3

14
5

文字

分享

3
14
5

為什麼愛玉籽洗一洗就會「結凍」?——從國民美食到生醫材料

研之有物│中央研究院_96
・2022/02/23 ・4906字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文│黃品維
  • 美術設計│林洵安

愛玉結膠過程的黏彈性變化

甜品中常見的愛玉,其實是非常有趣的生物材料,它並不需要加熱、也不需要額外的添加物,就可以在室溫底下凝結成膠,變成愛玉凍。中央研究院物理研究所陳彥龍研究員,分析愛玉在凝膠過程黏性與彈性的改變,最後建立數學模型,預測愛玉結膠現象。未來,愛玉將有望取代藻膠(alginate),用於人造植物肉的口感調整,或是作為輸送藥物的微顆粒成分。現在先讓我們一起來看有趣的愛玉研究吧!

你知道為什麼愛玉籽洗一洗就會變成愛玉凍嗎?圖/維基百科

愛玉:從街頭到實驗室

愛玉為臺灣人的平民美食,檸檬愛玉、愛玉粉圓、愛玉芒果冰……QQ 彈彈好吃到咩噗的愛玉,是許多人喝手搖時最愛的配料,也是炎熱夏天的消暑聖品。

我們從小吃到大的愛玉,學名叫 Ficus Pumila var. Awkeotsang,它跟洋菜凍、石花凍等膠體食物很不一樣,在製作過程中,愛玉並不需要經過烹煮、也不需要加入其他添加物,就能在室溫下產生膠化反應,形成愛玉凍。

-----廣告,請繼續往下閱讀-----

可惜的是,愛玉在學術上並未有太多深入的探討。中研院物理所陳彥龍研究員,主要從事高分子流體與非線性流體的研究,他一直以來對膠體非常有興趣。這一次他鎖定了愛玉,與美國麻省理工學院(MIT)合作,希望從流變學的角度切入,探究愛玉膠化的秘密!

愛玉如何膠化變成愛玉凍?

首先,我們要先簡單了解一下,愛玉為什麼可以在室溫下結膠?

大家如果有製作過愛玉的話,應該都會記得一開始的步驟:我們要先把愛玉籽裝進紗布袋裡面,並在水中不斷地搓揉,靜置一段時間後,才能讓愛玉慢慢形成。這個「洗愛玉」的動作,其實就是將愛玉籽中的高分子、酵素、金屬離子等物質,析出到水溶液裡面,形成愛玉萃取液。

而在萃取液中,最主要的成分之一,就是聚半乳醣醛酸(poly galacturonic acid,簡稱 PGA)。PGA 是一種長鏈的高分子,也是讓愛玉凝結成膠的重要成分,它在水溶液中會發生三階段的化學反應:

-----廣告,請繼續往下閱讀-----
圖/研之有物(資料來源:陳彥龍)

愛玉萃取液中,鈣離子會與長鏈的 PGA 形成交聯,而多個交聯會緊密排列,成為更穩定的連結區。隨著連結區愈來愈多,愛玉也就變成愛玉凍了!詳細如下:

第一階段(I),PGA 分子的 R-COOCH3(甲氧基),會被愛玉獨有的愛玉果膠酶(pectin methylesterase enzyme)活化變成 R-COOH(羧基),兩個 R-COO 和鈣離子會形成暫時性的交聯(crosslink)。

第二階段(II),當萃取液中的鈣離子搭起一座又一座橋樑,連續的交聯將兩段 PGA 鏈結在一起,開始形成點狀交聯(point-like crosslinks,PC)或較短的連結區(Short Junction Zones,SJZ)。

第三階段(III),隨著越來越多鈣離子與 PGA 鍵結,交聯一個接著一個排列,形成長串的連結區(Junction Zone,JZ)。連結區是非常穩定的結構,它就像拉鍊一樣,把兩段 PGA 牢牢地嵌在一起,此時愛玉也慢慢出現固體特性,變成了「愛玉凍」。

-----廣告,請繼續往下閱讀-----

從流變學分析愛玉膠化的過程

身為物理學家,陳彥龍還想知道:愛玉在結膠過程中,物理性質又是怎麼改變呢?為了釐清這個問題,研究團隊從流變學(Rheology)的角度,分析愛玉結膠的現象。

所謂的「流變學」,是探討材料物理性質的一種方法,通常會測量材料的黏彈性(Viscoelasticity),很適合兼具固體與液體特性的軟物質(Soft matter)。

