Loading [MathJax]/extensions/tex2jax.js

3

6
0

文字

分享

3
6
0

Deepfake 辨偽技術如何在魔高一尺時,能道高一丈呢?——成大統計所許志仲專訪

A編編
・2022/01/26 ・3499字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

2021年末,小玉的「Deepfake 換臉事件」讓大眾正視 Deepfake 技術的濫用問題。  Deepfake 發展至今不只有造假技術在進步,辨偽也是:目前任職於成大統計所的許志仲老師,從 2018 年開始便在這個主題中專研,並於 2020 年發表相關研究結果,該篇文章起今已有超過 50 次的引用次數。「以這篇論文發表的期刊影響指數(Impact Factor,簡稱IF值)來說,這個引用數相對來說是高的,這代表 Deepfake 辨偽的議題開始變得重要,但研究的人可能沒那麼多。」

許志仲坦言,自己 2018 年研究 Deepfake 辨偽時,Deepfake 影片品質並沒有特別好。沒想到短短兩三年的時間,Deepfake 的效果就已經好到可能會造成問題了。

雙面刃的 Deepfake

Deepfake 技術起初是希望能藉由電腦產生各種不同的逼真圖片或影片,來因應特效製作或老照片修復之類的工作,而要產生逼真圖片或影片,有許多不同的方法都能達成這個目的,目前 Deepfake 最常使用的方法為 2014 年提出的「生成對抗網路(Generative Adversarial Network, 簡稱 GAN)」,透過生成網路與判別網路的對抗,產生逼真的圖片或影片,因此說到 DeepFake,通常都會說起 GAN。

「我們會說 Deepfake 就是 GAN,是因為就目前生成技術還是以 GAN 最好,當然也有新的方法正在發展,所以未來未必還是以 GAN 作為主體,可能用別的方法偽造,也能做得很漂亮。」

-----廣告,請繼續往下閱讀-----

許志仲也表示,Deepfake 的發展目標是正面的,技術本身是中立的,但使用者怎麼使用這項技術,就成了重要問題。而在不能確保使用者心態的情況下,辨偽技術成了這項技術的最後一道防線。而 Deepfake 辨識的主要問題,可以分為偏向研究的「偽造特徵不固定」,以及偏向實務面的「辨偽系統的使用情境差異」兩個面向。

Deepfake 辨識的研究困難:偽造特徵不固定

現在已經有可以辨識貓狗、車牌等物體的影像辨識系統,這些辨識系統也相當成熟可靠,直覺來說,要做出一套辨識 Deepfake 的辨識系統,應該也不會太困難吧?

但實際上卻並非如此,過往辨識系統的做法是抓取容易辨別的特徵,例如貓與狗兩者在形態上就有明顯的差異,只要給電腦夠多的訓練資料,就能有一組精確區分貓與狗的判別式,且能用到各種需要分辨貓與狗的情況下。

貓跟狗的形態差異很大,所以電腦能輕易辨別這兩種物種。圖/envato elements

先不談分辨人臉真假,就人臉辨識本身來說,就是個值得研究的問題,每個人的臉都長得差不多,差異在於五官的相對位置、形狀或大小有微小的差異,這使人臉辨識本身就難有通則可以去分辨。而不同方法生成相似的 Deepfake 圖片,並不一定具有相同的偽造特徵,從人臉特徵到偽造特徵都不固定,使得 Deepfake 辨識具有一定的困難度。

-----廣告,請繼續往下閱讀-----

此外,即便用同一種方法製作同樣的 Deepfake 圖片,也會因為當初給的資料不同,使得偽造特徵出現差異,這讓「一組判別式就能判斷是否為 Deepfake」成為近乎不可能實現的夢。

也許,偽造特徵根本不在人臉上!?

