學家提出有性生殖優勢理論的目的了。就這些理論所注重的題材,大致可以區分為兩類:遺傳上或生態上的優勢論。

-----廣告,請繼續往下閱讀-----

從遺傳的層次來看有性生殖,它的優點是能造成個體基因的重新組合。雌雄各約貢獻了一半的基因,造成新子代,因而第一個有性生殖的優勢理論,認為好基因能因代代重組而歡聚一堂,產生更能適應外在環境的個體,這些個體再生殖更多後代,讓好基因的比例繼續累積上升,最終取代較次的基因。但好基因畢竟稀少,要在大族群內讓許多好基因聚首,真要等待不少時光,因此第一個理論的缺陷,便是發生的速度太慢了。

相對地,壞基因常因突變而產生,無性生殖者除不掉這些阻礙生存能力的基因,長久累積下來,後代子孫便會含有許多壞基因,適應不了環境,容易早夭。這個理論是由遺傳學家穆勒(Herman Muller)所提出,別名叫穆勒撐高機(Muller’s ratchet),取自撐高機裝置的特性——以單方向懸動拉抬重物,若反向運動恐會壓死底下的工作者,故會有安全裝置預防意外發生,藉此來形容基因的累積不會輕易往反向移動。相較之下,有性生殖可藉基因重組,拋棄壞突變,故有性生殖的第二個優勢理論,便是立足於避免壞基因在穆勒撐高機下累積的困境,甚至讓撐高機的機制反轉,經有性生殖淘汰掉壞突變較多的後代。

然而以上兩個基於遺傳上的優勢理論,均有發生時間過於遲緩,難以觀察的缺陷,於是生態解釋應運而生。理論演化學家威廉斯(George Williams)注意到,草在所生長環境周邊蔓延時,會向外長出無性的根或莖,但是當要送出遠行的小種子時,才會行有性生殖。相似的還有蚜蟲在氣候穩定的夏天行無性生殖,秋末才進行有性生殖,讓後代待在囊狀卵中熬過環境惡劣的冬天。威廉斯以彩票為例,說明這兩種模式背後的策略。

無性生殖就像購買大量同號碼的彩票,而有性生殖像買少量但號碼張張不同的彩票,兩者相較,前者中獎時雖然獲益會比後者高,但是後者的得獎機會要遠高於只買單一號碼,以此來比喻無性生殖與有性生殖在不穩定環境下尋求生存的效宜,故他的理論又被稱為彩票理論(lottery principle)

-----廣告,請繼續往下閱讀-----

加拿大蒙羅特羅市的貝爾(Graham Bell)試著為彩票理論來尋找證據。依據彩票理論,動植物若處在高緯度或高海拔處,因地理環境艱困而多變,那麼為了產生能適應變化的後代,行有性生殖者應該多於無性生殖。此外淡水環境易有旱澇、冰凍及溽暑等變化,而海水環境較穩定,故淡水生物行有性生殖的機會應該較海水生物要高。但貝爾研究的結果卻跟預期相反,反而是體形較小的無性生物喜住在多變或相對艱困的環境。

既然彩票理論也不怎麼受現實的證據支持,美國科學家季士林(Michael Ghiselin)便根據經濟學理論,提出分歧是對物種較佳經營策略的說法,他認為同種生物其實也會和同胞兄弟競爭,如果這些子代能有不同之處,可能會提高整體的存活率。就像是若父母靠某行業維生,到子代時如果沒有作出改變,兄弟全都開設同樣的店,則這個行業可能就會因為出現太多同行的競爭者導致難以為繼了。貝爾將這理論命名為「樹根糾纏的河岸論」(tangled bank hypothesis),源自於達爾文大作《物種起源》的最後一段,提到一個生物聚集的河岸。

圖二:噬菌體能入侵細菌體內,藉細菌的資源增殖。這張 電子顯微鏡照片中,小顆粒群即為噬菌體,右邊的半圓形 則為被噬菌體入侵的細菌。

貝爾的一位學生伯特(Austin Burt)接著推論,若河岸論有理,那麼體形小而生育率高的生物在行減數分裂時,染色體交換(crossover)發生的比率應該會多些,以增加後代的變異。結果卻又跟理論相反。他算出在一個週期的減數分裂中,人類染色體發生交換的平均數量有30個、兔子10個,原本預期應該最高的小鼠只有3個,表示長壽且成熟較晚的哺乳類,其染色體交換的頻率反而比較高。

