1

1
0

文字

分享

1
1
0

為什麼恐龍可以長得這~麼大,這合理嗎?牠們的食量又會有多驚人?──《 誰讓恐龍有了羽毛? 》

臉譜出版_96
・2022/08/18 ・4023字 ・閱讀時間約 8 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

古生物學的意義是?一窺打破規則的物種!

經常有人問我「到底為什麼要學古生物學?」我通常會碎念一些關於生命起源和演化的事,以及對生命歷史和地球環境這類更廣泛的文化理解。

然而,一個關鍵原因是有些古老生物打破了所有規則。

生物學家說,大象的體形是陸地動物中的極限,再長太多肉反而會把自己壓垮,或是在氣候變遷時餓死。

Elephant, Trunk, Tusks, Forest, Jungle, Pachyderm
既然大象是體型的極限,那恐龍究竟是如何生存下來的?。圖/pixabay

然而,恐龍,尤其是蜥腳類這群恐龍,就成了一個絕佳的例子,說明不可能的事情如何成真——我們不能說在侏羅紀時代的重力比較小,或是牠們一輩子都待在水裡(儘管有些瘋子真的提出這些主張)。

那麼,到底要如何解釋這些大到令人難以置信的巨大蜥腳類的存在?

這個馬丁.桑德當初產生的疑問,在今日許多古生物學家的共同努力下已經得到解答。

他有一個了不起的想法,而且他為一項二〇〇四~二〇一五年的長期研究計畫,募集到五百萬歐元的資金,這可能是每個學童都夢寐以求的計畫——他的計畫名稱是「蜥腳類恐龍的生物學:巨獸的演化」(Biology of the sauropod dinosaurs: the evolution of gigantism)。

桑德招募了二十多名研究人員,不僅有古生物學家,還包括營養專家、植物學家和動物園管理員。他想要一勞永逸地解決蜥臀類恐龍之所以如此龐大的原因。

古生物學家盯上體型最巨大的恐龍:高胸腕龍

他心中早就鎖定最大的恐龍,即在坦尚尼亞、東非和美國中西部晚侏羅世地層中的腕龍(下圖)。牠的骨架相當驚人,有 26 公尺長,相當於兩輛從頭量到尾的普通馬車,牠的頭拔地而起,有 9 公尺高,相當於是 3 層樓的高度。

圖/臉譜出版

與其他蜥臀類恐龍不同的是,腕龍有超長的前腿,會將身體的前半部分墊高,有點像是長頸鹿,頸部的椎骨顯示頸部的自然位置大約呈 45 度角,這與梁龍和圓頂龍等其他蜥臀類恐龍不同,牠們的頸部是保持水平的。

所以,桑德的研究重點是弄清楚這些 40~50 公噸重的巨獸是如何運作的。

如果用大象的食量來推估,恐龍需要吃下多少東西?

二〇一一年,我前去波昂參加了其中一場國際聯合會,聽到讓我很感興趣的報告,其中有一個是人體生理實驗,一群美國教授招募學生進行一系列奇怪的飲食計畫,比方說一個月只吃漢堡或萵苣(這類實驗在今天可能不會獲得允許),還有一個是負責測量大象和其他野獸攝食和排泄的動物園管理員。

動物園管理員報告,大象每天必須吃掉多達 270 公斤的草料。

正如桑德所點出的,若蜥腳類恐龍的生理機能與現代大象相同,牠們對食物的需求將會是現代大象的 10 倍,即 2.7 公噸。

人類只需要一個大盤子,就可以解決一餐,那麼恐龍呢?圖/Pixabay

那是一堆和客車一樣大的樹葉。此外,動物園飼養員注意到,他們的大象每天將這 270 公斤的植物性食物變成 70 公斤的糞便——那可以裝滿幾十輛手推車。

桑德想知道中生代的蜥腳類恐龍會食用哪些植物,以及蜥腳類的生理與大象有何不同。當然,牠們的骨組織學已經顯示出牠們是溫血動物,但這類恐龍的體形巨大,足足有 50 公噸左右,若是牠們的攝食率跟大象一樣,攝取的食物可能還不夠填滿牠們超長的脖子。

破解恐龍「長得大,卻吃得少」的秘密!

