網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策

0

0
0

文字

分享

0
0
0

衛星追蹤珊迪後污染趨勢

陳 慈忻
・2012/12/05 ・1103字 ・閱讀時間約 2 分鐘 ・SR值 549 ・八年級

珊迪颶風襲美的兩個星期後,美國東部的洪水已經漸漸退去,公共設施及交通運輸系統也逐漸復甦。現在研究者和政府當局將注意力轉向颶風災後的影響。

劇烈的暴風混攪了許多污染物、廢棄物,產生汙水、沉積物,這個問題影響深遠,卻鮮少被注意到。「人們容易注意到珊迪颶風短暫的作用,像是橫掃我們居住環境的暴雨、暴風、巨浪以及暴風雪,但事實上超級颶風的影響力遠比我們的想像長久,包括颶風過後的沉積物和流入排水道的污染物。」美國地質調查局局長瑪西亞說明。

珊迪颶風造成紐澤西州多處廢水處理場管線損壞,尚未處理的汙水夾帶高密度的病毒及細菌流入一般水域,科學家估計有好幾百萬加侖的汙水因管線破損而排入河流及港口。

科學家使用衛星來追蹤流向大西洋的水質、土壤污染路徑。「對比海洋的深藍色,你可以看出混濁水體在空間中的分布,夾帶大量沉澱物會呈現較深的顏色。」紐澤西州立羅格斯大學的海洋學家高赫說。

遙感探測(remote sensing,遙測)是遠距離感測取得訊息的技術,地表上的物質因為物理及化學性質不同,所釋放或吸收的能量也不同,衛星(satellite)上的感測器能偵測目標物反射或放出的電磁波,透過圖像呈現的差異來判別不同的物質。

高赫的研究是中大西洋區域組織海岸監測系統(Mid-Atlantic Regional Association Coastal Ocean Observing System,MARACOOS)的一部分,使用衛星影像來追蹤珊迪颶風後的影響。

雖然無法確切定位出汙水的位置,但是他們可以呈現可能攜帶污染物的水域。紐澤西州的環保署和美國地質調查局運用這些資料來判斷哪些地區應該要密集監測污染物。

「珊迪颶風剛過時,判定水污染軌跡是很困難的,因為地表被雲層遮擋,使得衛星無法拍攝清晰的影響。」高赫說。

但值得慶幸的是,目前的研究結果顯示珊迪颶風所造成的污染比一般暴風雨少,「去年的艾琳、2006年的厄尼斯多、1999年的佛洛伊德颶風,都是紐約、紐澤西嚴重的降雨事件,在這三個颱風之後,都有大量的洪水沿河川湧入海洋。」然而珊迪颶風的雨量相較沒那麼多,反而是強風、巨浪比較嚴重。

「災害」所帶來的「災難」很可能在我們的忽視下延續,在不知不覺中造成不同層面的影響。遙測技術結合衛生安全觀念,能幫助我們及早發現災後的災害影響力,作出對應的災後調適。

(本文原發表於行政院國家科學委員會-科技大觀園「科技新知」。歡迎大家到科技大觀園的網站看更多精彩又紮實的科學資訊,也有臉書喔!)

資料來源:Satellites Track Post-Sandy Pollutants


 

文章難易度
陳 慈忻
55 篇文章 ・ 0 位粉絲
在丹麥的博士生,專長是用機器學習探索人類生活空間,正在研究都市環境變遷與人類健康的關係。曾擔任防災科普小組編輯、社會創新電子報主編。


0

4
0

文字

分享

0
4
0

如何從茫茫大海中,找到戰爭遺留的深水炸彈?——海底掃雷行動

Else Production
・2022/01/19 ・2597字 ・閱讀時間約 5 分鐘

對於年輕人來說,我相信「深水炸彈」一詞並不會陌生,因為這近乎是每一個狂歡派對裡的必需品。但對於埋藏在深海裡的炸彈,大家又有沒有想過我們如何找出來?

這些未爆炸的軍備,我們稱之為 Unexploded Ordnance(簡稱 UXO),有可能是水雷,有可能是深水炸彈,也有可能是導彈。它們多數是第一次或第二次世界大戰遺留下來的產品,受到多年來沉積(即水流在流速減慢時,所挾帶的砂石、塵土等沉淀堆積起來)的影響,令它們埋藏在海床以下的地方。跟據 Euronews 的估計,單單在波羅的海亦有超過 30 萬的 UXO 埋在那裡。

二戰期間,桑德蘭水上飛機掛載的深水炸彈,圖/維基百科

你也許會問,既然都已經埋藏了,何況我們仍然要處理他們?這是因為我們會在海底裡鋪設電欖、水管、天然氣輸送管等輸送系統,假如鑽探過程中不小心觸碰了它們已產生意外,或是在完成工程某一天突然爆炸而令輸電系統中斷,後果可真是不堪設想。因此,最理想的方法便是把他們全部找出來並繞道而行,或是安排專家把他們處理。

真正的大海撈針:用磁場把 UXO 吸出來!