以上諸多理論不是發生時效太慢,就是缺乏證據支持,因此演化學家只好繼續構思新的理論。當范華倫的紅皇后假設一出現,應用該理論的有性生殖優勢理論就應時而生,其中一例是針對寄主跟寄生蟲的關係,來說明有性生殖的好處。

-----廣告,請繼續往下閱讀-----

由於寄生蟲既多種又難防,因此寄主與寄生蟲的演化鬥爭,就無時無地不在進行,而有性生殖的好處,恰好在於能創造不同於親代的子代。只是有性生殖的子代基因會重組,上一代能有效抵禦寄生蟲的基因組合,在下一代反可能被打破,這似乎與前文有些矛盾,但考慮寄生蟲也可能演化出破解上一代抵禦能力的招數,則下一代寄主產生的新招數,反而讓同在演化的寄生蟲所難以預料。

用細胞及分子生物學來說明更易解釋,寄生蟲想侵入寄主,必定要結合到寄主細胞表面的接受器,故接受器似鎖,而寄生蟲的侵入蛋白似鑰匙。寄生蟲如果演化的速度夠快,便有機會演化出鑰匙蛋白,以入侵寄主;而寄主方面可以靠有性生殖存個鎖庫,每一代都拿出不同的鎖,用來防止寄生蟲破解。

美國科學家賴夫利(Curtis Lively)為此跑到紐西蘭研究一種淡水螺(Potamopyrgus antipodarum)和牠的寄生吸蟲(trematode)的關係。此螺會行純孤雌生殖,也行有性生殖,兩種生殖方法的螺均有分布在該島湖泊及河流中,而能寄生這種螺的吸蟲會吃掉螺的性器官,使其無法產生後代。

賴夫利針對66個湖中的螺,調查牠們有性及無性生殖的個體比例,以及被吸蟲侵擾的頻率,發現如果湖中的吸蟲越多,則該湖中的雄螺比例越高,表示他們比較常行有性生殖,亦表示這支持紅皇后假設。

-----廣告,請繼續往下閱讀-----

紅皇后的性演化理論自此有了證據的支持,而范華倫原設想競爭者之間的演化軍備競賽,尚不易有實驗的佐證,因為寄生蟲雖世代較短,但若寄主壽命很長,則不易觀察出兩種生物的演化互動,但若利用可以短時間大量繁衍的微生物,讓寄主是細菌而寄生蟲是噬菌體病毒(圖二),則比較容易研究它們的共同演化關係。

軍備競爭 終獲證據

由英國利物浦大學、牛津大學等四個單位聯合發表的一篇論文,利用一個簡單的實驗,來測驗病毒與細菌的共同演化關係。這個共同演化實驗,使用了1000隻噬菌體病毒(Φ2噬菌體病毒),來感染1000萬隻假單胞桿菌(Pseudomonas fluorescens),待兩天後再取出60微升的菌液,建立下一代的細菌跟病毒。

在這種處理中,細菌跟病毒都有可能演化,故可視為一個共同演化體系。而在對照用的控制組中,則是先用氯仿破壞細菌,使其釋放菌體內的病毒,再取60微升病毒液感染原始菌株,在這種操控下只有病毒可能演化,而細菌因為一直反覆使用原始菌株,故演化的機率極低。如此做了12代(換瓶一次叫一代),共計6個共同演化的實驗組及6個病毒單獨演化的控制組,然後再分離族群內的病毒,決定其核酸序列,與起始的祖先相比對,並繪製親緣關係樹。結果發現,共同演化組中有5群病毒,與開始實驗時的原始病毒序列相差甚多,而只進行病毒演化的6個族群,與原始病毒序列相差較少,可見病毒在有寄主細菌共同演化的競爭壓力下,其分子演化速率才會較快,這正與紅皇后假設相符。