因此,他將我們對恐龍,特別是蜥腳類恐龍的認識彙整起來,畫出一張認識牠們生長祕密的概述——這張圖顯示出蜥腳類這種有史以來最大的動物究竟是如何達成這項不可能的任務。

集種種特徵於一身!蜥腳類恐龍為甚麼可以長得這麼大?圖/臉譜出版

這是透過一套組合達成的:生下許多後代、小型蛋、沒有親代照顧;頭小、不咀嚼、類似鳥的肺——這在吸收氧氣上比爬行類和哺乳類更有效率。這些特徵讓蜥腳類恐龍能夠以最少的食物攝取量長成巨大的體形——食量可能與大象差不多,甚至更少,但體形大出十倍。

牠們藉由龐大的身軀來穩定體溫,而不如大象和人類那樣,透過大量進食和一套複雜的內部加熱系統。牠們產下小型的蛋後就一走了之,不像大象和人類會投入大量時間和精力照顧一兩個嬰兒,耗盡母親的儲備食物。

桑德的網狀圖非常有說服力地解釋了這一切——這就是蜥腳類之所以能擺脫大象以及哺乳類體形限制的原因。

除了大恐龍,也有「侏儒」恐龍

在恐龍的世界裡,不僅有三層樓高的腕龍,也有小到可以當寵物的小型恐龍。圖/wikipedia

既然都達到這樣巨大的體形,為什麼後來恐龍又變小了?

獸腳類中的手盜龍這一分支的體形變得愈來愈小,並長出長臂來適應樹棲以及最終的飛行模式(見《 誰讓恐龍有了羽毛? 》第四章和第八章)。牠們在樹上跳來跳去的新生活方式可以解釋為何恐龍會轉變成小體形。

在各地,有一些恐龍因為生活在島嶼上而體形變得很小。最著名的是特蘭西瓦尼亞(Transylvania)的侏儒恐龍——這地名聽起來像是電影裡才有的地方,但在現實生活中真有其地。

這些侏儒恐龍確實生活在過去羅馬尼亞人稱為特蘭西瓦尼亞的這個角落,牠們最初是由法蘭茲.諾普薩男爵(Baron Franz Nopcsa)所描述的,他是當時(十九世紀末)奧匈帝國一位落魄的貴族。

特蘭西瓦尼亞(Transylvania)這種侏儒恐龍,最初是由法蘭茲.諾普薩男爵(Baron Franz Nopcsa)所描述的。圖/臉譜出版

我第一次前去羅馬尼亞研究是在一九九三年,就在這個國家以武力抗爭推翻了親蘇政府的四年後——我看到布加勒斯特大學的一些建築物上的彈孔。

Discovery 頻道當時很想拍攝關於諾普薩的節目,主要是因為他的人生相當豐富——他不僅是一位貴族,還是一名同性戀,帶著他忠實的祕書兼情人巴哈茲德.多達(Bajazid Doda)一起遊歷歐洲。

諾普薩會說多種語言,並在英國、法國和德國的研討會上談論他的恐龍研究,但是得出售他的化石收藏,才有辦法維持財務。

他在一次世界大戰期擔任雙面間諜,遊走在奧匈帝國和英國之間,還與阿爾巴尼亞的游擊隊合作,並自願擔任阿爾巴尼亞的國王。最終,在貧困和絕望中,他在一九三三年舉槍射殺了多達和他自己。

這樣的人生對一部三十分鐘的影片來說綽綽有餘,但是我還是堅持認為我們需要加入一些科學,而且侏儒恐龍確實具有重要的生物學意義。

諾普薩是第一個提到特蘭西瓦尼亞恐龍是侏儒的人,那是在一九一二年於維也納召開的一次會議上。他觀察到特蘭西瓦尼亞恐龍的體長很少超過四公尺,而當中最大的蜥臀類恐龍,後來命名為馬扎爾龍(Magyarosaurus dacus),體長僅有六公尺,但牠們在其他地方的親戚物種都有十五~二十公尺長。

圖/臉譜出版
圖/臉譜出版

尋找恐龍「侏儒化」的原因

在發表論文後的討論中,奧地利傑出的古生物學家奧特尼奧.阿貝爾(Othenio Abel)也同意他的看法,並表示這種現象與冰河時代生活在地中海島嶼上的大象、河馬和鹿的侏儒化(dwarfing)類似。