面對 Deepfake 辨識的棘手問題,許志仲說:「要辨識的特徵太多元。我們覺得倒不如去尋找有什麼線索是 GAN 一致會產生的,這線索也許是我們眼睛看不到的,但是電腦可以透過學習的方式去挖掘,所以我就用了這種學習機制去抓出,會不會大部分的這種生成系統,都可能有共同的瑕疵。」

一張 Deepfake 照片並不只有人臉與五官,也包含了背景。而許志仲的論文指出,Deepfake 的偽造特徵,經常出現在背景,或是背景與人臉的交界處:

「臉通常都合成的很漂亮,但是背景跟臉的交界處會不自然。通常在髮絲的地方,髮絲的地方會糊掉這是一種,或是眉毛或者是額頭中的髮線也會有明顯差異。另外就是背景,會明顯看不出背景是什麼東西。大家都忽略看這裡(背景)很正常,而實驗結果也確實看到這些部分具有相對好的辨識度。」

-----廣告,請繼續往下閱讀-----
使用 GAN 生成的 Deepfake 人臉。圖/This Person Does Not Exist

然而,即便該篇論文是近期發布的,許志仲也不敢肯定這套辨識方式是否能套用在目前的狀況下,他表示目前每半年,GAN 生成的 Deepfake 影像的逼真度,就會有顯著的突破,且沒有消退的趨勢。

Deepfake 辨識的實務困難:辨偽系統的使用情境差異

在實務上,許志仲認為目前還有更為棘手的問題需要解決,那就是辨偽系統的使用情境差異。以一段 Deepfake 影片上傳 Youtube 平台為例,上傳的時候 YouTube 就會先對影片進行壓縮,這時原有的 Deepfake 偽造特徵很可能會因為壓縮而被破壞,許志仲解釋:「有些人會故意加上一些雜訊、加一些後處理,比方說整個畫面做類似美肌之類的處理,這些都會破壞掉偽造的線索,我們發現這些狀況十分常見,而且很難克服。這也是為什麼現在幾乎沒有軟體或網站,提供 Deepfake 辨識服務。」

DeepFake 的歐巴馬與演員的解析度就不同。

在實驗室裡,我們可以拿到 GAN 生成的原始影像去做分析,但在網路世界裡,每一個影像都可能像上述的情況一樣,做了各種後處理才放到網路上,就算現在有研究指出某種辨認方式是有效的,也未必真的能應對網路上的複雜情況。

許志仲表示,目前看到有希望突破壓縮這個問題的辨認方式,是去抓人臉在一段影片中的五官變化是否足夠自然,這個線索可以克服壓縮的一點點問題,因爲是藉由五官相對位置的變化來偵測,這就跟壓縮沒太大關係。但正如前面提到的,人臉辨識是困難的,人臉的五官定位本身就無法做到精準,真要使用這套方法辨識 Deepfake,還需要更多研究來確認可行性。

-----廣告,請繼續往下閱讀-----

也有研究者認為 GAN 理論雖然看似完美無瑕,但在產出 Deepfake 過程中仍可能會出現某些關鍵操作,只要藉由偵測畫面中是否有經歷這些操作,就能間接推測這個畫面是否為 Deepfake,不過這個做法的缺點也很明顯,那就是這些關鍵操作,也很可能只是正常的影片後製造成的,並造成不是 Deepfake 的影像也被歸類到 Deepfake 中。

情境逐個突破,讓研究能落地使用

說到這裡,許志仲語重心長地說:「我們研究做了這麼多偵測 Deepfake 的方法,但都不一定能在真實世界使用,這讓我非常意外,而上述的這些情境,也只是冰山一角。」

其實大家都在研究差不多的特徵,像是五官的落差,說話的時候嘴巴的動態變化會比較小或模糊之類的,但這些特徵面在真實的使用情境中,還能有多少辨識度,就真的是未知數。考量到真實情境的複雜度,目前許志仲認為逐個突破不同的情境下它們適合的辨偽方式,才是比較實實際的。

「我們必須先確認好問題是正確的,才能找到正確的答案。」許志仲說,要在實驗室裡做出一套數據漂亮的辨識系統並不困難,但要做出實際能用的辨識系統卻非常不簡單。

-----廣告,請繼續往下閱讀-----

許志仲也嘗試將自己的研究成果運用在實際情境中,但面對製作公司精心製作的 Deepfake 影片,許志仲換了好幾套模型,也只有一套能判別出來,也呼應了「使用情境差異」才是辨識 Deepfake 無法落地的最大問題。

辨識系統在實驗室中可以使用、但在現實生活中卻不一定。圖/envato elements

各界都在防範 Deepfake 影響生活

GAN 要能生成以假亂真的 Deepfake 圖像,必須建構在有訓練完善的生成模型上,而一個訓練完善的生成模型,並不是隨便餵幾筆資料給 GAN 就會跑出來的,必須要有足夠算力的電腦,配合大量的資料才能完成。除了像 Google 或 Facebook 這種規模的公司有能力製作外,也只有部分研究單位,能做出這種以假亂真的生成模型。

