生物與非生物之間,有什麼不一樣?什麼是生命?當我們走在海邊的沙灘上,腳下遍布著有美麗花紋的小石子,旁邊有著一顆顏色幾乎相同的小貝殼。雖然已經失去了生命,但我知道它確實曾有生命在運作。那麼,小貝殼和小石子的決定性差異是什麼?日本分子生物學福岡伸一教授,帶我們從分子的層次,了解什麼是生命。
閱讀全文:生物與非生物之間,在《生命是最精彩的推理小說》 | 張清浩律師的部落格。
生物與非生物之間,有什麼不一樣?什麼是生命?當我們走在海邊的沙灘上,腳下遍布著有美麗花紋的小石子,旁邊有著一顆顏色幾乎相同的小貝殼。雖然已經失去了生命,但我知道它確實曾有生命在運作。那麼,小貝殼和小石子的決定性差異是什麼?日本分子生物學福岡伸一教授,帶我們從分子的層次,了解什麼是生命。
閱讀全文:生物與非生物之間,在《生命是最精彩的推理小說》 | 張清浩律師的部落格。
本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。
我們怎麼「看到」顏色,「察覺」東西在動?大腦如何產生視覺?中央研究院「研之有物」專訪院內細胞與個體生物學研究所所長李奇鴻,他是國際知名的神經科學家,過去長期在美國國家衛生院(National Institutes of Health)做研究,2018 年回到中研院貢獻自己所學。李奇鴻的實驗室主要是以果蠅視覺系統為模型,研究神經元如何在發育過程形成複雜的突觸連結,以及神經迴路如何產生視覺來引導動物行為。
神經系統如何運作?這對以前的科學家來說是黑盒子。由於大腦發生錯誤或出問題時,會直接表現在外在行為上,早期科學家想了解人腦運作機制,只能透過腦部哪裡受傷壞掉或中風等,知道腦部的大概功能區域,但沒辦法進入細胞層次。
「在生物學的發展上,除了需要有智慧的思考,其他都要靠技術去推動。你可能想到一個有趣的題目,但也許要 30 年後,才出現足夠的技術來解決問題。」李奇鴻舉例,從光學顯微鏡、電子顯微鏡、電生理技術、分子生物學到結構生物學發展,每個都在細胞、分子、及系統層次開啟了新的世界。
隨著顯微技術與遺傳工程日益完備,果蠅成為現今熱門的腦科學研究對象。李奇鴻指出,「果蠅的生長速度快,相較老鼠要幾個月成熟,果蠅只要兩週。果蠅的大腦複雜程度介於人和單細胞生物中間,結構跟人高度相似,成果可應用在人身上。」
因此,近 10 幾年來是神經科學大起飛時代,科學家透過遺傳學方法控制果蠅的神經元活性、觀察行為,藉此了解哪些基因會影響大腦發育和運作,逐漸破解神經迴路的奧祕。
「我在選博士後研究時,想到底要做線蟲、老鼠、魚、果蠅或其他模式生物?最後才選果蠅。回想起來,近年剛好碰到果蠅相關技術蓬勃發展,選果蠅是很正確的決定!」李奇鴻笑道。
李奇鴻引用知名神經科學家 David Marr 的三層假說(tri‐level hypothesis),認為大腦運作有三個層次:
李奇鴻表示,「過去多數神經科學家都在討論 computation,再探究 algorithm,卻沒辦法解決 implementation 。現在因為具備技術,科學家終於能找出 implementation,再回推上層問題,甚至發現 algorithm 跟原本想的不一樣。」
關於神經系統的操作方式(Algorithm level),也有因為技術進步而解決爭議的案例。李奇鴻舉例,以前神經科學家在研究視覺系統感受物體運動的機制,曾出現幾種理論,HR 理論認為神經訊號是用乘法,另一派 BL 理論認為是用減法,爭議了很久。
近年科學家發現,原來視網膜感知系統的運算機制是混合的,一共三種,稱為 HR-BL 混合視覺運動偵測器。過去兩派都只對了一半。
Hassenstein-Reichardt(HR)模型:從昆蟲行為研究而來。
Barlow-Levick(BL)模型:從兔子電生理研究而來。