就這樣,諾普薩和阿貝爾兩人搞定了這件事。有許多演化論點來解釋這種現象,但很明顯地主要是因為島嶼所能夠支持的物種較少,與大陸生態系相比,要精簡許多。

因此,隨著物種數量、食物和活動範圍的減少,動物會發展出適應這類環境的體形、飲食和習慣,所以大型動物必須變得更小。

在晚近的一百萬年間,在馬耳他、西西里島和薩丁島等地中海島嶼上的侏儒象,其肩高只有五十公分到一公尺,而今天的成年大象的肩高可達到四~五公尺。

顯然,大象、河馬和其他非洲哺乳類必定是在地中海海平面比今天低很多的時候過海來到這些島嶼,因為那時的海水還冰封在巨大的北方冰帽中。

特蘭西瓦尼亞的侏儒化恐龍生活在哈采格(Haţeg)島上,這座島的長度在一百~兩百公里之間,是晚白堊世的幾座大島之一,當時海平面非常高,淹沒了歐洲南部大部分的地區。

歐洲在白堊紀晚期的海平面非常的高。圖/臉譜出版

針對蜥腳類的馬扎爾龍(Magyarosaurus)和鳥腳類的沼澤龍(Telmatosaurus)和查摩西斯龍(Zalmoxes)這三種侏儒化恐龍的骨骼進行組織學研究,發現牠們都處於成年,而不是幼年。但牠們的體長僅有那些牠們生活在歐洲和北美大陸近親的三分之一到二分之一。

牠們不僅體形縮小,而且不知何故似乎是較為「原始的」恐龍,比在大陸上親緣關係最近的種類要原始個兩三千萬年。據推測,牠們的祖先已經在沿海地帶定居,隨著海平面上升而切斷各族群間的聯繫。

然後,當牠們在大陸地區的近親繼續演化之際,島嶼型的恐龍在複雜度較低的生態系中繼續過著一樣的生活,可能也沒有遭受到同樣的競爭壓力。

因此,除了這些罕見的島嶼型恐龍外,大多數恐龍在演化過程中都變得愈來愈大。有趣的是,恐龍表現出與哺乳類相同的適應能力,當小體形具有演化優勢時,牠們可能會變小。

——本文摘自《誰讓恐龍有了羽毛? 》,2022 年 7 月,臉譜出版

文章難易度
所有討論 1
臉譜出版_96
64 篇文章 ・ 244 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。

0

45
1

文字

分享

0
45
1
另外一個你可能存在嗎?從宇宙誕生到現在,你的存在需要經過一千兆個「偶然」——《宇宙大哉問》
天下文化_96
・2022/09/23 ・3064字 ・閱讀時間約 6 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

  • 作者/豪爾赫.陳、丹尼爾.懷森
  • 譯者/徐士傑、葉尚倫

還有另一個你嗎?

如果世界上某個地方有另一個版本的你,會不會很奇怪?

這是什麼科幻劇情?圖/天下文化提供

你們兩個之間有很多共通點,喜歡吃的水果(香蕉)、不喜歡吃的水果(桃子)、擁有同樣的技能(製作香蕉冰沙)和相同的缺點(香蕉冰沙吃了停不下來)、同樣的記憶、幽默感以及個性。當你知道有其他版本的你存在時,你會覺得很怪異嗎?你會想與他們會面嗎?

想像一下更詭異的情況:有個人幾乎和你完全一模一樣,僅稍稍有些不同。如果這個人比你更好呢?也許他做的水果冰沙更加美味,或者生活的方式更有意義。或者,這個人比較沒有才華,但是比較卑鄙,就像是邪惡的分身呢?

假如有幸能見到另一個你,或許你可以發現自己的更多可能。圖/天下文化提供

這有可能嗎?

雖然讓人難以想像,但物理學家不能排除另一個你存在的可能性。事實上,物理學家不只認為另一個你是可能存在的,甚至認為另一個你存在的可能性更高。也就是說,就在此刻,當你讀到這篇文章時,可能有另一個你正在某個地方,穿著和你一樣的衣服,以相同的方式坐著,甚至讀著同樣的一本書(好吧,也許是稍微有趣的版本)。

搞不好另一個你也正在看這篇文章喔!圖/天下文化提供

要瞭解另一個你存在的意義及可能性,我們得先考慮你的存在有多麼獨特。

你存在的機率

乍看之下,世界上有另一個與你毫無二致的人,機率好像是微乎其微。畢竟,想像一下,為了讓宇宙創造你,有多少事情必須發生,而且要環環相扣,缺一不可。

超新星必須在氣體和塵埃雲附近爆炸,藉著震動造成引力崩坍,形成我們的太陽和太陽系。這些塵埃中的一小塊(不到萬分之一)必須聚集在一起形成行星,並與太陽保持合適的距離,這樣水就不會結冰或變成蒸汽。生命一定要開始,恐龍必須滅絕,人類不得不演化,羅馬帝國必須崩潰,而你的祖先必須逃過黑死病。然後,你的父母必須相遇並且喜歡上了彼此。你的母親務必在正確時間排卵。在與數十億顆精子的馬拉松游泳賽中,帶有你一半基因的精子必須衝刺獲勝。單單是讓你誕生,就需要這一連串事件。