對固體來說,如果對材料施力的話,它的形狀會改變;當外力移除,它就會回復原本形狀。這就是固體的「彈性」(Elasticity),它會吸收讓形狀改變的能量,就像我們用湯匙碰一下布丁,布丁會回彈一樣。

另一方面,如果我們對液體施力,材料就會開始流動,在相同的施力下,不同流體會有各自的流速,例如攪動玉米濃湯和奶茶的黏稠度就不一樣,這代表不同流體有不一樣的「黏性」(Viscosity)。

-----廣告,請繼續往下閱讀-----

有些物質同時具備「彈性」與「黏性」兩種特性,而愛玉就是其中一種。愛玉從萃取液變成愛玉凍的過程中,雖然「彈性」變得越來越明顯,但仍然保有流體的「黏性」。這樣的愛玉,不是單純的固體、也不是單純的流體,所以需要透過流變學,探討愛玉的物理性質。

材料有彈性,也有黏性,愛玉同時具備兩個特性。愛玉從萃取液變成愛玉凍的過程中,雖然固體的「彈性」變得越來越明顯,但仍然保有流體的「黏性」。圖/研之有物

如何量測愛玉的黏彈性?

為了研究愛玉的黏彈性,研究團隊將愛玉萃取液裝進流變儀(rheometer)的杯狀容器內,再把圓筒狀量具(下圖)放入愛玉之中。這個量具由馬達驅動,會像陀螺一樣在愛玉裡面來回轉動,向愛玉施力。從愛玉反饋給儀器的力矩,我們就可以了解結膠過程中,愛玉的黏彈性變化。

左為杯狀容器與量具;右為 OWCh 的模擬疊加波,此形變訊號 γ 將輸入儀器中進行量測。圖/研之有物(資料來源:陳彥龍)

一般來說,流變儀會使用固定的頻率(例如正弦波)旋轉量具,來蒐集物質對特定頻率的反應。不過,由於愛玉結膠的變化很快,這樣的量測方式追不上愛玉質變的速度。陳彥龍說道:「測量的過程中,愛玉材料性質就已經變了。」

為了解決這個問題,美國麻省理工學院 Gareth McKinley 教授與學生 Michela Geri 發明了Optimally-Windowed Chirps(OWCh)量測方式。OWCh 可以疊加不同頻率、不同振幅的形變波,再使用這個疊加波,對愛玉進行測試,最後從實驗結果,回推愛玉對不同頻率形變的力學反應。

-----廣告,請繼續往下閱讀-----

陳彥龍表示「OWCh 測量物質對頻率反應的時間非常短,在愛玉演化的過程中,每一個時間點我都可以得到它對頻率的反應,擴充了之前實驗上做不到的量測。」

愛玉膠化過程的神秘轉折!

從流變儀的實驗結果,我們得知愛玉在結膠時的黏彈性變化,下圖黑線 G 代表愛玉的固體性質(彈性模數部分,storage modulus)、紅線 G 代表愛玉的液體性質(黏性模數部分,loss modulus)。

可以看到,一開始液狀的愛玉幾乎沒有彈性,但過了一段時間後,彈性模數開始快速增加,甚至超過了黏性模數。兩條線交會的點為膠化點(gelation point),此刻為膠化時間(gelation time,tgel),代表愛玉的固體與液體特性相同。

在膠化點之後,愛玉的固體性質越來越明顯。最終,愛玉變成了愛玉凍,黏彈性的變化也漸漸趨於穩定。

-----廣告,請繼續往下閱讀-----
上圖為愛玉在結膠時的黏彈性變化,黑線 G’ 和紅線 G” 交會的點為膠化點,此刻為膠化時間(tgel),代表愛玉的固體與液體特性相同。圖/研之有物(資料來源:陳彥龍)

不過,如果看仔細一點,會發現一個有趣的現象:膠化點之後,愛玉的黏性與彈性會先經歷小幅度趨緩,甚至下降,再轉折成穩定上升的趨勢,出現了拐點(inflection point)(上圖箭頭處)。