近代電腦的所有運算都能用 and、or、Xor 三個邏輯閘表達,科學家想知道,大腦裡有沒有類似但更高階的神經迴路運作方式?「從感官到行為比較容易觀察和操作,目前在視覺運動方面的神經迴路運作,我們知道的最多。」
李奇鴻近年在做昆蟲視覺與行為研究,發現昆蟲在感受顏色,如綠光和紫外光時,感光細胞的處理方式是先將紫外光跟綠光的強度做比較,把兩個光的強度相減,讓原本兩個訊號變成一個訊號,所謂的「顏色拮抗」。
「這種神經迴路能解析、比較兩個顏色強度的差異性,因為大部分在視覺上最重要的正是對比。拮抗運算模組能在一片訊號裡找出哪裡最強、其他較弱。其他感官機制也一樣,像觸摸物品時有凸出來的部分較重要,聽覺上要找出哪個聲音特別高等,讓最重要的訊號能凸顯出來。」李奇鴻補充道。
2021 年李奇鴻的團隊首次發現果蠅視覺系統堆疊了多套拮抗運算模組,以達成顏色及空間接受域雙拮抗的效果,成果發表在《Current Biology》。這樣的神經迴路可以比較相鄰的顏色,產生色彩區間對比感。「沒這樣的功能,我們就看不出紅配綠很悲劇了!」李奇鴻笑道。
科學家們正努力鑽研果蠅大腦的神經運算迴路,希望逐步整理出基本運算模組。或許有一天,看似複雜的大腦功能,都可能用基礎的迴路來破解!
「我滿晚才走上科學研究的道路。我對電腦有興趣、喜歡寫程式,大學上中國醫藥學院醫學系,家裡也希望我當醫生。不過在實習時,我發現自己對治療病人沒興趣,反而對問題或疾病本身更有興趣。跟幾個老師談過之後,我決定不當醫生,跑去清華大學讀生命科學,後來就到中研院。」
因為有醫學背景,一開始比較想做能立刻解決問題的研究,像是用蛋白質跟毒素的綜合體來治療癌症。但後來了解,如果沒有深刻了解致病機制、沒有鑽進基礎科學研究,很難有突破。
後來去美國洛克斐勒大學攻讀博士,在洛克斐勒讀書期間,大家常互相交流,對我有很大的啟發。那時我在鑽研結構生物學,希望了解疾病真正的生理過程,曾解開愛滋病病毒跟人體信號傳遞有關的蛋白質結構。
博士畢業前,我接觸到神經科學,感到很有興趣,就去加州大學洛杉磯分校(UCLA)讀博士後,學神經科學裡的發育學,想了解大腦在發育過程是如何用不同分子在細胞間傳遞訊息。那時我待在很大的實驗室,老師不太管學生,要自己想辦法或跟旁邊的人學習,很多人素質都很高,學習環境很好。
之後我進入美國國家衛生院(National Institutes of Health,NIH)開始開實驗室帶自己的團隊,待了 16 年,算是真正進入神經科學領域,直到現在依然在做相關研究。
每個人的人生選擇,都被以前的經歷主導,如果沒有醫學背景,恐怕我不會去學結構生物學或走入大腦神經科學領域。
「我 26 歲出國,在美國也待 26 年,幾乎完全融入美國生活,實驗室運作得蠻好,連太太也是美國人。但在美國很多年後,內心出現一個很深感覺:我在臺灣待過這麼久,臺灣是我進入科學的起點,也許該回來教教臺灣的子弟。」
剛開始有些想法,曾受邀回臺演講幾次,但沒有下決心。後來出現一個重要轉捩點。中研院分子生物研究所 30 週年慶時邀我回來演講,那時有機會跟歷任所長聊天,這些所長中許多是我過去在中研院碰過的老師。聊了後感觸很深,發現每任所長都要面對分生所的成長或各種問題,每個所長都有獨到的見解和重要貢獻。
我看到分生所運作得很好,覺得非常感動, 內心想:也許我回來能效法他們,也許對中研院細胞與個體生物學研究所的發展能有一點點實質貢獻。
雖然如果待在美國國家衛生院,我也會有這樣一個機會,但還是想帶自己的子弟,把力氣用在自家子弟身上,讓自己的國家和組織進步。我想將在美國國家衛生院學到的經驗,像哪些組織可以運作、哪些不行,嘗試帶回臺灣。
我很清楚可能碰到的問題,像科學研究會受影響,要重新花幾年時間建立實驗室,但那次契機讓我徹底下定信心。我曾跟廖俊智院長開玩笑,就算不給我錢,我大概也會回來。因為真的覺得這是一個很好的機會,自己能為中研院、為臺灣做些事。畢竟中研院也一直都像我的家!