宇宙必須經歷一連串事件,才會有現在的你。圖/天下文化提供

想一想你在生活中做出的所有決定,使你成為今日的你。你有沒有吃很多香蕉。你有沒有遇到那個重要的朋友。你那時候決定待在家裡,否則會被水果推車碾過。不知何故你發現了這本關於宇宙的蠢書,並決定閱讀它。所有的一切,都從四十五億年前開始,導致了你此時此刻在這裡存在。

假如所有事情以完全相同方式再次發生,從而造就另一個你的機會有多大?這似乎不太可能,對吧?

也許不是喔!讓我們回溯所有導致你出現的隨機事件、決定和時刻,並試著計算機率是多少。

讓我們從今天開始算起:你醒來後做了多少決定呢?你可能決定怎樣起床,穿什麼衣服,吃什麼早餐。即使是看起來很小的決定,也可能改變你的人生歷程。例如,你選擇穿有香蕉圖案的襯衫或者是領帶,可能影響你未來的配偶有沒有注意到你。

讓我們假設,你每分鐘大約會做出一兩個可能改變人生的決定;這聽起來好像很有壓力,但如果你贊同量子物理學和混沌理論,數字應該會更高。假設每分鐘只有幾個決定,那麼你每天就要做出數千個重要決定,每年就高達約一百萬個。如果你超過二十歲,人生到目前為止,就已經做出超過兩千萬個決定,才會有今日的你。

接下來,假設你做的每個決定只有兩種可能,例如 A 或 B,或者香蕉和桃子。好啦,我知道通常要選擇的項目很多(譬如,早餐店的菜單選項多不勝數),但讓我們簡化問題。要計算那兩千萬次決定而成為你的可能性,你必須取 2 的兩千萬次方,即 220,000,000

如果你超過二十歲,人生到目前為止,就已經做出超過兩千萬個決定,才會有今日的你。圖/天下文化提供

為什麼?因為每做一次決定就會讓可能的數目加倍。舉例來說,你必須選擇從哪邊(左邊或右邊)下床、早餐吃什麼水果(香蕉或桃子),以及上班搭什麼交通工具(火車或公車),總共就有 2×2×2(或 23)種開啟一日行程的方式。你從左邊下床、吃香蕉並坐公車的機率是 23 分之一,或說 8 分之一。

因此,如果你在生活中做出兩千萬個 A 或 B 的決定,那就意味你的生活可能有 220,000,000 種不同的結果。這真是一個驚人的數字,是吧!但我們才剛開始暖身而已!

我們還必須考慮你的出生機率,包含你父母做決定的可能結果。如果將你父母的決定算進來,就必須再加上四千萬個決定(你父母各兩千萬個)。再加上你四個祖父母,還有八千萬個。曾祖父母呢?還有一億六千萬個。你瞭解了嗎?每回推一個世代,祖先數量就增加一倍,影響你出生的決定數量也跟著加倍。人類已經在地球上生活了至少三萬年,或許可換算為大約一千五百個世代。若將你所有祖先全部考慮進來,可能的數量會更龐大。

如果再將你父母的決定算進來,就必須再加上四千萬個決定。圖/天下文化提供

其實,真要計算起來實際情況更加複雜,如果回溯得夠遠,你會發現親戚之間盤根錯節的關係,同一個人可能在你的家譜中重複出現,除了引發令人尷尬的話題之外,也讓數學計算變得更加複雜。為簡單起見,我們假設你每代只受到兩個人的影響。這仍然有 1,500 代× 2 人× 2,000 萬個決定= 600 億個決定。及至目前為止,你發生的機率是 260,000,000,000 分之一。

只算到這裡就夠了嗎?讓我們考慮人類史前歷史並回溯到數十億年前最小微生物演化之時。在大約三十五億年前,地球上的生命開始孕育。如果你不得不製作年代如此久遠的家譜,就會發現祖先主要是微生物和簡單植物。他們大概無法做出有意識的決定,但仍會遭受到隨機事件影響,諸如風如何吹動,陽光是否照耀,天降甘霖與否等等。