研究者還取共同演化跟單獨演化的病毒,去感染不同族群內演化的寄主,發現共同演化出來的6組病毒感染力各有不同,但是控制組單獨演化的病毒,已完全不能感染實驗組經歷過共同演化的寄主細菌,表示這些細菌有了明顯的改變,雖躲不掉被共同演化的病毒感染,但已能抵禦控制組中單獨演化的病毒侵襲。

-----廣告,請繼續往下閱讀-----

研究者從這些病毒的序列中,發現有4個基因發生最多的變化,其中一個基因是負責病毒尾狀構造的蛋白,在病毒進行感染侵入細菌時有重要功能,所以是共同演化受到競爭壓力最大的地方。經過12代演化後,病毒的尾部長度明顯縮短了,或許表示短尾的病毒比原本尾部較長的病毒更能感染寄主。

在這個簡單實驗中,研究團隊蒐集證據,支持范華倫的軍備競賽假設,即當寄主與寄生蟲互鬥時,雙方分子可能共同發生高速演化,造成遺傳分歧的後果。相對於人類的科技發展,發展最快的時段,不也是在有競爭壓力下的幾次大戰跟冷戰期間嗎?

引用文獻:
1. Ridley, M., The red queen:sex and the evolution of human nature, Penguin Books, 1993.
2. Paterson, S., et al., Antagonistic coevolution accelerates molecular evolution , Nature, vol. 464:275-278, 2010.

本文作者為程樹德,任教於陽明大學微免所

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 2
科學月刊_96
249 篇文章 ・ 3653 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

2

2
0

文字

分享

2
2
0
【2023 年搞笑諾貝爾化學與地質獎】舔石頭以外,猛獁象竟是海龜湯?
寒波_96
・2023/10/20 ・2211字 ・閱讀時間約 4 分鐘

搞笑諾貝爾獎每年都是新的開始,2023 年也不例外。今年「第 33 次第一屆搞笑諾貝爾獎」頒發十個獎項,「化學與地質獎」以看似獵奇的舔石頭博取不少眼球,不過得主揚.扎拉謝維奇( Jan Zalasiewicz)的文章中,其實還提到另一件知名的歷史公案。

1951 年晚宴真相,竟然是海龜湯?!圖/americanoceans

1951 年晚宴真相,竟然是海龜湯?!圖/americanoceans

文學史上用味覺帶出情節,最知名的案例之一是普魯斯特的小說《追憶似水年華》開頭,由瑪德蓮的味道切入,接著進入意識的海洋游泳。扎拉謝維奇的文章開頭,也從品嚐岩石的味道切入,自由切換不同的題材。

地質學家為什麼要舔石頭?《舌頭、石頭,迸出新滋味?科學家為什麼要舔石頭?——2023 搞笑諾貝爾獎》一文有精簡介紹。最主要的理由是,缺乏現代儀器之際,舌頭可謂方便的化學感應器,能提供有用的資訊。

-----廣告,請繼續往下閱讀-----

當然,即使有了現代儀器,舌頭還是很方便的工具。

處於意識流科學史中,扎拉謝維奇的文章從舌頭感應器,十分合理地切換到一場宴會。那場 1951 年的晚宴中,據說提供猛獁象肉製作的餐點。

這場晚宴由美國的「探險俱樂部(The Explorers Club)」舉行,主辦方宣稱當天有道菜,來自已經滅絕的動物大地懶(Megatherium)。但是幾天後有報紙披露,宴會中的奇珍異獸不是大地懶,而是來自阿留申群島,25 萬年久遠的猛獁象!

1951 年保存至今的晚餐。圖/取自 參考資料3

-----廣告,請繼續往下閱讀-----

奇妙的是,當天的餐點竟然有少量樣本被保留至今。當時沒有參加的豪威斯(Paul Griswold Howes)寫信要到一份樣本,一直保存到他去世為止。後來樣本輾轉來到耶魯大學的皮博迪自然史博物館(Yale Peabody Museum)。

那一餐到底是大地懶,還是猛獁象呢?2014 年,耶魯大學的研究生葛拉斯(Jessica Glass)等人成功由樣本中取得 DNA,結果在 2016 年發表。比對之下相當明顯,答案是綠蠵龜。

現今綠蠵龜是保育類動物,合法的狀況下沒有機會吃到。然而 1951 年那個時候,綠蠵龜尚未面臨滅團威脅,仍然是普遍的食材。

區區綠蠵龜製成的海龜湯,當然無法彰顯晚宴的尊絕不凡。不過俱樂部宣稱的大地懶,怎麼又會變成猛獁象?