不過,畢竟過去在美國實驗室和家裡都是講英文,只有打電話給媽媽會說臺灣話,因此, 2018 年剛回臺灣時,國語講得不太流利,臺灣話反而比較流利。
「國外最大特點是學術交流很頻繁,雖然國內也蠻頻繁,但他們交流層次更深入。也就是說,我跟參與的老師交流之後,常能改變想法、做事方法或方向,且是正向的改變。」
國外老師受邀演講,會很積極在幾小時內一直談,在一天中完全沉浸其中,不單講出自己在做的東西,也要求聽眾給予批評或建議等,彼此有深度交流,我每次參加都覺得收穫很多並產生合作可能性。
國內我的經驗是,演講結束後比較缺乏機會跟其他老師深度溝通,領完演講費就屁股拍拍坐高鐵回來。這可能是國內的慣有模式,我覺得需要改變。現在所內我也要求大家,既然花錢請老師來,一定要做深度交流,請對方給予建議。
重要的不是形式或邀到諾貝爾獎得主之類,而是在演講結束後、這個人走出我的辦公室、這些人離開後,對我做的事或做事方法,是不是有什麼實質的改變?在其他科學家交談中是否能得到啟發,改變自己的思考或做實驗方式?或聽聽別人告訴你,你還有哪些沒想到的地方?
分享,也是一種很重要的技術,在交流過程中,當我們可以把一件事講清楚,自己也會茅塞頓開,知道問題在哪。
現在所裡的計畫是把老師分成各種不同興趣小組,組內做交流或有跨組活動。其餘像寫計劃、申請經費、經營實驗室或撰寫並發表文章,這些是基本技術問題。
做任何工作,一個是基本的核心技術,如果沒有「技」就無法生存;另一個是 「藝」(Art) , 可以驅動你一直做下去。訓練人才時,除了培養技術,還要訓練 Art。
「我想在科學裡面,Art 有很多面向。例如,你怎麼選擇一個問題,怎麼找切入點,如何把一個大問題拆成幾個可攻破的部分,一步步去解開,這是一種 Art。尤其在選擇問題和切入點上,要有獨特的見解或洞燭先機才能成功。」
科學家必須創造有用的知識。什麼叫有用的知識呢?就是聽到學到後,會改變你想事情的方向或做事的方法。很多東西都可以研究,只要科學方法夠嚴謹,都可以得到一些知識。但到底要選擇什麼題目呢?什麼叫做有趣的問題呢?評斷這些就是科學的 Art 。
如果說在人類前面是一個黑暗深淵,知識像光照亮我們前面的路,科學家就像站在最前面,要知道如何踏出那一步?怎麼踏出去?這是 Art。
當科學家看到一個問題、問題成形後,最重要的關鍵是如何選擇一個核心問題去解決。就像玩拼圖時,要放下去最核心、最重要的那塊拼圖。
我回到臺灣後,覺得這裡的研究環境很好,儀器不輸人家,老師很優秀。但可能我們多半只是關注自己的研究,沒有花時間認真去思考,最重要的一塊拼圖在哪裡?當我們有更深度的交流,才能找到最核心的那一塊,做出最重要的貢獻。
「在碩士、博士訓練中最重要的關鍵,是從「讀」科學變成真正「做」科學。我們攤開一本教科書,看到裡面講這個、那個,只是讀人家的科學。即使去念了原始文章,仍然是看著科學怎麼被別人做出來而已。」
自己真正做研究才知道,教科書上每一頁、每一句,背後都可能有數千篇文章支持,那時才知道自己很渺小,懂得謙虛,了解自己一生能做的有限。
所以,每次要跨出一小步,要想該怎麼跨最有效率、得到最大效果。我認為,在碩士班或博士班,最重要的就是了解這種感覺。
有些學生可能覺得,反正我很渺小,世界這麼大,即使做一輩子,即使最成功的科學家,也不過是得到教科書上面的一句話而已,我怎麼做都沒關係啊。 但我們必須帶領學生了解,這個計畫不是老師叫你做才做,而是讓學生覺得這個計畫是自己的,有前進和發展的空間,就像自己的小孩,必須負責。
以前在碩、博士班,剛開始學會技術、實驗做出結果,或能像人家一樣發表文章,會很高興,但這很短暫,真正的轉捩點是我知道有什麼事,是全世界任何人都不知道的那種驕傲,才是真的能支持很久的。我還記得在某一天做到早上五點,從實驗室走出來,知道有個東西全世界只有我知道的喜悅!
