1

7
0

文字

分享

1
7
0

每個人都有「創造色彩」的能力,回顧「藍黑白金裙」與「色彩恆常性」——《全光譜》

商周出版_96
・2022/03/20 ・4056字 ・閱讀時間約 8 分鐘

  • 作者/亞當.羅傑斯 
  • 譯者/ 王婉卉

一件讓全球流量暴增的裙子

二○一五年二月七日,瑟希莉亞.布利斯戴爾(Cecilia Bleasdale)整個下午都在逛街,想要買出席女兒葛蕾絲婚禮所穿的連衣裙。下午三點半,在英國柴郡(Cheshire)的一間店裡,布利斯戴爾找到了一件鑲著黑色花邊的藍裙,用手機拍了下來。她把照片傳給葛蕾絲,問她覺得如何。

葛蕾絲覺得那是一件以金色裝飾的白裙。她母親告訴她才不是。這還真怪,事實上,怪到葛蕾絲把照片上傳到臉書,問大家為什麼她和母親看到的顏色不一樣。

葛蕾絲的友人凱特琳.麥克尼爾(Caitlin McNeil)也同樣覺得很困惑,於是在婚禮結束後,把同一張圖轉貼到自己在社群網路平台 Tumblr 的頁面上。

藍黑白金裙。圖/Wikipedia

不久後, 麥克尼爾將以下訊息傳給了網路新聞媒體 BuzzFeed 的 Tumblr 帳號:

「buzzfeed 幫幫忙——我發了這件裙子的照片(就是我 tumblr 帳號上的最新貼文)。好了,有人覺得是藍色,有人覺得是白色,你可以解釋為什麼嗎? 因為我們快想.破.頭.了。」

負責管理 BuzzFeed Tumblr 帳號的凱茲.霍德內斯(Cates Holderness),看到這則訊息後,基本上只是聳了聳肩,繼續做自己的工作。但到了美國東岸下午五點,也就是霍德內斯所在的時區,這則 Tumblr 貼文下面已經有超過五萬則的回覆。

霍德內斯叫了幾名同事過來看那張照片,問他們那件連衣裙是什麼顏色。這群人立刻出現了共識被打破的知覺式有絲分裂,有如酵母細胞一分為二。霍德內斯發現自己被夾在兩群生氣的人中間,他們像坐在肩上大聲叫喊的天使與惡魔:白與金對上藍與黑。

藍黑白金裙導致全球流量暴增。圖/Pexels

霍德內斯對網路鄉民喜歡的話題有超乎尋常的直覺,於是決定進行投票調查,把照片上傳到 BuzzFeed 的網站。「Tumblr 上現在吵得不可開交,我們得來解決這場爭議。這件事很重要,因為我覺得我快發瘋了,」她寫道。投票調查在下午六點十四分上傳。之後,霍德內斯下班,趕搭地鐵回家。

她從地鐵站走出來時,發現大量的手機通知轟炸開來。她收到的簡訊有如海嘯來襲。她那篇投票調查的流量就像曲棍球桿效應般,衝高闖進了數位平流層。她上不了推特,頁面一直當掉,也許是因為微網誌網路本身的全球流量暴增,每分鐘就有一萬一千筆推文,其中看到白與金以及藍與黑的人各占一半。

在 Tumblr 上調查的結果,兩邊的人數也差不多。這件連衣裙變成了所謂的「藍黑白金裙」(The Dress)。

到底是什麼顏色?

我當時在《連線》(Wired)雜誌擔任科學編輯。少了霍德內斯那種對網路話題的敏銳直覺,我最初看到這個迷因時,沒有多想。那就是一件藍裙,隨便啦。

我們西岸這裡就快下班了,通常是數位新聞流量往下降的時段,也是我們放慢腳步的時候。我的其中一位上司是執行編輯,在我隔壁撲通坐下,找我閒聊。我那時大概說了,你能相信這件裙子造成的騷動嗎? 大家居然分辨不出它的顏色。

他說:「我懂,可不是嗎? 笑死人了。」

「那很明顯就是藍色啊。」我說。

他看著我,擔心地皺起眉頭說:「是白色的。」

終於,我才理解自己究竟錯過了什麼。藍黑白金裙,或者該說是那張連衣裙的照片(ceci n’est pas une robe〔法文:這不是連衣裙〕,正如超現實主義畫家雷內.馬格利特〔René Magritte〕可能會這麼說),不僅僅只是把所有人分成兩大陣營,還讓所有人的立場僵化。