這就奇怪了!在陳彥龍一開始的理論預測中,鈣離子與 PGA 交聯的濃度([Ca-PGA]),會隨著時間增加而穩定上升。照理說,愛玉應該也要穩定的固化才對。然而,不論是彈性還是黏性,都同時出現拐點,代表愛玉在膠化時,還有一些狀況沒被考慮到。

在原本的理論預測中,鈣離子與 PGA 交聯的濃度 [Ca-PGA] 會隨著時間穩定上升。但實際上,愛玉卻沒有穩定的固化。圖/研之有物(資料來源:陳彥龍)

經過一番研究,陳彥龍推測,拐點的出現,可能是因為某些交聯「分離了」。我們前面有提到,成串的交聯會形成連結區(JZ),而 JZ 非常穩定,是愛玉膠體重要的結構支撐。但是,單獨的交聯、或是較短的連結區(SJZ),鍵結其實是很弱的。在形成 JZ 之前,這一些不穩定的交聯可能會先分離,導致交聯網路形成的速度變慢,才會在實驗中看到黏性與彈性出現拐點的現象。

顯微鏡下的愛玉長什麼樣子?

另一方面,為了觀察凝膠過程的微觀結構,研究團隊使用冷凍電子顯微鏡 (Cryo-EM) ,觀察愛玉結膠時的變化。陳彥龍主要選定了三個時間點來觀測,分別是膠化點(A)、拐點(B),以及愛玉凍趨於穩定的時間點(C)。

-----廣告,請繼續往下閱讀-----
縱向的虛線即為選定的時間點,分別為膠化點(A)、拐點(B),以及愛玉膠體趨於穩定的時間點(C)。圖/研之有物(資料來源:陳彥龍)

從下圖可以看到,在接近膠化點前,圖片中間有一些白色細纖維(A),看起來是愛玉凍剛開始形成的狀態。至於周圍的其它孔洞,則可能是因為樣本急速冷凍,導致水結成冰晶所造成的空隙。

接著,拐點左右的時間點,我們看到愛玉開始形成網路結構(B)。隨著時間增加,結構變得越來越緻密,等到膠體進入穩定階段時,就形成了穩固的纖維網路(C),而愛玉也變成緻密的愛玉凍了!

樣品是在選定時間點之前冷凍製備,顯微鏡下的觀測結果,可以看到愛玉高分子網絡隨著膠凝化越來越緻密。圖/研之有物(資料來源:陳彥龍)

破解愛玉的膠化密碼

陳彥龍團隊不僅從實驗了解愛玉物理特性,還發展理論預測愛玉膠化程度。簡單來說,只需要知道愛玉籽一開始的重量,以及環境的基本條件,就可以推算愛玉在不同時間點的彈性、黏性會如何變化。

首先團隊從化學反應動力學出發,算出愛玉萃取液中鈣離子和 PGA 交聯的濃度 [Ca-PGA],也就是鈣離子搭了幾座橋。有了 [Ca-PGA],就可以知道某個時間的愛玉彈性。原則上交聯越多,愛玉越有彈性。

不過,因為實驗發現愛玉黏彈性有轉折點,團隊進一步考慮短連結區(SJZ)和連結區(JZ)的數量密度,修正理論模型,貼近真實的膠化情況。

最後,研究團隊終於研擬出一個能夠預測愛玉膠化行為的數學模型。陳彥龍總結道:「這次主要的研究成果,就是探討愛玉結膠過程中黏彈性的改變,還有透過反應動力學的理論基礎,來預測愛玉膠化的過程。」

有了理論模型可以做什麼?平民美食大變身!

有了理論模型後,未來製作愛玉時,我們就不用依賴那雙洗愛玉籽的神之手,而是能更精準的掌握和控制愛玉的結膠品質。讓愛玉不僅可以單吃,還能成為食品業和生醫材料的幫手!

在食品科學方面,近年廠商開始嘗試用人造植物肉取代動物肉食材, 輔助環境永續與減少碳排放。這些植物肉,通常都會利用膠狀食材來調整口感,如果我們能夠精準地調整愛玉的硬度,或許也能讓愛玉成為植物肉的一部分。

在生醫材料的應用上,愛玉也可以參一腳。近幾年,很多研究討論藻膠在藥物輸送上的應用,將藥品包在含有藻膠的微膠囊內,控制藥物在體內釋放的時間。

藻膠的成分,與愛玉有很多類似的地方,陳彥龍期待地說:「如果用愛玉來做的話,是不是能夠達成類似的性質呢?」

另外,由於愛玉本身的果膠分子屬於弱電解質,有機會取代其他高分子液體的應用。目前,陳彥龍團隊正在跟其他實驗室合作,探討愛玉做為鋰電池的電解液,是否具有未來發展性。

下次當你吃著喜歡的愛玉時,大可不必思考背後複雜的流變學;不過要記得,愛玉不只是手搖杯的配料、也不只是臺灣美食,更是極具發展潛力的生物材料!