當學生曾感受這種發現真實的快樂,你不用規定他早上幾點來、晚上幾點走,他自己就有動機做。
當一個人想這東西應該是怎樣,想辦法做實驗證明出來時,那真的是一種快樂。我想,這是任何其他行業都沒辦法比較的!
學生是要培養成未來的科學家、獨當一面,應該讓他自己走。即使在你看得到的地方,也要讓他自己走出來,而且,他自己想到的,比你告訴他來的有用。
其實,我當老師最興奮時,是學生告訴我那些我不知道的事,會覺得很喜悅,學生想到我沒想到的東西,表示他們有進步,比我還厲害,這很棒!
世上動物千奇百怪,如果要找一個共同點,那應該就是──幾乎所有的動物都需要呼吸。
我們這裡要談的「呼吸」,是呼吸運動,也就是吸入氧氣、排出二氧化碳的動作。一提到這個動作,身為人類的你,或許下意識就會想到肺臟、鼻子等等部位。綜觀動物界,在不同的演化脈絡下,動物們賴以呼吸的構造真可說是無奇不有,就連肺臟、鼻孔本身也可能會有各種不同的形態。
現在,就讓我們來看看那些奇妙的呼吸器官吧!
「媽媽說鼻子長才是漂亮~~」大象(象科 Elephantidae)身上最惹眼的部分就是鼻子了!象鼻是牠們賴以聞嗅味道和呼吸的部位,除此之外,它相當靈巧,舉凡取水、拿東西、攜帶物品等等,象鼻都能做到。
除了長長的鼻子之外,大象的呼吸構造裡還有一個特殊之處:牠們是目前已知沒有胸膜腔 (Pleural cavity) 的哺乳類動物!
我們人類賴以呼吸的肺臟緊密包覆著一層臟層胸膜 (pulmonary pleurae),會與包覆著胸腔壁內面的壁層胸膜 (parietal pleura) 組成一個很狹小的空間,就是胸膜腔。內部填充有液體潤滑,可避免臟器和胸壁摩擦損傷。
一般我們呼吸的時候,會由肌肉改變胸腔的空間,製造肺部與外在大氣的壓力差,才能夠吸氣或呼氣:當肺內的壓力大於大氣壓力,則會呼氣;而當肺內的壓力小於大氣壓力,則會吸氣。而夾在此之間的胸膜腔,多數時間會維持一定程度的負壓,讓主要由皮膜組織及彈性纖維組成的肺不致塌縮。所謂的「氣胸」就是胸膜受到破壞,使得胸膜腔無法維持負壓,連帶使著肺部塌縮的胸腔疾病。另外,胸腔膜的壓力當然會隨著呼吸而有所變化。
然而,大象的胸膜腔裡,充滿了許多疏鬆的結締組織──也就是說,原本的「腔」不復存在。該怎麼解釋大象沒有胸膜腔呢?