藍黑白金裙的真面目。圖/Roman

情況不只是單純看到藍與黑,而是任何看到白與金的人都瘋了,或在說謊,反之亦然。大家是如何透過自己的雙眼和心智看到色彩,就是當時最熱門的新聞報導。

而且不只如此,這件事是個令人印象深刻的科學故事,而我慢了一個小時才跟進。我們麻煩大了。

我任職於《連線》雜誌前,是拿研究獎學金在麻省理工學院攻讀新聞學。我用那九個月,跟各方人士探討色彩和人類視知覺——這些內容最終將化為本書。

直到藍黑白金裙出現那一天的近十二年前,我遇到了康威,也就是上一章研究奇馬內語的藝術家兼神經科學家,我也記得自己很喜歡他的跨領域研究法。我上網搜尋了康威,發現他那時在衛斯理女子學院(Wellesley College)教書,於是寄給他一封電郵,附上原始 BuzzFeed 貼文的連結,並沒有抱太大的希望。他回信給我。於是我打給他。

「所以有些人覺得是藍色跟黑色?」康威說,「真的嗎?」

我跟他說我就是其中一人。

「嗯, 很好,」 他表示,「至少我們倆意見不同。它絕對是藍色跟金色, 我用Photoshop 看是藍色跟橙色。」

在康威經過仔細校正的螢幕上,「金」或「棕」的部分實際上被歸為橙色。照片上每個像素的RGB座標值,也就是像素在電腦顯示器紅綠藍色彩空間中的所在位置,也毫無幫助。

人類色覺的差異

像素各自量化的客觀色彩,與眾人看著整張圖像時所看到的顏色毫無關聯。我們已經曉得,色彩可能會因為旁邊擺著其他顏色而看起來不一樣,這正是謝弗勒爾記錄下來的現象。但為什麼這個現象會發生在電腦螢幕中的一張連衣裙照上呢? 又為什麼不同的人會看到不同的顏色呢?

「白與金的部分不難理解,」康威表示,「我的強烈直覺告訴我,這是因為我們非常偏好日光軸。」

他是這樣解釋:在晴朗的日子,如果把一張白紙放在室外,測量其光譜數值,也就是客觀測量白紙反射了哪些光的波長,它實際的顏色會沿著色彩空間中的一條可預期曲線產生變化——先是偏紅,接著變藍,再變白(白天將盡之時則再次偏紅)。

但對人腦而言,那張紙整天看起來都會是白色。色彩在人的眼中看起來會改變,但在人的大腦裡則維持穩定不變。「我們演化時,就是置身在這樣的彩色環境條件下,」康威說,「這張照片造成的情況就是,你的視覺系統看著它,而你試著要忽視自己對日光軸的那種彩色偏好。」

數世紀前,楊格便發現,大家看到的顏色未必都會對應到這些色彩的客觀波長。將色光照在某種表面上,客觀來說,這個表面的顏色會改變,但根據觀者所處的環境,他們依然有可能表示,表面呈現的是跟原本一樣的真實顏色。

可以看到某個東西的「真」色彩(或者應該說接近真實,晚點就會知道原因了),這種能力稱為色彩恆常性(color constancy)。

物體表面變化多端,因為物體在照到光後,其客觀測量出來的色彩可能會隨著不同色光而產生變化,但大腦會確保我們看到一樣的顏色。

拿一顆蛋,從日光下改放到紅光下,你還是會把蛋看成白色。大腦在處理色彩的過程中,透過某種方式去除了反射自物體表面的色光,意即照明(illumination),以便產生與物體表面色彩一致的圖像,也就是讓反射率(reflectance)保持不變。

有些人看到那張連衣裙照後,去除了藍光,於是看到白與金;其他人則把金色部分解讀為黃橙色的照明,因此看到藍與黑。就像我說的,藍黑白金裙是深藍色,因為另一位跟我談過的研究員,也就是華盛頓大學的傑伊.奈茲(Jay Neitz),經過搜尋後,找到了布利斯戴爾拍的其他照片。