假設你的微生物祖先每天至少受到一個隨機事件影響,每個隨機事件也有兩種可能結果(例如,一塊石頭是否砸落在你的微生物祖先身上)。這意味我們必須將另外一兆(1,000,000,000,000)個決定事件添加到我們的機率中。

現在,讓我們回到四十五億年前太陽系剛形成的時候,找到你的構成原子之前所在的恆星或行星,然後再一路回到一百四十億年前的大霹靂。讓我們做個超級的低估,假設在那些日子裡,每天都發生了一件可能影響你來到人世的重要大事。直到今日,大約有一千兆個關鍵事件,你存在的機率陡然劇降到約21,000,000,000,000,000 分之一。

總而言之,你存在的機率大概是 2 的 1000 兆次方分之一。圖/天下文化提供

——本文摘自《宇宙大哉問:20個困惑人類的問題與解答》,2022 年 8 月,天下文化,未經同意請勿轉載。

天下文化_96
107 篇文章 ・ 592 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

1

1
1

文字

分享

1
1
1
歐洲人克服乳糖不耐,少拉肚子就是達爾文贏家?
寒波_96
・2022/09/16 ・3812字 ・閱讀時間約 7 分鐘

牛奶、羊奶等生乳中含有乳糖(lactose),可以被乳糖酶(lactase)分解。但是小朋友長大以後,乳糖酶基因便不再表現,失去消化乳糖的能力。幾千年前,世界各地卻出現多款基因突變,讓人能一輩子保有乳糖酶。2022 年一項針對歐洲的研究提出觀點:這項能力之所以受到天擇喜好,是因為能避免拉肚子!?

人類如今也發明去除乳糖的牛奶。圖/被拍電影耽誤的置入性行銷之神──Michael Bay 麥可貝

史上最強遺傳適應,演化過程出乎意料?

人類原本和眾多哺乳動物一樣,小時候依賴母乳餵食,長大後不再喝奶,乳糖酶也失去作用。但是隨著人類馴化牛、羊等動物,即使是成年人也常有機會吃奶。

另一方面,由於乳糖酶基因外頭的調控位置突變,使得許多歐洲、非洲人的酵素在成年後可以持續作用,稱為乳糖酶持續性(lactase persistence,簡稱 LP,也就是乳糖耐受),而且同樣效果的不同突變,至少獨立誕生過 5 次。

具有某方面優點,使得存在感增加的 DNA 變異,稱作遺傳適應(genetic adaptation)。已知的人類案例非常多,天擇的影響力有強有弱,LP 算是受到最強烈天擇力量的基因之一。

由此推敲,當人類開始養牛、養羊,又吃奶以後,同時衍生 LP 應該是順理成章的事?然而,一系列考古學、遺傳學、古代遺傳學的探索,卻徹底打破上述看似合理的推論。

首先,考古學調查發現人類在中東馴化牛、羊,吃奶的歷史至少有 9000 年,接著距今 7000 年前已經引進歐洲多處。再來,由遺骸中直接取得古代 DNA 得知,LP 遺傳變異要等到 4000 多年前才出現,而且超過 3000 年前都還很小眾,最近 2000 年內才大幅提升存在感。

顯而易見,人類開始吃奶的年代,比獲得成年後消化乳糖的能力,更早好幾千年。 2022 年新發表的研究透過更廣泛的取樣分析,再度確認這件事。

由陶器中取樣乳脂質的地點和年代。圖/參考資料 1

再度確認:吃奶比遺傳突變更早好幾千年

隨著技術進步,如今有好幾種方法判斷古代人會不會吃奶,像是分析牙結石中的乳蛋白、容器中的乳脂質等等。新研究偵測陶器中的乳脂質,包括以前發表 188 處,以及新取得 366 處,總共 554 處中東、歐洲的遺址中,得知 6899 件乳製品存在的紀錄。

吃奶的文化能追溯到中東,新石器時代擁有農業的人群,帶著他們的牛、羊一起移民歐洲,也將吃奶文化傳入歐洲。到了距今 7000 年前,歐洲各大地區已經出現乳製品。也許不見得會直接喝生乳,不過肯定存在起司等生乳加工的食品。