有個假說認為,這可能跟大象使用長鼻子來「浮潛」有關連。當牠們游泳時,可以將長鼻子舉出水面來呼吸──這是個稍微熟悉大象的人都不意外的畫面。但是成年大象高度可達至少三、四公尺,當游泳使用鼻子呼吸,或是,鼻子端大氣的壓力與位在水下肺部的壓力差距會非常巨大,這時薄薄胸膜腔可能就會頂不住啦,而胸膜腔內的結締組織就有強化的功能。
海豚(海豚科 Delphinidae)雖然多數生活在海中,少數生活在大河大江中,不過牠們可沒有魚類的鰓,而是用肺呼吸的哺乳類動物。
海豚是從陸生哺乳動物演化而來的,真要說起親緣關係,比起魚類,牠們反而更接近河馬等偶蹄類動物。
大約五千萬年前的始新世時期,陸生哺乳類開始進入水中,在這個過程中,牠們為了適應環境,在形態上產生諸多的改變。為了順利在水中游泳,牠們後肢逐漸退化,形成背鰭及尾鰭,體表變得光滑,身體也變得較偏向流線型。
而海豚的鼻孔更是位移到了頭頂,成為「呼吸孔」,以便在水面呼吸、換氣。此外,為了不讓自己嗆到,海豚的呼吸孔附近還有由肌肉與結締組織形成的鼻栓 (nasal plug),可以將孔緊閉。鯨魚海豚頭頂的呼吸孔是比較接近鼻孔的構造,因此有些卡通裡會出現鯨魚海豚從嘴裡吸入海水,由呼吸孔噴出海水的情節,在真實世界不大可能出現。
水母是一種無脊椎動物,分類上屬於刺胞動物門 (Cnidaria)。從熱帶、溫帶到淡水區,世界各地的水域都找得到水母的蹤影。牠們的外型多呈現鐘型或者傘狀,構造簡單,體內有超過九成都是水,但沒有肺或鰓。
既然沒有肺或腮,牠們又要怎麼呼吸呢?方式很單純,就是透過擴散作用讓氧氣進出細胞膜。
水母的外表傘蓋的組織相當薄透(想想你吃過的海蜇皮),其中分為外層的表皮層 (epidermis) 和內層的胃皮層 (gastrodermis),兩層之間再夾著一種彈性膠狀物質,又輕又薄的狀態更方便外層組織和海水交換氧氣和二氧化碳。
牡蠣 (牡蠣科 Ostreidae)的殼有二枚,形狀相當不規則,左殼比右殼大一點。牠們大多棲息在淺海或潮間帶,以左殼固著在物體上,無法自由移動,所以終其一生只能待在原處開開合合,進行呼吸、攝食、生殖、排泄等等行為。
大多數的雙殼綱,殼的頂部有縫可以流通海水,並且在吸排海水的過程中呼吸。牡蠣並不像蛤蜊一樣自備出、入水管,牠們只有腮腔和腮上腔。牡蠣的鰓分左右各一對的內外鰓,上與唇瓣 (labial palps) 相連,下與外套膜 (mantle) 相接,構成一個腔室,水從鰓流入鰓腔及鰓上腔,在過程中進行氣體交換藉以呼吸、獲得氧氣。
雖然說都是呼吸,但生活在不同地方的生物用的方式卻大不相同,需要根據所在地來大顯神通,除了上述介紹的動物,你知不知道什麼其他特別的呼吸方式呢?
對某些人來說,昆蟲可能他們避之唯恐不及的可怕小生物,但這些小小昆蟲的身軀中,有著出乎意料精巧的呼吸系統喔!
假如跑去街訪問問題:「動物是怎麼呼吸的呢?」會收到什麼答案呢?
有些比較直觀的小朋友可能會直接了當的回答:「用鼻子和嘴巴!」。
有些很厲害的的人可能會回答:「透過氣體交換,肺和心臟能夠透過循環系統……」完美描述了整套呼吸循環系統。
對動物更了解的人可能會回答:「人是用肺、魚是用鰓,兩生類則是小時候用鰓,長大用肺……」一類一類動物分開討論,不同種類的動物呼吸方式是不一樣的。
不過多數人常常都漏掉了一種類群:昆蟲。
你可能會有點沒印象,到底昆蟲是用什麼器官在呼吸的。是肺嗎?好像也不是,而且昆蟲好像沒有鼻子。
告訴你,昆蟲其實也沒有肺喔!牠們是透過所謂的「氣管系統」(tracheal system) 來進行全身的呼吸及氣體交換。
昆蟲的呼吸系統由氣管 (trachea)、小氣管 (tracheole)、氣門 (spiracle) 還有氣囊 (air sacs) 所組成。所有的空氣都是透過位於外骨骼上的氣門來進出昆蟲的身體,通常都會出現在昆蟲的腹部或側面喔!空氣從氣門進去後,透過氣管不斷分支,最後傳到小氣管,其分支末梢就散佈在體細胞間,而氧氣跟二氧化碳就能透過擴散作用達到氣體交換。
再複雜一點的版本,也就是這些氣體進到微氣管的分支後,微氣管潮濕的表面就能讓氧氣更好的進行擴散作用。氧氣擴散進一旁的體細胞膜後,就能被細胞所使用,而二氧化碳也是如此從體細胞排出的。
和人類不同的是,昆蟲的血液循環系統和呼吸系統是不互相影響的。人類透過心臟將經過肺的充氧血打到全身,來使全身細胞獲得氧氣;昆蟲則是全身的細胞都直接與小氣管相連,因此昆蟲沒有進行氣體交換的肺部。
不過這種呼吸方式,其實對於長距離的氣體運輸效率較低,所以這也是大部分昆蟲體積不大的原因之一。
所以說,要回答昆蟲到底是用哪裡呼吸,從外骨骼的氣門,到遍布全身的大小氣管,我們可以說,昆蟲們可是用了全身在呼吸呢!