連衣裙的兩種理解方式。圖/Wikipedia

在那些照片中,連衣裙的顏色毫無爭議。然而,藍黑白金裙這張照片的某個部分,導致有如大災難規模般的人口無法發揮色彩恆常性的能力。

我寫了一篇探討上述論點的報導,在美國東岸下午七點二十八分發布到網站上。我待在辦公室,到處閒晃一下,喝點酒,看著我們用來監測流量的軟體,上面顯示的數字不斷攀升。

到最後,我想有三千八百萬人讀過。現在還有人會看。這篇報導依然是《連線》有史以來最多人讀過的故事。它無疑創下了我的讀者人數紀錄,而且領先的差距多達數百萬。

色彩科學的震撼彈

不過,故事沒有在此畫下句點。藍黑白金裙為色彩學領域帶來了有如地震般的衝擊。

藍黑白金裙出現後,數年來的研究都顯示,最初讓這個迷因爆紅的分界線,並不像簡單明瞭的白與金/藍與黑那樣涇渭分明,但整個事件就是一場在展現可怕事實的實物教學:為了決定事物具有何種色彩,光的物理特性與顏料的化學特性,將會經由精心計算的神經學的錯縱複雜結構,從眼中相互連結的光受器到大腦視覺皮質中迷宮似的神經突觸連結之間,進行轉換與重新詮釋。

而人的大腦就像一棟住戶自己動手整修的老屋,這條神經線路卻沒有跟著完全翻新,有時還會短路。

你看到的藍黑白金裙是什麼顏色,決定這個結果的唯一最重要一點,就是你的大腦是如何在下意識中,辨別照亮連衣裙的色光——或許甚至就像康威一開始的推測,也就是你認為這張照片是在一天當中哪時候拍的。

藍黑白金裙暗中顛覆或公然打破,科學家針對色彩恆常性以及人類視覺偏好日光所提出的幾乎每個假設。置身於隨處可見高畫質螢幕的時代,許多人都能隨時看到近乎無窮的各種色彩。不過,這種色彩無所不在的情況也顯示出,每個人都有各自的無窮色彩,因為色覺不只受文化影響,也大幅受到個人影響。

我們全都以不同的方式,以數十億的個人調色盤,看到色彩。於是,人類用來發出跟自然界一樣多顏色的技術能力,現在又迫使科學得再次解決人類實際上是如何製造色彩的問題——不論這是指實際生產,還是在腦中產生。

摘自《全光譜》,2021 年 12 月,商周出版
文章難易度
所有討論 1
商周出版_96
110 篇文章 ・ 343 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

0

1
0

文字

分享

0
1
0
用這劑補好新冠預防保護力!防疫新解方:長效型單株抗體適用於「免疫低下族群預防」及「高風險族群輕症治療」
鳥苷三磷酸 (PanSci Promo)_96
・2023/01/19 ・2874字 ・閱讀時間約 5 分鐘

本文由 台灣感染症醫學會 合作,泛科學企劃執行。

  • 審稿醫生/ 台灣感染症醫學會理事長 王復德

「好想飛出國~」這句話在長達近 3 年的「鎖國」後終於實現,然而隨著各國陸續解封、確診消息頻傳,讓民眾再度興起可能染疫的恐慌,特別是一群本身自體免疫力就比正常人差的病友。

全球約有 2% 的免疫功能低下病友,包括血癌、接受化放療、器官移植、接受免疫抑制劑治療、HIV 及先天性免疫不全的患者…等,由於自身免疫問題,即便施打新冠疫苗,所產生的抗體和保護力仍比一般人低。即使施打疫苗,這群病人一旦確診,因免疫力低難清除病毒,重症與死亡風險較高,加護病房 (ICU) 使用率是 1.5 倍,死亡率則是 2 倍。

進一步來看,部分免疫低下病患因服用免疫抑制劑,使得免疫功能與疫苗保護力下降,這些藥物包括高劑量類固醇、特定免疫抑制之生物製劑,或器官移植後預防免疫排斥的藥物。國外臨床研究顯示,部分病友打完疫苗後的抗體生成情況遠低於常人,以器官移植病患來說,僅有31%能產生抗體反應。

疫苗保護力較一般人低,靠「被動免疫」補充抗新冠保護力

為什麼免疫低下族群打疫苗無法產生足夠的抗體?主因為疫苗抗體產生的機轉,是仰賴身體正常免疫功能、自行激化主動產生抗體,這即為「主動免疫」,一般民眾接種新冠疫苗即屬於此。相比之下,免疫低下病患因自身免疫功能不足,難以經由疫苗主動激化免疫功能來保護自身,因此可採「被動免疫」方式,藉由外界輔助直接投以免疫低下病患抗體,給予保護力。

外力介入能達到「被動免疫」的有長效型單株抗體,可改善免疫低下病患因原有治療而無法接種疫苗,或接種疫苗後保護力較差的困境,有效降低確診後的重症風險,保護力可持續長達 6 個月。另須注意,單株抗體不可取代疫苗接種,完成單株抗體注射後仍需維持其他防疫措施。