愛玉不只是愛玉,更是極具發展潛力的生物材料!

延伸閱讀:

文章難易度
所有討論 3
研之有物│中央研究院_96
296 篇文章 ・ 3404 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

3
0

文字

分享

0
3
0
最理想的元素週期表?其實元素週期表有很多種!——《元素週期表:複雜宇宙的簡潔圖表》
日出出版
・2023/06/10 ・2017字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

前面幾章都在談元素週期表,但還有一個重要面向沒有提到。為什麼有這麼多元素週期表出版,而且為什麼現在的教科書、文章、網路,提供這麼多種元素週期表?有沒有「最理想的」元素週期表?追求最理想的元素週期表有意義嗎?如果有,我們在找出一份最佳週期表的過程中取得那些進展?

種類數量可觀的元素週期表

愛德華.馬蘇爾斯(Edward Mazurs)關於週期表歷史的經典著作中,收錄自一八六○年代首張元素週期表繪出以來,大約七百張的元素週期表。

馬蘇爾斯的書本出版已過了四十五年左右;之後,期間至少又有三百張週期表問世,如果再加上網路上發表的就更多了。為什麼會有這麼多元素週期表,這件事情需要好好解釋。當然,這些元素週期表中,許多並沒有新的資訊,有些從科學的觀點來看甚至前後矛盾。但即使刪除這些具有誤導性的表,留下的數量還是非常可觀。

元素週期表的變體:有圓形的還有立體的?

我們在第一章看過元素週期表的三個基本形式:短元素週期表中長元素週期表長元素週期表。這三類基本上都傳達差不多的訊息,但相同原子價(編按:原子的價數,金屬為正價、非金屬為負價)的元素,在這些表中有不同的分族。

此外,有些週期表不像我們一般認識的表格那樣四四方方。這種變體包括圓形橢圓的週期系統,比起長方形的元素週期表,更能強調元素的連續性。不像在長方形的表上,在圓形或橢圓形的系統中,週期的結尾不會中斷,例如氖和鈉、氬和鉀。

-----廣告,請繼續往下閱讀-----

但是,不像時鐘上的週期,元素週期表的週期長度不同,因此圓形元素週期表的設計者需要想辦法容納過渡元素的週期。例如本菲(Benfey)的元素週期表(圖 37),過渡金屬排列的地方從主要的圓形突出來。也有三維的元素週期表,例如來自加拿大蒙特簍的費爾南多.杜福爾(Fernando Dufour)所設計的(圖 38)。

圖 37/本菲(Benfey)的圓形元素週期表。圖/《元素週期表:複雜宇宙的簡潔圖表
圖 38/費爾南多.杜福爾(Fernando Dufour)的三維元素週期表。圖/《元素週期表:複雜宇宙的簡潔圖表

但我認為,這些變體都只是改變週期系統的描繪形式,它們之間並無根本上的差異。稱得上重要變體的,是將一個或多個元素放在和傳統元素週期表中不同的族。討論這點之前,我先談談元素週期表一般的設計。

元素週期表的概念好像很簡單,至少表面上是,因此吸引業餘的科學家大展身手,發展新的版本,也常宣稱新的版本某些地方比過去發表的更好。

當然,過去有過幾次,化學或物理學的業餘愛好者或外行人做出重大貢獻。例如第六章提過的安東.范登.布魯克,他是經濟學家,也是首先想到原子序的人,他在《自然》等期刊發展這個想法。另一個人是法國工程師夏爾.雅內(Charles Janet),他在一九二九年發表「左階式元素週期表」(Left-step periodic table),後來持續受到週期表的專家和業餘愛好者的關注(圖 39)。