許志仲說:「由於 Deepfake 對社會的影響很大,現在他們都只公開自己的程式碼,但不會公開自己的模型,主要就是怕模型被拿去幹壞事。」許志仲也坦承,對於辨偽技術的研究來說,目前的狀況是非常不利的,這代表研究者必須自己用程式碼生出不那麼精良的模型,來製作 Deepfake 圖片測試。

面對未來 Deepfake 是否會無法辨別,許志仲表示就影像上來說,這件事情是做得到的,總會有方法做出不被任何辨識系統偵測,堪稱完美的 Deepfake 影像。但身為防禦方的我們,並不是只能靠圖片辨識真偽,上傳的使用者、社群平台的 meta-data,這些能標示來源的訊息,都可能是我們辨識這部影片是否為 Deepfake 的線索。

-----廣告,請繼續往下閱讀-----
影片的上傳者、發布的社群平台等等,都可能是我們辨識這部影片是否為 DeepFake 的線索。圖/envato elements

面對持續進化,仍看不見消退的 Deepfake 技術,許志仲也希望未來能有更多人一同加入 Deepfake 辨偽的研究行列,針對 Deepfake 辨偽系統的使用情境,我們還有非常多的問題等著被解答。

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 3
A編編
11 篇文章 ・ 31 位粉絲
PanSci 編輯|讀物理毀三觀的科學宅,喜歡相聲跟脫口秀,因為它們跟我一樣是個笑話。

0

1
0

文字

分享

0
1
0
數智驅動未來:從信任到執行,AI 為企業創新賦能
鳥苷三磷酸 (PanSci Promo)_96
・2025/01/13 ・4938字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文由 鼎新數智 與 泛科學 共同規劃與製作

你有沒有想過,當 AI 根據病歷與 X 光片就能幫你診斷病症,或者決定是否批准貸款,甚至從無人機發射飛彈時,它的每一步「決策」是怎麼來的?如果我們不能知道 AI 的每一個想法步驟,對於那些 AI 輔助的診斷和判斷,要我們如何放心呢?

馬斯克與 OpenAI 的奧特曼鬧翻後,創立了新 AI 公司 xAI,並推出名為 Grok 的產品。他宣稱目標是以開源和可解釋性 AI 挑戰其他模型,而 xAI 另一個意思是 Explainable AI 也就是「可解釋性 AI」。

如今,AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?

-----廣告,請繼續往下閱讀-----
AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?圖/pexels

黑盒子模型背後的隱藏秘密

無法解釋的 AI 究竟會帶來多少問題?試想,現在許多銀行和貸款機構已經使用 AI 評估借貸申請者的信用風險,但這些模型往往如同黑箱操作。有人貸款被拒,卻完全不知原因,感覺就像被分手卻不告訴理由。更嚴重的是,AI 可能擅自根據你的住所位置或社會經濟背景給出負面評價,這些與信用風險真的相關嗎?這種不透明性只會讓弱勢群體更難融入金融體系,加劇貧富差距。這種不透明性,會讓原本就已經很難融入金融體系的弱勢群體,更加難以取得貸款,讓貧富差距越來越大,雪上加霜。

AI 不僅影響貸款,還可能影響司法公正性。美國部分法院自 2016 年起使用「替代性制裁犯罪矯正管理剖析軟體」 COMPAS 這款 AI 工具來協助量刑,試圖預測嫌犯再犯風險。然而,這些工具被發現對有色人種特別不友好,往往給出偏高的再犯風險評估,導致更重的刑罰和更嚴苛的保釋條件。更令人擔憂的是,這些決策缺乏透明度,AI 做出的決策根本沒法解釋,這讓嫌犯和律師無法查明問題根源,結果司法公正性就這麼被悄悄削弱了。

此外,AI 在醫療、社交媒體、自駕車等領域的應用,也充滿類似挑戰。例如,AI 協助診斷疾病,但若原因報告無法被解釋,醫生和患者又怎能放心?同樣地,社群媒體或是 YouTube 已經大量使用 AI 自動審查,以及智慧家居或工廠中的黑盒子問題,都像是一場越來越複雜的魔術秀——我們只看到結果,卻無法理解過程。這樣的情況下,對 AI 的信任感就成為了一個巨大的挑戰。

為什麼人類設計的 AI 工具,自己卻無法理解?