長效型單株抗體緊急授權予免疫低下患者使用 有望降低感染與重症風險

2022年歐盟、英、法、澳等多國緊急使用授權用於 COVID-19 免疫低下族群暴露前預防,台灣也在去年 9 月通過緊急授權,免疫低下患者專用的單株抗體,在接種疫苗以外多一層保護,能降低感染、重症與死亡風險。

從臨床數據來看,長效型單株抗體對免疫功能嚴重不足的族群,接種後六個月內可降低 83% 感染風險,效力與安全性已通過臨床試驗證實,證據也顯示針對台灣主流病毒株 BA.5 及 BA.2.75 具保護力。

六大類人可公費施打 醫界呼籲民眾積極防禦

台灣提供對 COVID-19 疫苗接種反應不佳之免疫功能低下者以降低其染疫風險,根據 2022 年 11 月疾管署公布的最新領用方案,符合施打的條件包含:

一、成人或 ≥ 12 歲且體重 ≥ 40 公斤,且;
二、六個月內無感染 SARS-CoV-2,且;
三、一周內與 SARS-CoV-2 感染者無已知的接觸史,且;
四、且符合下列條件任一者:

(一)曾在一年內接受實體器官或血液幹細胞移植
(二)接受實體器官或血液幹細胞移植後任何時間有急性排斥現象
(三)曾在一年內接受 CAR-T 治療或 B 細胞清除治療 (B cell depletion therapy)
(四)具有效重大傷病卡之嚴重先天性免疫不全病患
(五)具有效重大傷病卡之血液腫瘤病患(淋巴肉瘤、何杰金氏、淋巴及組織其他惡性瘤、白血病)
(六)感染HIV且最近一次 CD4 < 200 cells/mm3 者 。

符合上述條件之病友,可主動諮詢醫師。多數病友施打後沒有特別的不適感,少數病友會有些微噁心或疲倦感,為即時處理發生率極低的過敏性休克或輸注反應,需於輸注時持續監測並於輸注後於醫療單位觀察至少 1 小時。

目前藥品存放醫療院所部分如下,完整名單請見公費COVID-19複合式單株抗體領用方案

  • 北部

台大醫院(含台大癌症醫院)、台北榮總、三軍總醫院、振興醫院、馬偕醫院、萬芳醫院、雙和醫院、和信治癌醫院、亞東醫院、台北慈濟醫院、耕莘醫院、陽明交通大學附設醫院、林口長庚醫院、新竹馬偕醫院

  • 中部

         大千醫院、中國醫藥大學附設醫院、台中榮總、彰化基督教醫療財團法人彰化基督教醫院

  • 南部/東部

台大雲林醫院、成功大學附設醫院、奇美醫院、高雄長庚醫院、高雄榮總、義大醫院、高雄醫學大學附設醫院、花蓮慈濟

除了預防 也可用於治療確診者

長效型單株抗體不但可以增加免疫低下者的保護力,還可以用來治療「具重症風險因子且不需用氧」的輕症病患。根據臨床數據顯示,只要在出現症狀後的 5 天內投藥,可有效降低近七成 (67%) 的住院或死亡風險;如果是3天內投藥,則可大幅減少到近九成 (88%) 的住院或死亡風險,所以把握黃金時間盡早治療是關鍵。

  • 新冠治療藥物比較表:
藥名Evusheld
長效型單株抗體
Molnupiravir
莫納皮拉韋
Paxlovid
倍拉維
Remdesivir
瑞德西韋
作用原理結合至病毒的棘蛋白受體結合區域,抑制病毒進入人體細胞干擾病毒的基因序列,導致複製錯亂突變蛋白酵素抑制劑,阻斷病毒繁殖抑制病毒複製所需之酵素的活性,從而抑制病毒增生
治療方式單次肌肉注射(施打後留觀1小時)口服5天口服5天靜脈注射3天
適用對象發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人(18歲以上)的輕症病患。發病7天內、具有重症風險因子、未使用氧氣之成人與孩童(年齡大於28天且體重3公斤以上)的輕症病患。
*Remdesivir用於重症之適用條件和使用天數有所不同
注意事項病毒變異株藥物交互作用孕婦哺乳禁用輸注反應

免疫低下病友需有更多重的防疫保護,除了戴口罩、保持社交距離、勤洗手、減少到公共場所等非藥物性防護措施外,按時接種COVID-19疫苗,仍是最具效益之傳染病預防介入措施。若有符合施打長效型單株抗體資格的病患,應主動諮詢醫師,經醫師評估用藥效益與施打必要性。