圖 39/夏爾.雅內(Charles Janet)的左階式元素週期表。圖/《元素週期表:複雜宇宙的簡潔圖表

「理想」的追求

那麼,追求最理想的元素週期表真的有意義嗎?我認為,這個問題的答案取決於個人對週期系統的哲學態度。一方面,如果一個人相信,元素性質近似重複的現象是自然世界的客觀事實,那麼他採取的態度是實在論。對這樣的人而言,追求最理想的元素週期表非常合理。最能代表化學週期性事實的就是最理想的元素週期表,即便這樣的表還沒制訂出來。

-----廣告,請繼續往下閱讀-----

另一方面,工具論者或反實在論者看待元素週期表,可能會認為元素的週期性是人類強加給自然的性質。若是如此,就不必熱切尋找最理想的元素週期表,畢竟這種東西根本不存在。對約定俗成論者或反實在論者來說,元素究竟如何呈現並不重要,因為他們相信我們處理的,不是元素之間的自然關係,而是人造關係。

——本文摘自《【牛津通識課10】元素週期表:複雜宇宙的簡潔圖表》,2023 年 4 月,日出出版,未經同意請勿轉載。

日出出版
13 篇文章 ・ 7 位粉絲

0

1
1

文字

分享

0
1
1
寫在起司工廠邀請函背面的曠世巨作:元素週期表出現的這一天——《元素週期表:複雜宇宙的簡潔圖表》
日出出版
・2023/06/09 ・1127字 ・閱讀時間約 2 分鐘

-----廣告,請繼續往下閱讀-----

雖然門得列夫一直思考著元素、原子量、分類,但是足足想了十年之久,才終於迎來「我發現了!」這個時刻,就是一八六九年二月十七日這一天,也許可以訂為「我發現了!」紀念日。這一天,他取消了以顧問身分視察起司工廠的行程,決定投入研究他日後最膾炙人口的代表作——元素週期表

真正的發現

首先,他在起司工廠邀請函的背後,把幾個元素的符號列成兩行:

接著,他列出一個稍微更大的陣列,包括十六個元素:

當天晚上,門得列夫就把整個元素週期表都畫了出來,包括六十三個已知元素。此外,這張表還留了幾個空格給當時未知的元素,甚至預測這些未知元素的原子量。

他將這張表複印兩百份,寄給整個歐洲的化學家。同年三月六日,門得列夫的同事在俄羅斯化學學會一場會議上宣布這項發現。一個月內,這個新成立的學會就在期刊上刊登了一篇文章,另一篇更長的則在德國發表。

-----廣告,請繼續往下閱讀-----

多數關於門得列夫的大眾讀物和紀錄片會說他在夢中想到他的元素週期表,或在玩紙牌接龍時把牌當成一個個元素。這兩個故事,尤其後者,現在已經被許多門得列夫的傳記作者視為是杜撰的,例如科學史家麥克.戈爾丁(Michael Gordin)。

原則的堅持

還是回來討論門得列夫的科學方法吧。他和對手洛塔爾.邁耶爾很大的不同是,他不相信所有物質的統一性,也不支持普洛特關於元素具有複合性質的假說。門得列夫也刻意與三元素組的想法保持距離。例如,他提出氟應該和氯、溴、碘放在一起,形成一個至少四個元素的族。

洛塔爾.邁耶爾專注於物理原則,主要關注元素的物理性質,而門得列夫則非常熟悉元素的化學性質。然而,說到分類元素最重要的標準時,門得列夫堅持以原子量排序,不容許有任何例外。當然,許多在門得列夫之前的人,例如尚古多、紐蘭茲、奧德林,以及洛塔爾.邁耶爾都承認原子量的重要性,儘管程度不一。但是門得列夫對原子量與元素的本質有更深層的哲學理解,得以一探尚未被人發現的元素,進入這個未知領域

——本文摘自《【牛津通識課10】元素週期表:複雜宇宙的簡潔圖表》,2023 年 4 月,日出出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

日出出版
13 篇文章 ・ 7 位粉絲

1

3
2

文字

分享

1
3
2
狗用來標記地盤,老鼠用來求偶,但人類很可能沒有?神奇的化學分子費洛蒙——《完美歐姆蛋的化學》
日出出版
・2023/01/01 ・1841字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