原因有二。首先,深度學習模型結構複雜,擁有數百萬參數,人類要追蹤每個輸入特徵如何影響最終決策結果,難度極高。例如,ChatGPT 中的 Transformer 模型,利用注意力機制(Attention Mechanism)根據不同詞之間的重要性進行特徵加權計算,因為機制本身涉及大量的矩陣運算和加權計算,這些數學操作使得整個模型更加抽象、不好理解。

-----廣告,請繼續往下閱讀-----

其次,深度學習模型會會從資料中學習某些「特徵」,你可以當作 AI 是用畫重點的方式在學習,人類劃重點目的是幫助我們加速理解。AI 的特徵雖然也能幫助 AI 學習,但這些特徵往往對人類來說過於抽象。例如在影像辨識中,人類習慣用眼睛、嘴巴的相對位置,或是手指數量等特徵來解讀一張圖。深度學習模型卻可能會學習到一些抽象的形狀或紋理特徵,而這些特徵難以用人類語言描述。

深度學習模型通常採用分佈式表示(Distributed Representation)來編碼特徵,意思是將一個特徵表示為一個高維向量,每個維度代表特徵的不同方面。假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。對 AI 而言,這是理解世界的方式,但對人類來說,卻如同墨跡測驗般難以解讀。

假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。圖/unsplash

試想,AI 協助診斷疾病時,若理由是基於醫生都無法理解的邏輯,患者即使獲得正確診斷,也會感到不安。畢竟,人們更相信能被理解的東西。

打開黑盒子:可解釋 AI 如何運作?我們要如何教育 AI?

首先,可以利用熱圖(heatmap)或注意力圖這類可視化技術,讓 AI 的「思維」有跡可循。這就像行銷中分析消費者的視線停留在哪裡,來推測他們的興趣一樣。在卷積神經網絡和 Diffusion Models 中 ,當 AI 判斷這張照片裡是「貓」還是「狗」時,我需要它向我們展示在哪些地方「盯得最緊」,像是耳朵的形狀還是毛色的分布。

-----廣告,請繼續往下閱讀-----

其次是局部解釋,LIME 和 SHAP 是兩個用來發展可解釋 AI 的局部解釋技術。

SHAP 的概念來自博弈,它將每個特徵看作「玩家」,而模型的預測結果則像「收益」。SHAP 會計算每個玩家對「收益」的貢獻,讓我們可以了解各個特徵如何影響最終結果。並且,SHAP 不僅能透過「局部解釋」了解單一個結果是怎麼來的,還能透過「全局解釋」理解模型整體的運作中,哪些特徵最重要。

以實際的情景來說,SHAP 可以讓 AI 診斷出你有某種疾病風險時,指出年齡、體重等各個特徵的影響。

LIME 的運作方式則有些不同,會針對單一個案建立一個簡單的模型,來近似原始複雜模型的行為,目的是為了快速了解「局部」範圍內的操作。比如當 AI 拒絕你的貸款申請時,LIME 可以解釋是「收入不穩定」還是「信用紀錄有問題」導致拒絕。這種解釋在 Transformer 和 NLP 應用中廣泛使用,一大優勢是靈活且計算速度快,適合臨時分析不同情境下的 AI 判斷。比方說在醫療場景,LIME 可以幫助醫生理解 AI 為何推薦某種治療方案,並說明幾個主要原因,這樣醫生不僅能更快做出決策,也能增加患者的信任感。

-----廣告,請繼續往下閱讀-----

第三是反事實解釋:如果改變一點點,會怎麼樣?

如果 AI 告訴你:「這家銀行不會貸款給你」,這時你可能會想知道:是收入不夠,還是年齡因素?這時你就可以問 AI:「如果我年輕五歲,或者多一份工作,結果會怎樣?」反事實解釋會模擬這些變化對結果的影響,讓我們可以了解模型究竟是如何「權衡利弊」。

最後則是模型內部特徵的重要性排序。這種方法能顯示哪些輸入特徵對最終結果影響最大,就像揭示一道菜中,哪些調味料是味道的關鍵。例如在金融風險預測中,模型可能指出「收入」影響了 40%,「消費習慣」占了 30%,「年齡」占了 20%。不過如果要應用在像是 Transformer 模型等複雜結構時,還需要搭配前面提到的 SHAP 或 LIME 以及可視化技術,才能達到更完整的解釋效果。

講到這裡,你可能會問:我們距離能完全信任 AI 還有多遠?又或者,我們真的應該完全相信它嗎?