要找到這些 UXO,最容易的方法便是使用金屬探測的方法,但由於普遍的金屬探測器的探測範圍是不超過 2 公尺的,我們很難把探測器貼近凹凸不平的水底前行(這大大增加了磨損探測器的風險),因此我們會選擇較間接的方法:磁強計(Magnetometer)。由於大部份的彈藥外層是用鐵形成的,而鐵是對磁非常敏感的,因此我們能夠在較遠的範圍便能察覺他們的存在。當在外勤工作,我們會以兩個磁強計為一組去作探測,令我們更準備知道其實際位置及大小。讓我們看看以下例子:

圖 1:磁強計的探測結果

在圖 1 裡,假設我們知道標記「1」是一個 UXO 的位置,上圖的平行線為磁強計由左至右的移動路線,下圖為磁場沿路的變化。我們可以看見,當若果沒有任何金屬物件存在的話,兩個磁強計量度的數是相近的,亦即是該環境本身的磁場。但在 UXO 的附近,我們可以看到明顯的變化。藍色線代表航行路線的左方磁強計的量度值,燈色線代表右方,由於磁場強度會隨著距離而減少,因此很明顯這一個 UXO 的位置更接近藍色線,亦即是航線的上方。

我們可以透過兩者的差距估計其位置及大小,但為了確保其真實性,我們亦會在附近再次航行,假如也有磁場變異,這便是一個不會移動的金屬物品(撇除了船、飄浮中的海洋垃圾等的可能性)。

排除法:用側掃聲納窺探看不見的海底!

正如上文提要,磁場變異所告訴我們的,只是金屬物品的位置,但它亦有可能不是炸彈,也有可能不是埋在海床下,因此我們也會使用其他科學方法去驗證。其中一個便是側掃聲納(Side Scan Sonar) ,透過聲波反射的原理,我們可以看到海床的影像。假如海床是乾淨的,聲波傳送及接收的時間是一樣的,因此我們可以看到連續的晝面。但假如有異物在水中間或海床上,聲波便會被折射而形成黑影。讓我們看看以下例子:

圖2: 側掃聲納 圖片,紅色箭咀範圍代表沒有反射的區域,綠色箭頭範圖代表船與海底的距離 (圖片來源:Grothues et al., 2017)

看看圖 2。燈色的部份是海床的晝面,中間白色的部份是船的航道,亦是側掃聲納的盲點,而黑色的部份則是有物件在海床上方而形成的聲波折射,讓我們能夠清楚看見它們的形狀。有時候我們亦會看到一些海洋垃圾,如車胎、單車等,而在上圖的左上方,我們相信是一些棄置的工業廢料。

當然你也可以爭論,在圖左上方的物件有機會不是死物,而是一種未知海洋生物,因此我們也會進行多次的側掃聲納,如果在同一位置並不能再看到它,那麼這是生物的機率便很高。假如在磁場異變的位置側掃聲納沒有探測到任何物件,這進一步證明其 UXO 的可能性。但假如有黑影在上方,我們也會透過黑影分析其大小是否吻合,並會憑經驗分析該物品會否存在金屬。

此外,在看側掃聲納,我們也很重視在磁場異變的位置附近有沒有刮痕,因為形成刮痕的原因多數是船上作業頻繁的地方,有機會是漁船拖網的地點,也有機會是大船拋錨起錨的地方,而這些動作均有機會接觸或移動了這些潛在的 UXO,產生危機。因此,這些地方都會是我們首要處理的地方。

筆者按:假如大家想看看其他用側掃聲納發現的東西,如沉船、飛機等,可以到這裡觀看

萬無一失:Mission Completed !

當然,在取得數據時,我們也要儘可能減低人為因素而形成的影響。舉個例子,我們要確保磁強計遠離測量船,以免船上的儀器影響了磁強計。因此,我們並不會把磁強計綁在船底,而是把它們用纜索綁在船尾數十米以外的地方拖行。

另外,我們也要確保測量船要以均速航行,以確保所有數據都是一致的。最後,我們也要確保船上的 GPS 系統準確無誤,否則所有有可能是 UXO 的位置都是錯誤的。

完成以上的工序後,我們便會製作磁梯度圖(Magnetic Gradient Map),把剩餘下來的磁場變置點用其強度及大小表示出來,正如圖 3,再交給拆彈專家們處理。他們便會跟據他們的專業知識,加上該海岸的戰爭歷史,對比當時有可能參戰的國家、使用的武器及其金屬含量以找出存在的炸彈來處理。

要知道這些 UXO,單單在 2015 年在世界各地亦奪去了超過 6000 人的性命,因此這個科學命題可真是不容忽視!

圖 3:磁梯度圖。左邊是潛在 UXO 的位置而右邊則是它們的磁場強度的改變。(圖片來源:Salem et al., 2005)

延伸閱讀:

參考資料:

  1. Salem, A., Hamada, T., Asahina, J. K., & Ushijima, K. (2005). Detection of unexploded ordnance (UXO) using marine magnetic gradiometer data. Exploration Geophysics, 36(1), 97–103.  
  2. Han, S., Rong, X., Bian, L., Zhong, M., & Zhang, L. (2019). The application of magnetometers and electromagnetic induction sensors in UXO detection. E3S Web of Conferences, 131, 01045.
  3. Image scans gallery. EdgeTech. (n.d.). Retrieved January 5, 2022, from https://www.edgetech.com/underwater-technology-gallery/ 
  4. Grothues, T. M., Newhall, A. E., Lynch, J. F., Vogel, K. S., & Gawarkiewicz, G. G. (2017). High-frequency side-scan sonar fish reconnaissance by autonomous underwater vehicles. Canadian Journal of Fisheries and Aquatic Sciences, 74(2), 240–255.

本文亦刊載於作者部落格 Else Production ,歡迎查閱及留言


 

Else Production
141 篇文章 ・ 21 位粉絲
馬朗生,見習地球物理工程師,英國材料與礦冶學會成員,主力擔任海上測量工作,包括海床勘探、泥土分析、聲波探測等。