-----廣告,請繼續往下閱讀-----

最可疑的是當天在場的俱樂部成員尼可斯(Herbert Bishop Nichols),他也是基督科學箴言報(The Christian Science Monitor)的科學編輯。可考的記錄中,他第一個對外提出相關描述,後來被視為吃猛獁象的證據。

海龜湯的幾位相關人猿。(A) 據說將食材從北極帶回的極區探險家 Father Bernard Rosecrans Hubbard。(B) 極區探險家 George Francis Kosco。(C) 晚宴主辦人 Wendell Phillips Dodge。(D) 保存樣本的 Paul Griswold Howes。圖/取自 參考資料3

如果真的是那道菜的材料,那麼狀況就是:俱樂部用綠蠵龜做菜,宣稱是大地懶,報紙以訛傳訛寫成猛獁象。

「吃猛獁象」之類的傳聞,雖然不是嚴謹的科學,卻因為有噱頭而容易引人注目。作為沒多少負面影響的玩笑,也沒有人想要特別澄清。使得這類事件的真相,往往不了了之。

-----廣告,請繼續往下閱讀-----

儘管沒有特別獲得搞笑諾貝爾獎關注,對於這道海龜湯的追根究底,倒是相當符合搞笑諾貝爾獎的精神。

海龜湯以後,扎拉謝維奇的文章意識又跳躍到另一種已經滅團的生物:貨幣蟲(Nummulites)。許多古生物,當初也是其他古生物的食物。儘管擁有堅硬的外殼保護,貨幣蟲這種生物依然有機會成為美食。

1912 年的時候,英國古生物學家庫克派崔克(Randolph Kirkpatrick)提出一個觀點:地球有一段時間存在非常大量的貨幣蟲,後來它們變成稱為「貨幣球(Nummulosphere)」的地層,是地殼岩石的源頭。

看起來很搞笑,可是庫克派崔克是認真的。所以他即使生在現代,應該也沒有獲得搞笑諾貝爾獎的機會。

-----廣告,請繼續往下閱讀-----

2023 年搞笑諾貝爾獎頒獎典禮影片(化學與地質獎從 10:18 開始):

延伸閱讀

參考資料

  1. The 33rd First Annual Ig Nobel Prizes
  2. Eating fossils
  3. Was Frozen Mammoth or Giant Ground Sloth Served for Dinner at The Explorers Club?
  4. Mammoth meat was never served at 1950s New York dinner, says researcher

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

所有討論 2
寒波_96
193 篇文章 ・ 1066 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

2

14
5

文字

分享

2
14
5
【2023 年搞笑諾貝爾獎快訊】10 項怪奇獲獎研究出爐
PanSci_96
・2023/09/15 ・3874字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

一年一度、讓你廢到笑出來的搞笑諾貝爾獎,今年在美東時間 9 月 14 日下午 6 點準時直播。

今年的主題為「水」,這次 10 項獲獎都或多或少與「水」有關(但大部分是口水),現在就快讓我們一起來看看今年的得獎快訊,並一起期待後續的個別研究報導吧~

化學和地質獎:為什麼地質學家與古生物學家會舔化石

這是一封說明「過去」地質學家與古生物學家,為什麼會有舔化石習慣的「快訊」(發表在期刊上,但被歸類為快訊),這封快訊說了幾個故事,其中最讓我印象深刻的,是「義大利地質之父」的喬瓦尼·阿爾杜伊諾(Giovanni Arduino,1714-1795)用自己的舌頭「品嚐」這些化石,分類出可能是史上第一個「地質時期」