-----廣告,請繼續往下閱讀-----

我們終究是想解決人與 AI 的信任問題

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。因此,AI 既要「可解釋」,也要「能代理」。

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。圖/unsplash

舉例來說,當一家公司要做一個看似「簡單」的決策時,背後的過程其實可能極為複雜。例如,快時尚品牌決定是否推出新一季服裝,不僅需要考慮過去的銷售數據,還得追蹤熱門設計趨勢、天氣預測,甚至觀察社群媒體上的流行話題。像是暖冬來臨,厚外套可能賣不動;或消費者是否因某位明星愛上一種顏色,這些細節都可能影響決策。

這些數據來自不同部門和來源,龐大的資料量與錯綜關聯使企業判斷變得困難。於是,企業常希望有個像經營大師的 AI 代理人,能吸收數據、快速分析,並在做決定時不僅給出答案,還能告訴你「為什麼要這麼做」。

傳統 AI 像個黑盒子,而可解釋 AI (XAI)則清楚解釋其判斷依據。例如,為什麼不建議推出厚外套?可能理由是:「根據天氣預測,今年暖冬概率 80%,過去三年數據顯示暖冬時厚外套銷量下降 20%。」這種透明解釋讓企業更信任 AI 的決策。

-----廣告,請繼續往下閱讀-----

但會解釋還不夠,AI 還需能真正執行。這時,就需要另一位「 AI 代理人」上場。想像這位 AI 代理人是一位「智慧產品經理」,大腦裝滿公司規則、條件與行動邏輯。當客戶要求變更產品設計時,這位產品經理不會手忙腳亂,而是按以下步驟行動:

  1. 檢查倉庫物料:庫存夠不夠?有沒有替代料可用?
  2. 評估交期影響:如果需要新物料,供應商多快能送到?
  3. 計算成本變化:用新料會不會超出成本預算?
  4. 做出最優判斷,並自動生成變更單、工單和採購單,通知各部門配合執行。

這位 AI 代理人不僅能自動處理每個環節,還會記錄每次決策結果,學習如何變得更高效。隨時間推移,這位「智慧產品經理」的判斷將更聰明、決策速度更快,幾乎不需人工干預。更重要的是,這些判斷是基於「以終為始」的原則,為企業成長目標(如 Q4 業績增長 10%)進行連續且動態地自我回饋,而非傳統系統僅月度檢核。

這兩位 AI 代理人的合作,讓企業決策流程不僅透明,還能自動執行。這正是數智驅動的核心,不僅依靠數據驅動決策,還要能解釋每一個選擇,並自動行動。這個過程可簡化為 SUPA,即「感知(Sensing)→ 理解(Understanding)→ 規劃(Planning)→ 行動(Acting)」的閉環流程,隨著數據的變化不斷進化。

偉勝乾燥工業為例,他們面臨高度客製化與訂單頻繁變更的挑戰。導入鼎新 METIS 平台後,偉勝成功將數智驅動融入業務與產品開發,專案準時率因此提升至 80%。他們更將烤箱技術與搬運機器人結合,開發出新形態智慧化設備,成功打入半導體產業,帶動業績大幅成長,創造下一個企業的增長曲線。

-----廣告,請繼續往下閱讀-----

值得一提的是,數智驅動不僅帶動業務增長,還讓員工擺脫繁瑣工作,讓工作更輕鬆高效。

數智驅動的成功不僅依賴技術,還要與企業的商業策略緊密結合。為了讓數智驅動真正發揮作用,企業首先要確保它服務於具體的業務需求,而不是為了技術而技術。

這種轉型需要有策略、文化和具體應用場景的支撐,才能讓數智驅動真正成為企業持續增長的動力。

還在猶豫數智驅動的威力?免費上手企業 AI 助理!👉 企業 AI 體驗
現在使用專屬邀請碼《 KP05 》註冊就享知:https://lihi.cc/EDUk4
訂閱泛科學獨家知識頻道,深入科技趨勢與議題內容。

👉立即免費加入

-----廣告,請繼續往下閱讀-----
鳥苷三磷酸 (PanSci Promo)_96
222 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
從遊戲到量子計算:NVIDIA 憑什麼在 AI 世代一騎絕塵?
PanSci_96
・2025/01/09 ・2941字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

AI 與 GPU 的連結:為什麼 NVIDIA 股價一路飆?

