過去 3D 組織影像無法實現,最大的難點,在於無法突破組織的透光障礙。捷絡生技專利化的光學組織澄清技術,最厲害之處是讓檢體樣本不被破壞就可以「變透明」,達到清水般的穿透率。傳統樣本處理,會經過物理切片及脫水,組織結構發生形變無可避免,讓病理全貌難以被量化和標準化來進行評估。但這項獨家的組織澄清處理技術,可最大程度保存樣本原來的面貌,還能讓樣本進行重複染色,再利用於各式生物檢驗。更重要的是,不再是單一切面的樣本,讓全自動影像掃描擷取,從不可能變得可能。
把檢體樣本透明化之後,研究團隊接著以高速鐳射顯微鏡,對樣本進行全身掃描後,數位縫合平行多叠影像。只要搭配適當的染色技術,就可迅速取得比傳統檢測還多百倍資訊量的高精度 3D 腫瘤影像。這些病理組織樣本的全景 3D 細節,讓醫生可以更清楚判別癌細胞的型態、分佈與周圍細胞的交互作用。
研究團隊也沒有停留在 3D 影像產製的完善,更抓緊大數據、巨量分析的趨勢,目標是要提供 AI 自動化病理組織影像分析。研究團隊建立不同癌症的 3D 數位病理影像資料庫,讓電腦進行機器學習,透過癌組織的特徵辨識訓練,目前已可得到超過 90 % 的準確度。AI 自動化分析能克服傳統人工判讀模式潛藏的誤差(如不同判讀者的差異、視覺疲勞與檢體採樣量不足等問題),大大減輕臨床病理醫師的工作負擔,加快診斷的效率。癌症的治療,就像與死神賽跑,所以盡速決定對風險最小、成效最佳的療法,對提高病患的存活率至關重要。
-----廣告,請繼續往下閱讀-----
未來,捷絡生技這個領先全球的 3D 數位病理檢驗暨 AI 分析平臺,預期可實際應用在檢測藥物的穿透性、篩選適合免疫療法的病患、分析腫瘤微環境等方向。不管是從美國或是臺灣的例子,都讓我們看見不同領域相互激蕩的成果,並非止步於學術象牙塔的研究,而是可以被實際應用在日常生活中的技術。
同樣地,如果我們給 AI 一含所有物質之性質的資料庫,然後告訴它如何尋找「規律」(pattern),相信它會非常勝任地發現許多具有某種特性的「新物質」、「新藥物」、甚或告訴我們如何製造它們(有機合成的資料庫)。但是 AI 雖然知道哈密瓜的所有性質(資料庫),可是它會想到哈密瓜含有能大量分泌青黴素的菌株、即時在第二次世界大戰中拯救了上百萬士兵的生命嗎(見後)?我覺得後者不是邏輯的問題,是沒辦法訓練的,因此 AI 不能「真正創造」不是依靠邏輯的發現。這正是本文所要談的:許多科學大突破都不是靠訓練或邏輯分析的!
-----廣告,請繼續往下閱讀-----
視眾人所見視,思眾人所未思
牛頓的傳記《艾薩克·牛頓爵士生平回憶錄》(Memoirs of Sir Isaac Newton’s Life)於1752年出版;作者斯圖克利(William Stukeley)在書中轉述:「晚餐後,天氣溫暖,我們去了花園,在幾棵蘋果樹的樹蔭下喝茶……他(牛頓)告訴我,他當時的處境和以前一樣,剛剛想到萬有引力的概念。當他正沉思時,一個蘋果掉了下來。他心想:『為什麼蘋果總是垂直落到地上,永遠不會向上或向一側掉落呢?……』,這使他得出結論:地球一定具有『引力』,從而發展出他的萬有引力理論。」
早在西元前 4 世紀左右,亞里斯多德(Aristotle)及歐幾里德(Euclid)等希臘哲學家就為自然哲學和邏輯奠定了基礎。樹上的水果都是往地面掉,這是任何小孩都知道的「常識」,但為什麼卻等了 1700 年才引起牛頓的注意?我們不知道為何牛頓會想到這個問題,但 AI 也會注意到這個現象嗎?如果會,它會先想到萬有引力或是直接跳到更精確的愛因斯坦廣義相對論(見後)呢?
一位正在自由下落的人不會感覺到自己的重量,那不是等於漂浮在沒有任何重力的外太空空間嗎?如果加速度可以抵消重力,那麼在沒有重力的情況下,加速度本身不是可以模擬重力,產生與真實重力沒有區別的人造重力嗎?愛因斯坦稱上面這一發現為「等效原理」(Equivalence Principle):我們雖然不知道重力是什麼,但其現象可以用加速度來模擬!這一想法啟動了愛因斯坦嘗試改變牛頓重力論的八年艱苦抗戰,於 1915 年 11 月完成了人類有史以來最美麗的物理理論━「廣義相對論」(General Theory of Relativity)。100 多年後的今天,愛因斯坦這一透過想像力來推測的理論仍然在指引著物理學家們去瞭解宇宙的基本特徵!怪不得愛因斯坦後來大膽地稱它為「我一生中最幸運的靈感」。
好吧,就假設 AI 像愛因斯坦一樣也有「最幸運的靈感」,發現了廣義相對論。可是後來物理學家瞭解到了愛因斯坦的「等效定理」事實上不完全正確,是有限制的,也就是說它只是一種近似的基本定律,只適用於一個局部、無限小的時空區域內。哈,如果AI比人類聰明,怎麼會在邏輯上犯下這個錯誤呢?如果不犯這個錯誤,它能發現廣義相對論呢?
愛因斯坦真大膽:一個可以用實驗來確定的光速,怎麼可以定為「公設」呢?光速與發射體運動狀態無關不是完全違反了我們日常生活的經驗(如聲速)嗎?愛因斯坦在其時鐘「同步程序」的假想實驗裡魔術般地導入了他的公設:光在任何方向的速度都是一樣的 c 值!完全忽略了當時幾乎所有物理學家都相信光是在「以太」中傳播的理論。
1924 年,一位名不見經傳,任教於東巴基斯坦的講師波思 (Styendra Bose) 在一篇 1500 字的論文裡做了一個誤打誤撞、連他自己本人都不知道、在整篇論文中隻字未提的重要及創新性假設:光量子是不可分辨的!在當時,所有的物理學家都認為光量子像銅板一樣是可以分辨的(我們可以分辨哪個是 A 銅板、哪個是 B 銅板、…),因此兩個銅板出現「一正及一反」的或然率是 2/4;但如果它們不能分辨呢?則出現「一正及一反」的或然率將變成 1/3。沒想到這一「錯誤」的假設後來竟成為打開量子統計力學的鑰匙!超強邏輯的AI會犯這種錯誤嗎?
在「發現能治療糖尿病的胰島素—胰島素與生技產業的誕生(上)」一文裡,我提到了「….將狗的胰臟割除,發現這隻可憐狗整天口渴及隨地小便。數日後,一位助手覺得實驗室內的蒼蠅好像突然多了起來,尤其是在狗小便過的地板。分析狗尿及其血液後,梅倫(Joseph von Mering)及明考斯基(Oskar Minkowski)很驚奇地發現裡面充滿了糖份。」顯然地,胰腺具有調解體內糖代謝的功能,它一旦受損將導致糖尿病。就這樣,法國兩位外科手術醫生無意中發現了「困擾」人類三千多年之糖尿病的病源━胰臟分泌物「胰島素」失調!這不是透過邏輯分析得到的結果,AI能做到嗎?