故事的亮點是引用了喬瓦尼·阿爾杜伊諾的研究紀錄,看起來就像是個美食家在品嚐化石。

-----廣告,請繼續往下閱讀-----

文學獎:重複寫字,直到感覺不對勁

A 編小學時,曾被老師罰抄生字 100 遍,寫到一半突然懷疑這個字是不是這樣寫,趕緊回頭看前面寫的字,還把課本翻出來看才確定自己沒有寫錯。

上述的情境,稱為「猶昧感」(Jamais Vu),「猶昧感」是「既視感」(Deja Vu)的反義詞,描述人們對熟悉的事物,突然感到陌生,也是這篇論文主要探討的主題。

這研究的笑點在於他的實驗,他們讓受試者一直重複寫同一個字,跟小學被老師罰抄生字一樣。

實驗中,約有三分之二的受試者體驗到「猶昧感」,這些受試者大約在重複 30 次或一分鐘後開始感到異狀。另外,研究也發現平常越容易發生「既視感」的人,也更容易發生「猶昧感」,未來「猶昧感」的相關研究,可能會加深我們對「既視感」的理解。

-----廣告,請繼續往下閱讀-----
  • 原文研究: “The The The The Induction of Jamais Vu in the Laboratory: Word Alienation and Semantic Satiation,” Chris J. A. Moulin, Nicole Bell, Merita Turunen, Arina Baharin, and Akira R. O’Connor, Memory, vol. 29, no. 7, 2021, pp. 933-942.  doi.org/10.1080/09658211.2020.1727519

機械工程獎:死靈機器蜘蛛

會招喚骷髏或操縱屍體的死靈法師稱為 Necromancer,而科學家再次中二病發作,把用液壓操控的蜘蛛屍體,稱作 Necrorobotics 死靈機器。

我跟同事討論這種死靈機器,算不算是一種仿生科技?他覺得是,我覺得不是,你們覺得呢?

  • 原文研究:“Necrobotics: Biotic Materials as Ready-to-Use Actuators,” Te Faye Yap, Zhen Liu, Anoop Rajappan, Trevor J. Shimokusu, and Daniel J. Preston, Advanced Science, vol. 9, no. 29, 2022, article 2201174.  doi.org/10.1002/advs.202201174
死靈機器蜘蛛。

公共醫學獎:斯坦福馬桶

恩,就是接上各種感應器的物聯網馬桶,能即時檢測使用者的糞便與尿液。這東西最酷的是能「肛門辨識」,只要坐到馬桶上,斯坦福馬桶就能透過肛門的型態,辨識出使用者!

因為這個獎項,我才知道原來每個人的肛門都長得不一樣……謝謝你,搞笑諾貝爾獎。

-----廣告,請繼續往下閱讀-----
  • 原文研究:
    •  “A Mountable Toilet System for Personalized Health Monitoring via the Analysis of Excreta,” Seung-min Park, Daeyoun D. Won, Brian J. Lee, Diego Escobedo, Andre Esteva, Amin Aalipour, T. Jessie Ge, et al., Nature Biomedical Engineering, vol. 4, no. 6, 2020, pp. 624-635.  doi.org/10.1038/s41551-020-0534-9
    • “Digital Biomarkers in Human Excreta,” Seung-min Park, T. Jessie Ge, Daeyoun D. Won, Jong Kyun Lee, and Joseph C. Liao, Nature Reviews Gastroenterology and Hepatology, vol. 18, no. 8, 2021, pp. 521-522.  doi.org/10.1038/s41575-021-00462-0
    • “Smart Toilets for Monitoring COVID-19 Surges: Passive Diagnostics and Public Health,” T. Jessie Ge, Carmel T. Chan, Brian J. Lee, Joseph C. Liao, and Seung-min Park, NPJ Digital Medicine, vol. 5, no. 1, 2022, article 39.  doi.org/10.1038/s41746-022-00582-0
    • “Passive Monitoring by Smart Toilets for Precision Health,” T. Jessie Ge, Vasiliki Nataly Rahimzadeh, Kevin Mintz, Walter G. Park, Nicole Martinez-Martin, Joseph C. Liao, and Seung-min Park, Science Translational Medicine, vol. 15, no. 681, 2023, article eabk3489.  doi.org/10.1126/scitranslmed.abk3489

傳播獎:嗎話說著倒能你?