2023 年至今,人工智慧(AI)熱潮引爆全球科技圈的競爭與創新,但最受矚目的企業,莫過於 NVIDIA。它不僅長期深耕遊戲顯示卡市場,在近年來卻因為 AI 應用需求的飆升,一舉躍居市值龍頭。原因何在?大家可能會直覺認為:「顯示卡性能強,剛好給 AI 訓練用!」事實上,真正的關鍵並非只有強悍的硬體,而是 NVIDIA 打造的軟硬體整合技術──CUDA

接下來將為你剖析 CUDA 與通用圖形處理(GPGPU)的誕生始末,以及未來 NVIDIA 持續看好的量子計算與生醫應用,一窺這家企業如何從「遊戲顯示卡大廠」蛻變為「AI 世代的領航者」。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

CPU vs. GPU:為何顯示卡能成為 AI 領跑者?

在電腦運作中,CPU(中央處理器)向來是整個系統的「大腦」,負責執行指令、邏輯判斷與多樣化的運算。但是,AI 模型訓練需要面對的是龐大的數據量與繁複的矩陣或張量運算。這些運算雖然單一步驟並不複雜,但需要進行「海量且重複性極高」的計算,CPU 難以在短時間內完成。

反觀 GPU(圖形處理器),原先是用來處理遊戲畫面渲染,內部具有 大量且相對簡單的算術邏輯單元。GPU 可以同時在多個核心中進行平行化運算,就像一座「高度自動化、流水線式」的工廠,可一次處理大量像素、頂點或是 AI 訓練所需的運算。這讓 GPU 在大量數值計算上遠遠超越了 CPU 的處理速度,也讓「顯示卡算 AI」成了新時代的主流。

-----廣告,請繼續往下閱讀-----

顯示卡不只渲染:GPGPU 與 CUDA 的誕生

早期,GPU 只被視為遊戲繪圖的利器,但 NVIDIA 的創辦人黃仁勳很快察覺到:這種多核心平行化的結構,除了渲染,也能用來處理科學運算。於是,NVIDIA 在 2007 年正式推出了名為 CUDA(Compute Unified Device Architecture) 的平台。這是一套讓開發者能以熟悉的程式語言(如 C、C++、Python)來調用 GPU 資源的軟體開發工具套件,解決了「人類要如何對 GPU 下指令」的問題。

在 CUDA 出現之前,若要把 GPU 用於渲染以外的用途,往往必須透過「著色器語言」或 OpenGL、DirectX 等繪圖 API 進行繁瑣的間接操作。對想用 GPU 加速數學或科學研究的人來說,門檻極高。然而,有了 CUDA,開發者不需理解圖像著色流程,也能輕鬆呼叫 GPU 的平行運算能力。這代表 GPU 從遊戲卡一躍成為「通用圖形處理單元」(GPGPU),徹底拓展了它在科學研究、AI、影像處理等領域的應用版圖。

AI 崛起的臨門一腳:ImageNet 大賽的關鍵一擊

如果說 CUDA 是 NVIDIA 邁向 AI 領域的踏腳石,那麼真正讓 GPU 與 AI 完美結合的轉捩點,發生在 2012 年的 ImageNet 大規模視覺辨識挑戰賽(ILSVRC)。這場由李飛飛教授創辦的影像辨識競賽中,參賽團隊需要對龐大的影像數據進行訓練、分類及辨識。就在那一年,名為「AlexNet」的深度學習模型橫空出世,利用 GPU 進行平行運算,大幅減少了訓練時間,甚至比第二名的辨識率高出將近 10 個百分點,震撼了全球 AI 研究者。

AlexNet 的成功,讓整個學界與業界都注意到 GPU 在深度學習中的強大潛力。CUDA 在此時被奉為「不二之選」,再加上後來發展的 cuDNN 等深度學習函式庫,讓開發者不必再自行編寫底層 GPU 程式碼,建立 AI 模型的難度與成本大幅降低,NVIDIA 的股價也因此搭上了 AI 波浪,一飛沖天。

-----廣告,請繼續往下閱讀-----
AlexNet 的成功凸顯 GPU 在深度學習中的潛力。圖/unsplash

為什麼只有 NVIDIA 股價衝?對手 AMD、Intel 在做什麼?