文章難易度

0

3
1

文字

分享

0
3
1
鯨魚學彼此唱歌,還會定期更新歌單——堪稱動物界迷因的座頭鯨歌曲文化?
森地內拉_96
・2022/08/19 ・3442字 ・閱讀時間約 7 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

你認為什麼才是文化(culture)?如果你感到一絲猶豫了話,那很正常,因為它在人類學家的辨識中,至少擁有 164 種以上的定義,而在生物學上,文化最基礎的定義即是:個體或族群藉由社會學習(social learning)獲得而來的行為或訊息[8]。所以事實上,文化並非是人類所獨有的,許多動物也擁有各種複雜程度不一的文化,例如:日本獼猴(Macaca fuscata)的洗番薯文化[9]、蒼頭燕雀(Fringilla coelebs)的當地歌曲[11],以及寬吻海豚(Tursiops truncatus)的工具使用[10]等。

其實,除了非人靈長類以外,學界在討論動物文化交流時,最常使用的模式生物之一就是座頭鯨 ( Megaptera novaeangliae ,又被稱為大翅鯨),因為在其生態學的多個方面都存在著多樣的文化特徵,比如覓食策略的革命、遷徙路徑以及複雜歌曲的展示等[1, 17]

一首座頭鯨的「流行新歌」

西元 1996 至 1997 年,學界第一次記錄到了一種前所未有的文化現象[13],原本出自於印度洋的西澳大利亞座頭鯨族群的歌曲類型(song type),竟然出現在南太平洋的東澳大利亞族群中,隨後迅速取代了現有的歌曲類型,而這種在一個族群中,一首歌被另一首新歌迅速取代的現象,被稱為歌曲的「革命(revolution)」

雖然這首新歌一開始在族群內出現時的頻率很低,但經歷兩年後的蠶食鯨吞,新歌就已經完全取代舊歌了。隨後的研究工作也驗證了這種文化的傳播機制的存在,並在橫跨十幾年的一系列研究紀錄中,顯示出已有多種歌曲類型和革命從東澳大利亞族群向東傳播到南太平洋族群[4, 5, 6, 7]

有層次與結構的座頭鯨之歌

儘管學界還尚未完全理解座頭鯨歌曲的確切作用,但根據性廣告假說(sexual advertisement hypothesis)[12],雄性座頭鯨唱歌的目的是為了傳播自己的健康訊號,以此來吸引雌性並與其他雄性競爭。

而雄座頭鯨的歌曲具有相當複雜的層次與結構,並不只是單純的鳴叫而已[17],其中最小的單元代表一個單獨的聲音;而固定順序的單元會構成一個樂句(phrase);樂句重複一至多次後就會形成主題(theme);最後一系列不同的主題會組成一首「歌曲類型」 [16],並且在同一時間的單一個族群中,大部分雄性都會唱同一種類型的歌[14]

雄性座頭鯨的歌曲,具有相當複雜的層次與結構,不是僅是單純的鳴叫,雖然目前我們還未完全理解鯨魚歌曲的作用。 圖/elements.envato

歌曲交流的南北半球差異

雖然目前全球總共有 17 個座頭鯨族群(圖一),其中 6 個來自北半球;11 個來自南半球(南北半球之間幾乎不交流),但是幾乎所有關於座頭鯨歌曲的文化研究都聚焦在南太平洋複合族群[註 1],其中最根本的原因來自於文化產生的背景,也就是地理環境上的差異[17]

因為南太平洋複合族群在南半球海洋之間移動缺乏地理障礙,導致相鄰族群之間交互作用相對容易,而相比之下,因為北半球的北太平洋與北大西洋之間受到歐亞及北美大陸的阻隔的緣故,所以這兩個大洋的複合族群之間缺乏交流的機會[17]

(圖一)全球所有的座頭鯨族群及其繁殖地、覓食地與交互作用網,左圖箭頭由繁殖地指向覓食地。圖/參考文獻 17

如何創作一首膾炙「鯨」口的新歌?

  • 歌曲的演變

所有雄座頭鯨都可以透過社會學習,來為自己的歌曲新增變異。這些變異包括:增加歌曲的持續時間添加新的主題使用更多種類的單元[1],而這些小而漸進的變異過程被稱作為演變(evolution)

這些變異導致一個族群內的歌曲每年都會包含著略有不同的編排。然而,隨著歌曲的持續演變與傳播,也造成了歌曲類型的差異在族群內小、在族群間大的現象。除此以外,歌曲在最後也可能面臨一場「革命」,徹底在族群與物種中消失[13]