比較特殊的是巴爾幹半島,現在的希臘。那時居民會養牛,養羊,吃肉肉;但是分析超過 870 件陶器,完全見不到乳脂質的蹤影。此處或許更晚才建立起吃奶文化。

總之,7000 年前吃奶文化已經廣傳歐洲各地。相比之下,比對不同年代、地點的死人骨頭取樣,消化乳糖的 LP 遺傳變異最早在 4600 年前現蹤,比吃奶晚很多。

而且 LP 出現一段時間後,存在感依然非常低,距今 3000 到 5000 年前的青銅時代,LP 並沒有什麼過人之處。到此為止,LP 只能說是人類族群中的一款普通變異,還不能算是遺傳適應。

不同年代,歐洲各地的吃奶狀況。距今 7000 年前之際(5000 BC)吃奶已經相當普及。圖/參考資料 1

現代社會:能代謝乳糖沒有好處,不能代謝只有小小壞處

儘管比本來以為的晚很多,LP 遺傳變異在歐洲族群的比例,還是於最近 3000 年內明顯上升。它到底因為什麼優點才受到天擇青睞,歷來爭論不休,有人提出營養、維生素D 等假說,可是都缺乏決定性的證據。

搜集幾十萬人遺傳資訊的英國生物樣本庫(UK Biobank),近來被大量用於各色分析。這項研究從中探討 LP 的影響,分析對象中大部分人具有 LP,少數人沒有(論文用語是 lactase non-persistent,縮寫為 LNP,也就是乳糖不耐)。比對得知,LP 並不會影響喝奶、食用乳製品的行為。

直接喝奶才有乳糖代謝的問題,加工成起司等乳製品可以避免,但是「問題」也許不是真的問題。更進一步比對,LP 對於健康狀況也沒什麼影響。簡單說就是:對 33 萬位英國人的分析發現,LP 與否,無關緊要。

加上其餘資訊推論,現代社會在正常情況下,缺乏 LP 大概就是喝奶拉肚子,不是什麼嚴重的問題。例如隨著中國經濟發展,沒有 LP 的中國人大量喝奶,多數也沒怎麼樣。

這也符合台灣人的經驗,台灣人配備 LP 的比例不高,可是隨著飲食習慣改變,多數人也就是這樣喝奶。另外喝奶會改變人的腸道菌,影響消化狀況,也是一個影響因素。

普遍缺乏 LP 的台灣人,很多人也是生乳照樣喝。圖/[廣宣] 牛奶妹 徵求中興大學牧場鮮奶長期訂戶

飢荒、疾病,時代力量的逆境考驗?

為了解釋歐洲歷史上 LP 比例的大幅上升,許多論點提出喝奶的優點,但是想想頗有可疑。把鮮奶加工製成乳製品,就能輕易抵銷 LP 問題,即使是飢荒時節也不例外;不能直接喝奶也不會餓死,吃起司就好。在營養加分方面,能喝奶真的有什麼優勢嗎?

由人群中遺傳變異的比例變化,我們能評估天擇影響的結果,但是不見得能抓到當初天擇真正的目標。新研究的分析指出,LP 的意義似乎不在創造優勢,而是避免劣勢。

跑完一大堆統計分析後,有兩項因素和 LP 的關聯性最高。一項是人口數量的波動,另一項是人口的密度。論文的解釋是,人口數量波動和飢荒有關(飢荒讓人口減少),密度和傳染病有關(人變多會增加傳染病的機率)。

沒有 LP 的人直接喝奶,副作用往往是腹瀉,在豐衣足食的現代社會多半沒有大害,還能刺激代謝,順便減肥;雖然對某些人而言,拉肚子依然是困擾的問題。

至於營養不良的人,腹瀉更可能出問題;某些疾病下,拉肚子造成脫水,容易重傷害健康。時常被營養不良、傳染病、飢荒等災厄糾纏,是古代的常態。

由此推論,不論是饑荒的短期逆境,或是傳染病的長期逆境(論文沒有特別討論,我想也包括寄生蟲?),配備 LP 的人由於能少拉肚子,生存機率也會大一點。

不同地區的人群,在不同年代的 LP 人口比例。圖/參考資料 1

魔鬼藏在拉肚子?

影響最大的年齡層可能介於 5 到 18 歲。此一小大人的階段,乳糖酶將漸漸失去作用;營養不良、體弱多病的人身體比較脆弱,拉肚子是要命的事,這或許正是天擇的目標!