趣有超也獎學播傳,心擔別,的常正是來過反來起看子句得覺在現你!

你有試過快速把彩虹的顏色順序倒著背,或是把你說話中的每個名詞都倒過來講嗎?大家都知道這超難,但這份研究中的兩位受試著確有著超強「顛倒單字或語句」的能力。

研究對象以西班牙語為母語,他們能在對話中輕鬆地將 banana 念成 ananab,或是將「 basket is fun」念成「nuf si teksab」。研究著重在這兩位有著特殊能力的人,推理、記憶能力是否優於常人,以及大腦灰質、白質比例與一般人(對照組)是否有差別。

大腦如何組織語言一直都是個有趣的研究題目,像是為什麼中文的序順不會響影到閱讀,這也是 A 編跟大家都一樣好奇的。而了解大腦語言是如何形成的,也能推進對於失語症、癡呆症的症狀研究。

-----廣告,請繼續往下閱讀-----
  • 原文研究:“Neurocognitive Signatures of Phonemic Sequencing in Expert Backward Speakers,” María José Torres-Prioris, Diana López-Barroso, Estela Càmara, Sol Fittipaldi, Lucas Sedeño, Agustín Ibáñez, Marcelo L. Berthier, and Adolfo M. García, Scientific Reports, vol. 10, no. 10621, 2020.  doi.org/10.1038/s41598-020-67551-z

醫學獎:屍體兩個鼻孔的鼻毛數量是否一致?

俗稱鬼剃頭的「圓禿」(Alopecia areata)不只會頭髮脫落,同時睫毛、眉毛與鼻毛也會脫落,其中,鼻毛脫落會增加得到過敏、呼吸道感染的機率。

由於鼻毛的相關研究非常少,為此,研究者調查 20 具「遺體」的鼻毛數量與長度,並收集相關病史、死往原因…等數據,來評估正常人的鼻毛數量與長度。研究結果顯示,平均每個鼻孔的鼻毛數量約為 120~122 根,左右鼻孔並沒有顯著差異,鼻毛平均長度大約是 1 公分。

  • 原文研究:“The Quantification and Measurement of Nasal Hairs in a Cadaveric Population,” Christine Pham, Bobak Hedayati, Kiana Hashemi, Ella Csuka, Margit Juhasz, and Natasha Atanaskova Mesinkovska, Journal of The American Academy of Dermatology, vol. 83, no. 6, 2020, pp. AB202-AB202.  doi.org/10.1016/j.jaad.2020.06.902

營養獎:電流有一股「電味」

日本明治大學教授宮下芳明 (Homei Miyashita)與他的團隊,發現在筷子與吸管上附加微弱電流,會改變食物的味道。

他們發現微弱電流刺激舌頭時,會產生一股「電味」(論文上寫 Electric taste,你說我要怎麼翻比較好) 。這股「電味」味道如何呢?基本上沒有味道(不能啟動味覺細胞),但如果有其他味道存在,例如鹹味(氯化鈉)或鮮味(麩胺酸鈉),電味會讓食物吃起來更鹹或更鮮。

-----廣告,請繼續往下閱讀-----

接著,他們發明了連著電線的通電筷子與吸管(看起像整人玩具),證明了通電筷子與吸管確實能在不改變食物味道的情況下,讓人們吃進更少的鹽跟味精。

通電吸管構造
  • 原文研究:“Augmented Gustation Using Electricity,” Hiromi Nakamura and Homei Miyashita, Proceedings of the 2nd Augmented Human International Conference, March 2011, article 34.  doi.org/10.1145/1959826.1959860