  • 傳播方式

根據紀錄與模型顯示[6],大部分歌曲類型的傳播都是單向的,並由大族群傳給小族群(表一)。首先,從西澳大利亞(west Australian,WA)族群向東傳到東澳大利亞(east Australian,EA),然後傳到新喀里多尼亞(Nouvelle-Calédonie,NC)、東加(Tonga,TO)和美屬薩摩亞(American Samoa,AS),最後傳到庫克群島(Cook Islands,CI)和法屬波利尼西亞(French Polynesia,FP)(圖一)。

(表一)1998 至 2008 年在南太平洋地區的紀錄,不同顏色代表不同的歌曲類型,斜線區塊代表數據缺失。
圖/參考文獻 6

然而,學界尚不完全清楚傳播機制,其中 Payne 與 Guinee 就提出了三種可能的歌曲交流途徑[15]

  1. 透過個體在一個季節內在多個族群間的移動來交流
  2. 透過個體在連續幾年間在多個族群間的移動來交流
  3. 族群共享覓食地或遷徙路線時交流

定期更新歌單,難道是「動物界迷因」?

在人類中心主義(anthropocentrism)的影響下,為了區別人類與其他動物的差異,「文化」有了更為狹隘的解釋,那就是群體成員共享的社會學習行為,並且這種行為必須在過程中不斷累積與改善[8]。但不同於其他非人動物,憑藉非凡的傳播速度與變異水準,南太平洋座頭鯨複合族群能年復一年迅速而一致地將其歌曲替換為不同的版本[17]

座頭鯨群體的傳播速度可是有著非凡水準。 圖/GIPHY

在這裡,我們就用比較詼諧的方式去比喻它:傳播速度快,既能複製、變異,也能優勝劣汰,這種歌曲傳播模式,就如同《自私的基因》中所提到的迷因(meme)一樣[2, 3]。雖然這其中有沒有達到改善,仍存有爭議,但是相對於其他非人動物,這種獨一無二的歌曲傳播模式,似乎成了更接近人類文化的一步。

雖然一系列的座頭鯨歌曲文化研究正如火如荼地展開,但其中還是留有許多待解決的議題,例如:歌曲變異的原動力來自於哪裡?性擇(sexual selection)在這些社會學習的過程中有什麼作用?能不能將座頭鯨的歌曲傳播模式用來推敲人類文化的演化過程?

總而言之,在文化演化論(cultural evolution)方面,這些座頭鯨歌曲文化研究確實提供了一個極具有發展潛力的模型[1, 17]

註釋

  • Metapopulation,同一物種的多個子族群的集合,並且彼此具有一定程度的交互作用。

延伸閱讀:

禹英禑最愛的鯨豚特輯!大翅鯨用「翅膀」打架?吐泡泡捕魚法?52赫茲鯨魚的身世之謎?