不過你可能會想,所以昆蟲都一直是靠著被動的氣體運輸來維持呼吸的嗎?難道所有的昆蟲都只會呆呆的等空氣自己送進身體裡來嗎?其實也不是這麼回事喔。許多昆蟲的氣門都能透過收縮肌肉關閉,也能透過舒張肌肉使氣門放鬆打開。而氣門的開閉,通常透過中樞神經系統來控制,不過也能被氣門四周細胞中的化學成分所調控。同時,氣門的開關也能調節水分的散失。
不過你可能沒想到,氣門還能拿來吹口哨呢!有些蛾類的幼蟲就能透過開關特定的氣門,再收縮排氣,讓自己的身體像笛子一樣吹出聲音來呢,被推測可能牠遭受獵食時威嚇天敵的手段。
雖說是這樣,但氣門同時也成為了某些昆蟲的一大罩門……
相信很多人都有聽過,肥皂水能夠將許多人恨得牙癢癢的蟑螂輕鬆消滅。這是因為肥皂或清潔劑都屬於界面活性劑,能溶解蟑螂身上的蠟質與油脂,溶解的蠟質和油脂會把氣門堵住,造成蟑螂因無法呼吸窒息而死囉!
由此可見,氣門真的對昆蟲來說十分重要呢!
接著,就讓我來說說昆蟲的呼吸系統中比較特殊的構造吧!
過去,科學家認為昆蟲的氣管都像是一條條水管一樣硬邦邦的管子,且認為所有昆蟲都是透過被動擴散作用來呼吸。但實際上,科學家後來才利用 X 光顯微鏡,發現昆蟲的氣管能收縮,而且並不是硬硬的,而且還會藉由收縮肌肉來主動呼吸喔!
既然氣管不是硬硬的,而且能透過主動收縮來呼吸,這樣氣管難道不會因為壓力的問題而變形嗎?
嘿,別擔心,小小的昆蟲體內可是很精巧的!實際上,昆蟲的氣管內皮細胞內側都圍繞著一層名叫螺旋帶 (Taenidia) 的環狀構造,又薄又堅固,使氣管不會塌陷扭曲,且同時可以幫助氣管適當彎曲伸展。
最後,你若是再仔細看看上面的昆蟲的呼吸循環示意圖,你會發現有一個個像是氣球一樣的袋子我們還沒提到呢!這個隨著氧氣與二氧化碳的進出放大縮小的袋子,其實就是所謂的「氣囊」。
氣囊不是每種昆蟲都有,但氣囊真的就是個像氣球一樣的構造,與氣管分支們相連接,能夠透過關閉氣門來儲存空氣,而且氣囊是氣管系統中少數沒有螺旋帶的區域,可以很大幅度的折疊伸縮。
當昆蟲處在一個蒸發量高的環境,昆蟲就能將空氣儲存在氣囊,再透過關閉氣門來達到防止水分散失。若是昆蟲在水下環境,那氣囊可就更厲害囉,除了能讓昆蟲在水下呼吸之外,還能夠根據氣囊大小來調整浮力呢!
同時,氣囊也參與了昆蟲們的「蟲生」中,一段非常重要的歷程──蛻皮 (Molt)!
由於昆蟲是靠外骨骼支撐,所以為了長大,就得要將「小舊皮」換成「大新皮」,才能容納自己逐漸成蟲的身體,這種現象我們就稱為「蛻皮」。
不過在還沒蛻皮之前,昆蟲的身體已經逐漸長大,那些塞不下的體積都去哪了呢?實際上,氣囊就給牠們提供了很好的緩衝空間喔!藉由壓縮氣囊騰出空間讓器官成長,同時,當蛻皮結束時,昆蟲就將他們的氣囊盡可能的撐大,讓新長成的外骨骼更大,於是昆蟲就能靠著氣囊與蛻皮不斷的長大啦!
看來,昆蟲的呼吸系統不只有呼吸相關,還與成長息息相關啊!是不是很令人印象深刻呢?
下次若是再有人問你動物是怎麼呼吸的,可別忘記昆蟲啦!這時,你就能向他們介紹昆蟲精妙小巧的氣管系統啦!