教育獎:系統性研究課堂上感覺無聊的學生與老師

你覺得上課無聊嗎?多半人都會問答「是」,而這系列研究仔細分析了為什麼上課無聊,且越來越無聊的原因。

你可能會想:「那不就是老師上課很無聊啊,老師不有趣阿。」我只能說你們這樣太沒同理心了,搞不好老師也在想:「教你們真無聊!」

所以,研究者第一個想探討的問題是:「老師如果覺得無聊,會不會讓學生也覺得無聊。」先說結論,不會。

-----廣告,請繼續往下閱讀-----

雖然學生不會刻意去了解老師的心情。但如果學生明確感受到老師很無聊,像是死氣沉沉地念課文,學生就會覺得這堂課更無聊,進而影響學習動機與學習成效。某種程度上,研究還是印證了「老師不有趣覺得無聊」這件事,但老師是否在強顏歡笑,這就不得而知了。

另一個問題則是:「是不是想著上課很無聊,就會覺得更無聊?」沒錯,的確是這樣!只要上課前預期這堂課很無聊,那這堂課就會比你預期的還要更無聊!

  • 原文研究:
    • “Boredom Begets Boredom: An Experience Sampling Study on the Impact of Teacher Boredom on Student Boredom and Motivation,” Katy Y.Y. Tam, Cyanea Y. S. Poon, Victoria K.Y. Hui, Christy Y. F. Wong, Vivian W.Y. Kwong, Gigi W.C. Yuen, Christian S. Chan, British Journal of Educational Psychology, vol. 90, no. S1, June 2020, pp. 124-137.  https://pubmed.ncbi.nlm.nih.gov/31342514/
    • “Whatever Will Bore, Will Bore: The Mere Anticipation of Boredom Exacerbates its Occurrence in Lectures,” Katy Y.Y. Tam, Wijnand A.P. Van Tilburg, Christian S. Chan, British Journal of Educational Psychology, epub 2022.   doi.org/10.1111/bjep.12549

心理學獎:你會跟著抬頭看天空嗎?

他們到底在看什麼?眼前一群人停下腳步抬頭看著上方,你一定會跟著將視線移向相同的地方,看看他們到底在看什麼。

沒錯,這就是著名的從眾效應,或稱做群聚效應、羊群效應。這個1969年進行的經典實驗,應該很多人也聽說過。Stanley Milgram、Leonard Bickman、Lawrence Berkowitz 三人組,在紐約的街道上測試要有多少人同時往上看,才能吸引其他人也駐足湊熱鬧。

-----廣告,請繼續往下閱讀-----

這個實驗能得獎感覺毫不意外,甚至覺得怎麼現在才得獎!

群聚效應引響甚遠,因為整個社會的運作都養類人與人之間的互動與連結。不管是跟風買東西、參與熱鬧的大型活動、政治意識型態的抉擇等等,都能看到群聚效應影響著人們的身影。

大家都有可能是羊群裡面的羊。

  • 原文研究:“Note on the Drawing Power of Crowds of Different Size,” Stanley Milgram, Leonard Bickman, and Lawrence Berkowitz, Journal of Personality and Social Psychology, vol. 13, no. 2, 1969, pp. 79-82. psycnet.apa.org/doi/10.1037/h0028070

物理學獎:一群鯷魚能影響海流?

一隻拍翅膀的蝴蝶能讓海的對面產生颶風,那一群在海中游泳的鯷魚呢?他們可能直接影響了洋流與海面的大氣流動。

如果要計算颱風能量或是海洋鹽分的變化,我們通常會考慮海面風速與氣壓,要不然就是洋流、海溫和密度的垂直梯度等等。但這份研究發現,我們或許忽視了大海居民造成的影響。

研究發現只要到了鯷魚的產卵季,當天晚上海面附近海水的垂直混合程度會增加10~100倍。也就是這群游動的小魚們,像是攪拌棒一樣攪混了上層海洋,程度相當於地球物理現象造成的影響,對海溫與營養鹽分布的作用可能比我們想像的還大。

  • 原文研究: “Intense Upper Ocean Mixing Due to Large Aggregations of Spawning Fish,” Bieito Fernández Castro, Marian Peña, Enrique Nogueira, Miguel Gilcoto, Esperanza Broullón, Antonio Comesaña, Damien Bouffard, Alberto C. Naveira Garabato, and Beatriz Mouriño-Carballido, Nature Geoscience, vol. 15, 2022, pp. 287–292.  doi.org/10.1038/s41561-022-00916-3
所有討論 2