參考資料

  1. Allen, J. A., Garland, E. C., Garrigue, C., Dunlop, R. A., & Noad, M. J. (2022). Song complexity is maintained during inter-population cultural transmission of humpback whale songs. Scientific Reports, 12(1).
  2. Bhatia, A. (2011). Hollaback to the male humpback whale.
  3. Dawkins, R. (2022). The Selfish Gene (Indian Edition). Oxford University Press.
  4. Garland, E. C., Gedamke, J., Rekdahl, M. L., Noad, M. J., Garrigue, C., & Gales, N. (2013). Humpback Whale Song on the Southern Ocean Feeding Grounds: Implications for Cultural Transmission. PLoS ONE, 8(11), e79422.
  5. Garland, E. C., Goldizen, A. W., Lilley, M. S., Rekdahl, M. L., Garrigue, C., Constantine, R., Hauser, N. D., Poole, M. M., Robbins, J., & Noad, M. J. (2015). Population structure of humpback whales in the western and central South Pacific Ocean as determined by vocal exchange among populations. Conservation Biology, 29(4), 1198–1207.
  6. Garland, E. C., Goldizen, A. W., Rekdahl, M. L., Constantine, R., Garrigue, C., Hauser, N. D., Poole, M., Robbins, J., & Noad, M. (2011). Dynamic Horizontal Cultural Transmission of Humpback Whale Song at the Ocean Basin Scale. Current Biology, 21(8), 687–691.
  7. Garland, E. C., Noad, M. J., Goldizen, A. W., Lilley, M. S., Rekdahl, M. L., Garrigue, C., Constantine, R., Hauser, N. D., Poole, M. M., & Robbins, J. (2013). Quantifying humpback whale song sequences to understand the dynamics of song exchange at the ocean basin scale. The Journal of the Acoustical Society of America, 133(1), 560–569.
  8. Heyes, C. (2020). Culture. Current Biology, 30(20), R1246–R1250.
  9. Kawai, M. (1965). Newly-acquired pre-cultural behavior of the natural troop of Japanese monkeys on Koshima islet. Primates, 6(1), 1–30.
  10. Krützen, M., Mann, J., Heithaus, M. R., Connor, R. C., Bejder, L., & Sherwin, W. B. (2005). Cultural transmission of tool use in bottlenose dolphins. Proceedings of the National Academy of Sciences, 102(25), 8939–8943.
  11. Marler, P. (2008). Variation in the Song of the Chaffinch Fringilla Coelebs. Ibis, 94(3), 458–472.
  12. Mercado, E. (2021). Song Morphing by Humpback Whales: Cultural or Epiphenomenal?. Frontiers in Psychology, 11.
  13. Noad, M. J., Cato, D. H., Bryden, M. M., Jenner, M. N., & Jenner, K. C. S. (2000). Cultural revolution in whale songs. Nature, 408(6812), 537.
  14. Payne, K., & Payne, R. (2010). Large Scale Changes over 19 Years in Songs of Humpback Whales in Bermuda. Zeitschrift Für Tierpsychologie, 68(2), 89–114.
  15. Payne R. S., & Guinee L. N. (1983). Humpback whale (Megaptera novaeangliae) songs as an indicator of ‘stocks’. In Communication and behavior of whales (ed. Payne R), pp. 333-358. Boulder, CO: Westview Press.
  16. Payne, R. S., & McVay, S. (1971). Songs of Humpback Whales. Science, 173(3997), 585–597.
  17. Zandberg, L., Lachlan, R. F., Lamoni, L., & Garland, E. C. (2021). Global cultural evolutionary model of humpback whale song. Philosophical Transactions of the Royal Society B: Biological Sciences, 376(1836).
森地內拉_96
4 篇文章 ・ 12 位粉絲
總覺得自己是理組中的文科生,一枚資工念一半就轉去生科的傻白甜。 關注於生態、演化生物學、生物多樣性及動物行為等議題,想要把自己的想法與接受到的新知傳達給大家,所以就開始嘗試寫科普......

0

4
1

文字

分享

0
4
1
與原色、光譜、煉金術交織而成的牛頓光學——《全光譜》
商周出版_96
・2022/03/19 ・2705字 ・閱讀時間約 5 分鐘

  • 作者/亞當.羅傑斯 
  • 譯者/ 王婉卉

光譜的故事

牛頓從三稜鏡中獲得的最大體悟,並非不同色光在穿透同一介質後,折射率會有所不同。席奧多瑞克與他同時代的研究學者已經證實這點了。

就算讓單色光再穿透另一個稜鏡也不會改變,牛頓甚至不是證明這點的第一人——證明的人是十七世紀的波西米亞科學家約翰尼斯.馬克斯.馬奇(Johannes Marcus Marci)。

牛頓的獨家發現是,那些色彩是如何混合在一起。他發覺,純粹陽光的白光,其實是所有其他色光混合而成的結果,透過稜鏡的折射,才使其分散開來。或者就像牛頓所說的,光是「由形形色色的光線構成,有些光比其他光更容易折射。」我們四周充斥的光是由順序固定的「純」色構成,而這個順序就是自亞里斯多德的時代起,眾人不斷在尋找的目標。

牛頓為這個順序想出了一個非常不錯的名稱,叫做「光譜」(spectrum)

模擬的自然光光譜。圖/Wikipedia

然後,牛頓誰也沒說,就這樣返回了劍橋。他協助一位年長導師編輯光學與色彩的著作,卻沒告訴對方自己的新發現。這位導師退休後,牛頓接任了這傢伙的職務:盧卡斯數學教授(Lucasian Professor of Mathematics)榮譽職位。

牛頓這位據說上課很無聊的講師,這時才終於開始一點一滴發表自己從研究稜鏡所得出的結果。

儘管牛頓寫出的折射運算式既冰冷又毫不浪漫,卻依然有人深感崇拜。當時的皇家學會祕書是德國人亨利.歐登堡(Henry Oldenburg),工作主要是負責讓歐洲各地的研究人員能進行書信交流。(歐登堡精通荷蘭語、英語、法語、德語、義大利語、拉丁語。)

《自然科學會報》的鬥嘴故事

一六六四年,他向皇家學會創始成員的波以耳極力推銷一個可以賺錢的構想:把所有書信整合成只供訂閱的通訊刊物。

法國才剛開始出版《科學家週刊》(Journal des Sçavans),他們的編輯部也有向歐登堡邀稿。結果,歐登堡反而把先前出版的一本週刊帶到了學會的集會上,連同一份他自己想嘗試的通訊草稿或校樣——一份相似「但本質更偏向哲學」的刊物,他如此表示。