市面上有多家廠商生產 CPU 和 GPU,例如 AMD 與 Intel,但為什麼只有 NVIDIA 深受 AI 市場青睞?綜觀原因,硬體只是其一,真正不可或缺的,是 「軟硬體整合」與「龐大的開發者生態系」

硬體部分 NVIDIA 長年深耕 GPU 技術,產品線完整,且數據中心級的顯示卡在能耗與性能上具領先優勢。軟體部分 CUDA 及其相關函式庫生態,涵蓋了影像處理、科學模擬、深度學習(cuDNN)等多方面,讓開發者易於上手且高度依賴。

相比之下,雖然 AMD 也推行了 ROCm 平台、Intel 有自家解決方案,但在市場普及度與生態支持度上,依舊與 NVIDIA 有相當差距。

聰明的管理者

GPU 的優勢在於同時有成百上千個平行運算核心。當一個深度學習模型需要把數據切分成無數個小任務時,CUDA 負責將這些任務合理地排班與分配,並且在記憶體讀寫方面做出最佳化。

-----廣告,請繼續往下閱讀-----
  • 任務分類:同性質的任務集中處理,以減少切換或等待。
  • 記憶體管理:避免資料在 CPU 與 GPU 之間頻繁搬移,能大幅提升效率。
  • 函式庫支援:如 cuDNN,針對常見的神經網路操作(卷積、池化等)做進一步加速,使用者不必從零開始撰寫平行運算程式。

結果就是,研究者、工程師甚至學生,都能輕鬆把 GPU 能力用在各式各樣的 AI 模型上,訓練速度自然飛漲。

從 AI 到量子計算:NVIDIA 對未來的佈局

當 AI 波浪帶來了股價與市值的激增,NVIDIA 並沒有停下腳步。實際上,黃仁勳與團隊還在積極耕耘下一個可能顛覆性的領域──量子計算

2023 年,NVIDIA 推出 CUDA Quantum 平台,嘗試將量子處理器(QPU)與傳統 GPU / CPU 整合,以混合式演算法解決量子電腦無法單獨加速的部分。就像為 AI 量身打造的 cuDNN 一樣,NVIDIA 也對量子計算推出了相對應的開發工具,讓研究者能在 GPU 上模擬量子電路,或與量子處理器協同運算。

NVIDIA 推出 CUDA Quantum 平台,整合 GPU 與 QPU,助力混合量子運算。圖/unsplash

這項新布局,或許還需要時間觀察是否能孕育出市場級應用,但顯示 NVIDIA 對「通用運算」的野心不只停留於 AI,也想成為「量子時代」的主要推手。

-----廣告,請繼續往下閱讀-----

AI 熱潮下,NVIDIA 凭什麼坐穩王座?

回到一開始的疑問:「為什麼 AI 熱,NVIDIA 股價就一定飛?」 答案可簡化為兩點:

  1. 硬體領先 + 軟體生態:顯示卡性能強固然重要,但 CUDA 建立的開發者生態系才是關鍵。
  2. 持續布局未來:當 GPU 為 AI 提供高效能運算平台,NVIDIA 亦不斷將資源投入到量子計算、生醫領域等新興應用,為下一波浪潮預先卡位。

或許,正因為不斷探索新技術與堅持軟硬整合策略,NVIDIA 能在遊戲市場外再創一個又一個高峰。雖然 AMD、Intel 等競爭者也全力追趕,但短期內想撼動 NVIDIA 的領先地位,仍相當不易。

未來,隨著 AI 技術持續突破,晶片性能與通用運算需求只會節節攀升。「AI + CUDA + GPU」 的組合,短時間內看不出能被取代的理由。至於 NVIDIA 是否能繼續攀向更驚人的市值高峰,甚至在量子計算跑道上再拿下一座「王者寶座」,讓我們拭目以待。

歡迎訂閱 Pansci Youtube 頻道 鎖定每一個科學大事件!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

3
0

文字

分享

0
3
0
AI 破解生命密碼!AlphaFold 3 揭開蛋白質折疊的終極謎團
PanSci_96
・2024/10/07 ・1624字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