可以傳染的「興奮感」:費洛蒙

費洛蒙是一種非常大的分子,會從動物體內散發出來並影響其他動物身體的行為。

這種物質當初是在 1959 年由德國生物化學家阿道夫.布特南特(Adolf Butenandt)發現, 這位科學家在二十年前就因為首次合成出性激素而獲得諾貝爾化學獎,說他是化學界的搖滾巨星都還不足以形容他的貢獻。

阿道夫.布特南特首次合成出性激素。圖/wikipedia

他的研究發現,費洛蒙的功能和激素一樣,但是只對附近的相同物種個體有效。

舉例來說,如果動物 A 在動物 B 附近釋放出性費洛蒙,動物 B 的身體會吸收這些分子,整體行為也會受到影響。這其實代表動物 A 具有像丘比特的能力,只不過用的不是箭,而是分子。

基於以上的原因,費洛蒙有時會被稱為「環境激素」(eco-hormone),因為這類分子的運作方式就像是體外的激素。

-----廣告,請繼續往下閱讀-----

和激素相同的是,費洛蒙有各式各樣的結構。有些分子非常小,有些則相當大,不過全都是揮發性分子,這表示分子在特定條件下會輕易蒸發。揮發性物種通常很好辨識,因為會帶有強烈的氣味(像是汽油或去光水)。

汽油帶有強烈的氣味。圖/pixabay

研究人員決定把這種分子命名為費洛蒙(pheromone),是因為字面上的意思是「轉移興奮感」,而這正是費洛蒙的功能。

動物間的費洛蒙功用

強大的費洛蒙分子可以傳送幾種不同主題的訊號給附近的同類,例如食物、安全狀況或者性。舉例來說,螞蟻會在巢穴和食物之間的路徑散發費洛蒙,來通知彼此食物來源在哪裡。

狗在散步時對消防栓撒尿是為了標示自己的領域,這時釋放的就是領域費洛蒙。就連雄鼠也會散發出性相關的費洛蒙來吸引雌鼠,同時也會導致附近的雄鼠變得更有攻擊性。

-----廣告,請繼續往下閱讀-----
狗在散步時對消防栓撒尿是為了標示自己的領域,這時釋放的就是領域費洛蒙。圖/pixabay

那麼人類呢?

人也會散發出任何一種類型的性費洛蒙嗎?

出乎意料的,人類不會散發任何一種形式的性費洛蒙。不過我們自以為有費洛蒙的原因在這裡:1986年,溫尼弗雷德.卡特勒(Winnifred Cutler)發表的研究宣稱,她成功分離出第一種人類性費洛蒙。

在這項研究計畫中,她蒐集、冷凍並解凍來自幾位不同對象的性費洛蒙。一年之後,她將這些分子塗在許多女性受試者的上唇,接著便宣稱她觀察到和大自然的動物類似的結果。

事實上,卡特勒的研究完全是一派胡言。她根本沒有分離出人類性費洛蒙;而只是把奇怪的氣味塗在隨機受試對象的上唇,其中包括——請做好心理準備——腋下的汗水。

-----廣告,請繼續往下閱讀-----

與其說是分離出純費洛蒙,不如說她蒐集的是人流汗時排出的電解質,而且還抹在別人的臉上。

與其說是分離出純費洛蒙,不如說她蒐集的是人流汗時排出的電解質,而且還抹在別人的臉上。圖/pixabay

直到今天,卡特勒的噁心科學研究還流傳在網路上的各個角落,這表示如果有人在 Google 上搜尋「人類性費洛蒙」,就會和得到一堆錯誤資訊。有些研究人員堅信我們總有一天會發現性費洛蒙,不過在這本書出版的當下,科學界尚未找到任何人類性費洛蒙。

一直以來有不少相關研究在執行和重複進行,也盡可能針對各種變數進行調整,而所有的研究團隊都得出相同的結論:二十一世紀的人類大概沒有性費洛蒙。

但人類有史以來就是這樣嗎?如果大多數的其他哺乳類都有性費洛蒙,包括兔子和山羊,為什麼我們沒有?

-----廣告,請繼續往下閱讀-----

答案其實意外簡單:人類學會了溝通。

我們可以用語言(和蠟燭……還有性感內衣……)告訴伴侶我們有興趣滾床單,而雪貂則必須往理想交配對象的方向散發性分子。

——本文摘自《完美歐姆蛋的化學》,2022 年 12 月,日出出版出版,未經同意請勿轉載。

所有討論 1