古時候衛生狀況不佳,拉肚子大概很常見,而未成年人的死亡率也遠勝現在,小孩死掉並不意外。在此之下,能減少拉肚子的 LP 遺傳變異,長期累積下來,正面影響力或許頗為可觀。

這項研究的說法是否正確?它仍不足以算是決定性的證據,不過脈絡頗有道理。非洲也有多個獨立誕生的 LP 遺傳變異,相較於歐洲了解少很多,這是個潛在的研究方向。

另外不可忽視,讓乳糖酶維持作用的 LP 遺傳變異,也受到飲食習慣、生活背景影響,不單純是遺傳的事。例如自古牧業發達的蒙古、哈薩克,居民的 LP 比例一直很低,幾千年來也活得很好。少拉肚子也許能解釋歐洲的狀況,其餘地區不宜過度延伸。

延伸閱讀

參考資料

  1. Evershed, R. P., Davey Smith, G., Roffet-Salque, M., Timpson, A., Diekmann, Y., Lyon, M. S., … & Thomas, M. G. (2022). Dairying, diseases and the evolution of lactase persistence in Europe. Nature, 1-10.
  2. The mystery of early milk consumption in Europe
  3. Famine and disease drove the evolution of lactose tolerance in Europe
  4. How humans’ ability to digest milk evolved from famine and disease
  5. Ancient Europeans farmed dairy—but couldn’t digest milk

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

所有討論 1
寒波_96
172 篇文章 ・ 613 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

0

1
0

文字

分享

0
1
0
怎麼證明澳洲人吃剩的蛋殼,來自 5 萬年史前巨鳥?
寒波_96
・2022/09/14 ・2882字 ・閱讀時間約 6 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

古代人對生態環境的影響,不容易回答。人類抵達澳洲的年代早於 5 萬年,在此之後,澳洲有一批大型動物滅團,但是與人類的關係多少,專家們各有主張。有時候,甚至連人類是否接觸過某種動物都無法肯定。

一項 2022 年發表的研究,證實一款滅絕的史前大鳥確實與人類發生關係,而且材料相當特別:蛋殼中的古代蛋白質。[參考資料 1, 2, 3]

澳洲南部 5 萬年前的牛頓巨鳥與古巨蜥(Megalania)想像圖,兩者皆已滅絕。圖/Peter Trusler

澳洲 5 萬年前鳥蛋殼,是塚雉還是巨鳥?

用於分析的材料是澳洲南部出土的一批蛋殼,有被煮食的痕跡;它們距今大概 5 萬年左右,可以推測是古代人的食物。蛋殼來自哪種鳥呢?

活跳跳的鳥類可以根據外貌識別,去世後只剩骨頭的鳥類,也能靠著型態差異分辨。而鳥類產下的蛋,不同鳥蛋的外觀有別,厚度等特徵也有所不同,有時候光是憑藉蛋殼,便能判斷物種。

有專家主張這批古代人吃剩的蛋殼來自牛頓巨鳥(Genyornis newtoni),這是一款不會飛的大鳥,身高超過 2 公尺,體重 220 到 240 公斤,一顆蛋有 1.5 公斤重。

牛頓巨鳥在人類抵達澳洲後就消失了,但是沒什麼人類獵捕的骨頭證據。倘若蛋殼真的產自巨鳥,可以推論這款鳥類的消失與人有關。然而,也有專家認為這批蛋殼來自塚雉(megapode)。塚雉體型比牛頓巨鳥小很多,只有 5 到 7 公斤重。

澳洲南部尋獲史前鳥蛋殼的遺址位置。圖/參考資料 1

由史前蛋殼中的蛋白質,判斷未知鳥類的演化位置

5 萬年前成為人類大餐的鳥蛋,究竟何許鳥也?這項研究搜集多種鳥類的蛋殼型態作比較,也寄希望於遺傳學。蛋殼的成分主要由碳酸鈣等礦物質構成,不過其中也有少量 DNA、蛋白質;可惜出土蛋殼中無法取得足夠的古代 DNA。

生物去世後,遺傳物質開始崩解,蛋白質的結構比 DNA 更穩固,生還機率更高。好消息是,蛋殼中仍保有一些蛋白質片段,而且足以判斷親戚關係。

組成蛋白質的氨基酸序列取決於 DNA 編碼,只要知道基因的 DNA 序列,便能得知蛋白質的序列。定序 DNA 比蛋白質容易太多,絕大部分時候假如不知道 DNA 序列,便不會知道蛋白質。

但是聰明的讀者馬上會想到,我們知道牛頓巨鳥的基因組嗎?假如不知道,即使獲得蛋殼中的蛋白質片段,又該如何比對呢?