AlphaFold的誕生:人工智慧的奇蹟

2018 年,Google 旗下的 DeepMind 團隊推出了第一代 AlphaFold,這是一款基於深度學習的 AI 模型,專門用於預測蛋白質的三維結構。AlphaFold 的命名取自「fold」一詞,意為折疊,指的是蛋白質在胺基酸鏈構成後迅速摺疊成其功能所需的三維結構。

AlphaFold 的突破在於其能夠預測出蛋白質折疊的可能性,這是一個傳統計算方法無法達到的領域。第一代 AlphaFold 在國際 CASP 比賽中取得了一定的成功,雖然其預測準確度尚未達到實驗室標準,但其潛力讓科學家們充滿期待。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

為什麼蛋白質結構預測如此重要?

蛋白質是生命的基石,它們的功能取決於其複雜的三維結構。然而,僅靠實驗技術來解析蛋白質的結構既昂貴又耗時。過去科學家依賴於如 X 光晶體繞射等技術來解析蛋白質的結構,然而這種方法雖然精確,但往往需要數年時間來得出一個結論。

到目前為止,人類已知的蛋白質數據庫中,全球僅解析了大約 22 萬種蛋白質的結構,這遠遠不足以滿足生物學和醫學研究的需求。尤其是人類的許多蛋白質結構仍然未知,這成為阻礙醫學進步的一個主要瓶頸,特別是在藥物開發和疾病治療上,因此如何加速對蛋白質的結構的解析至關重要。

-----廣告,請繼續往下閱讀-----

AlphaFold 2:技術飛躍

2020 年,AlphaFold 2 橫空出世,改進了多項技術,預測準確度大幅,幾乎達到了與實驗結果相媲美的程度。這一成就震驚了全球生物學界,許多科學家開始將 AlphaFold 2 應用於實際研究中。

AlphaFold 2 的成功源自於其三大技術革新:

  • 注意力機制:模仿人類的思維模式,從大局出發,關注蛋白質結構中的每一個細節,進而提高預測的準確性。
  • 多序列比對功能:通過搜尋類似的胺基酸序列,推斷新的蛋白質結構。
  • 端到端預測模式:利用深度學習神經網路,不斷反饋預測結果,持續優化模型。
AlphaFold 2 預測準確度大幅提升。 圖/envato

AlphaFold 3:下一代 AI 的力量

隨著 AlphaFold 2 的成功,DeepMind 並未停止其腳步。2024 年 5 月,AlphaFold 3 正式推出,這標誌著 AI 技術在生物學領域的又一個里程碑。AlphaFold 3 的改進再次吸引了科學界的目光,它強化了注意力機制,並引入了擴散模型,這使其能夠更快且更準確地預測複合蛋白質的結構。

擴散模型是一項關鍵技術,它能夠生成大量的可能蛋白質結構,並快速篩選出最可能的解答。與此同時,AlphaFold 3 還內建了「減幻覺」功能,這讓其在產生結果時能夠避免過多不切實際的預測,提升了結果的可信度。

-----廣告,請繼續往下閱讀-----

AlphaFold 的實際應用:醫學與藥物開發

AlphaFold 3 的誕生,不僅是一個技術突破,還為醫學和藥物開發帶來了巨大的希望。過去,癌症治療中的標靶藥物需要經過漫長的實驗才能確定其作用原理,然而現在,通過 AlphaFold 的預測,科學家可以更加精確地針對癌細胞中的錯誤蛋白質,設計出更有效的藥物。

除此之外,AlphaFold 3 還在抗病毒藥物、抗生素以及阿茲海默症等領域展現了潛力。其能夠預測蛋白質與其他分子(如DNA、RNA)的交互作用,這使得研發新藥的過程大大加速。

AlphaFold 3 的挑戰與未來

儘管 AlphaFold 3 取得了驚人的進展,但其仍然面臨一些挑戰。首先,目前 AlphaFold 3 的模型尚未完全開源,這限制了研究人員對其內部運作的了解。為此,一些科學家已聯名要求 DeepMind 開放其程式碼,以便進行更深入的研究和應用。

不過,隨著 AlphaFold 3的逐步推廣,生物學家相信它將繼續改變生物學研究的方式。未來,這項技術有望在解決更多未解難題中發揮關鍵作用,並為醫學領域帶來更大的突破。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。