於是,《自然科學會報》(Philosophical Transactions)就這樣創刊了,可說是世上首份徹徹底底的科學期刊。一份有兩三頁,要價一先令。

歐登堡聽說了牛頓正在埋首研究的主題,於是開始不斷央求他發表成果。最後,在一六七二年二月,牛頓洋洋灑灑寫了一封長信,描述自己的研究,以為這封信會在皇家學會的集會上由人朗讀。

由於歐登堡假定,任何人寄給自己的任何內容都屬於正式公開發表,於是就把那封信的內容刊登在當月的《自然科學會報》上。這時,歐登堡已經把這份期刊改為訂閱制,而這種模式是否可行,全取決於獨家內容。

《自然科學會報》自創刊以來的七年間,發表的論文格式大多遵循波以耳樹立的範本,也就是採時序敘事。現今期刊可能會遵循的格式——緒論、假設、研究方法、實驗結果、結論——當時尚未成形。

牛頓寫的信一開始有點像做工精良的成品,提出了研究方法與概念,並表達這整個研究到底多有樂趣,他自己對研究發現又是多樂在其中。

然後,他似乎就放棄了。寫到一半,牛頓不再試圖用數學計算證明任何事,就只是寫下自己的理論,描述幾個實驗。這不是「我的彩虹之旅」。儘管如此,牛頓依然為世上有史以來的第一份科學期刊,寫下了有史以來的第一篇科學論文。內容還是關於色彩與光。

色彩與光。圖/Pexels

幾乎沒過多久,世上最聰明的一群人就開始酸他。虎克在信件內容發表後的一週內,就寫信給歐登堡,表示牛頓對折射性不同的看法錯了、對白光的看法錯了、對光是由什麼構成的看法也錯了。

況且無論如何,虎克說,他早就做過這些實驗了,不覺得有什麼了不起。接下來的四年間,《自然科學會報》不斷發表針對牛頓研究成果的批評,再刊登牛頓對這些批評的回應。

《光學》終於出版

最終,牛頓投降放棄。他不再跟歐登堡有所交流。虎克則在一七○三年去世,一年後,少了吹毛求疵的批評者,牛頓出版了《光學》(Opticks)。

在這本相當有分量的著作中,牛頓添加了一堆新難題。他先前就一直在思考原色的問題,但現在終於承認光譜是連續的,而這個連續光譜包含了無窮的色彩層次變化,也是色彩何以會改變、色彩順序何以會漸變的答案。

然而,牛頓也堅決主張,這個光譜具有亞里斯多德式(與煉金術)的七種色彩:他在紅、黃、綠、藍、紫羅蘭中,加上了橙與靛藍,接著將所有色彩圍成一圈,透過根本就是他虛構的非光譜紫色,把其中一端的紅色與另一端的紫羅蘭色連接起來。

以現代色彩學術語來說,他創造出一張色度圖(chromaticity diagram),試圖要量化混色的方式,似乎也呈現出色彩按順序漸變為另一種色彩。

色度圖。圖/Wikimedia

牛頓建構的色彩順序屬於現代,有如彩虹般的漸層變化,是以自然的物理現象為基礎。不過,把色彩圍成一圈,可能是牛頓輕觸尖頂巫師帽,向鍾情於畢達哥拉斯神奇數學比例的煉金術士致意。

牛頓實際上究竟有沒有尖頂巫師帽,歷史學家對此尚未發表意見,但他無疑相當熟悉煉金術是如何看待色彩,以及色彩具有的重要性:雖然是在背地裡,但牛頓確實寫下了大量關於煉金術的內容,而且在他位於三一學院〔Trinity College〕的實驗室裡,還放置了煉金術相關的藏書,以及煉金術會用到的常見材料。

但不像典型的煉金術士,牛頓運用的是數學。他能相當精確地計算出每個色彩之間的折射率差異,色環(color circle)也依各顏色的比例,分配到長短不一的周長,意即各顏色的扇形區塊有大有小。

無可否認的是,這些比例都是主觀分配的結果,跟對應音階的神祕關聯有關,但就像之後會看到的,一般人對色彩彼此是如何互有關聯的認知,一向都很主觀。這個色環逐漸成為具體表達色彩之間幾何關係的方法。簡言之,就是所謂的色彩空間。

—摘自《全光譜》,2021 年 12 月,商業周刊