儘管缺乏牛頓巨鳥的基因組,好消息是,隨著基因體學發達,已經有大量鳥類物種的定序資訊,像是 Bird 10000 Genomes(B10K)計畫。所以可以根據各種鳥類的蛋白質序列差異,畫出演化樹,再將蛋殼中取得的蛋白質置於其中一起比較,便能判斷未知鳥類的分類位置。

加入蛋殼鳥後,各種鳥類以蛋白質差異建構的演化樹。鴕鳥(Struthio camelus)、鴯鶓(Dromaius novaehollandiae)屬於古顎類(Palaeognathae),和蛋殼鳥分屬不同群。蛋殼鳥(undetermined ootaxon)被歸類為雞雁小綱(Galloanseres)旗下,很早分家的分枝;塚雉(Alectura lathami)屬於雞形目(Galliformes),演化位置和蛋殼鳥差異不少。圖/參考資料 1

大鳥家族史:牛頓巨鳥、鴕鳥、恐鳥為各自獨立巨大化

依照可供分析的氨基酸變異,蛋殼鳥被歸類到雞雁小綱(Galloanseres)中很早分家的演化位置;而塚雉屬於雞形目(Galliformes,旗下有雞、火雞、珠雞、孔雀等一大堆鳥類),分家的時間要更晚得多。

藉由蛋殼殘存的遺傳訊息,無法判斷它是誰的最近親,不過肯定絕對不會是塚雉及其近親。因此論文判斷,蛋殼應該為牛頓巨鳥的蛋蛋。

倘若真的是牛頓巨鳥,或者說是 Genyornis 屬旗下的鳥類,這項分析也有助於釐清它的分類位置。說起不會飛的大鳥,大家都會想到鴕鳥、澳洲的鴯鶓(emu),還有紐西蘭已經滅團的恐鳥(moa);它們全部都屬於古顎類(Palaeognathae),和牛頓巨鳥所屬的雞雁小綱是平行關系。

澳洲的牛頓巨鳥及其近親們,目前被歸類為 Dromornithidae,屬於雞雁小綱旗下已經滅團的一支。所以大鳥與大鳥之間其實不是太近的親戚,是各自獨立巨大化的。

人類與 Genyornis 屬鳥類的體型比較。圖/prehistoric wildlife

竊蛋人對巨鳥滅團有責任

不少恐龍愛好者聽過,當年出土竊蛋龍與恐龍蛋化石時,還以為它們是盜獵其他恐龍的蛋,所以取名為竊蛋龍。後來才發現是誤會,它們懷抱的其實自己的蛋,可惜汙名已定,無法改名。人類盜獵大鳥的蛋無庸置疑,同理可稱之為「竊蛋人」。

鳥類靠生蛋繁衍後代,對其他動物而言卻是營養豐富的食物,人類只要有機會當然也不會放過。史前人類除了吃鳥蛋,也會將蛋殼加工製成工具與裝飾品;鴕鳥蛋殼的大量利用,甚至還能用來探討長達數萬年的非洲文化演化。

這回新研究以新奇的分析手法證實,5 萬年前的澳洲人會採集牛頓巨鳥的巨蛋來吃。由此推測,這款澳洲大鳥的滅絕,竊蛋人多半脫不了關係。

最後值得一提,由古早樣本取得非特定古代蛋白質(例如膠原蛋白、AMELY 以外的其他蛋白質)的分析辦法,繼古代 DNA 之後也成為古生物學、古人類學的新利器。澳洲的巨鳥蛋殼以外,雲南的步氏巨猿、西班牙的前人、青藏高原東側,甘肅的夏河丹尼索瓦人等材料,其中殘存的蛋白質片段都帶來寶貴的演化線索。

延伸閱讀

參考資料

  1. Demarchi, B., Stiller, J., Grealy, A., Mackie, M., Deng, Y., Gilbert, T., … & Miller, G. (2022). Ancient proteins resolve controversy over the identity of Genyornis eggshell. Proceedings of the National Academy of Sciences, e2109326119.
  2. The first Australians ate giant eggs of huge flightless birds, ancient proteins confirm
  3. Egg-eating humans helped drive Australia’s ‘thunder bird’ to extinction

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

寒波_96
172 篇文章 ・ 613 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。