0

0
0

文字

分享

0
0
0

利大於弊的給未來總統的能源課

Gene Ng_96
・2014/04/17 ・2724字 ・閱讀時間約 5 分鐘 ・SR值 551 ・八年級

 

《給未來總統的物理課:從恐怖主義、能源危機、核能安全、太空競賽到全球暖化背後的科學真相》Physics for Future Presidents: The Science Behind the Headlines)後(請參見〈給未來總統的物理課-必須面對的科學真相〉), 加州大學柏克萊分校(UC Berkeley)的物理學家理查‧繆勒(Richard A. Muller)再接再厲,推出《給未來總統的能源課:頂尖物理學家眼中的能源真相》Energy for Future Presidents: The Science Behind the Headlines)。

《給未來總統的能源課》探討的能源議題頗廣,包括了以下等等問題:萬一發生大地震,核能發電廠會宛如車諾比般大爆炸嗎?持續施行節能減碳政策,真的能有效減少二氧化碳排放量,減緩全球暖化的腳步嗎?我們是否還有其他替代性能源選擇?下一個能源開發重點又會落在哪裡,蘊藏豐富的天然氣?只要有日照就取之不盡的太陽能?除了積極發展替 代性能源,節省能源是否也具可行性?而因為過度開發能源所導致全球暖化、氣候異常,我們又該如何面對?太陽能、地熱、風力等替代性能源何時才能大規模量產?是否能夠真正解決能源問題?電動車是否具有發展潛力?能夠成為未來運輸主力嗎?太陽能取之不盡用之不竭,但為何我們現在仍仰賴石油?燃煤發電廠提供穩定便宜的電力,卻使得全球暖化日益嚴重,該如何取捨?

基本上,《給未來總統的物理課》有將近一半的內容就是和能源相關的,包括了〈第二篇:能源〉、〈第五篇:全球暖化〉和〈第三篇:核子裝置〉的一部分。由此可能,對認真的國家領導人來說,能源相關的議題恐怕是物理學家顧問最大的工作之一了!而且,能源涉及的還不僅是物理和工程,甚至涉及了國家安全!事實上,國家安全才是《給未來總統的能源課》一再強調的主題,物理學只是作為工具。

然而,要應付能源危機、景氣復甦、拯救全球暖化,確實全都少不了科學,否則無法直搗問題的核心。《給未來總統的能源課》從科學面向出發,但也不設限於科學面,深入淺出地解說能源問題背後的真相。在政治上,很多老人都沒救了,這點理查‧繆勒也很清楚,所以他才向諄諄善誘地向未來領袖們,也就是勇敢的年輕人提出說明與建言〔所以他的書的對像都一定是「未來總統」(future presidents)而非「現任總統」(current presidents)〕,試圖打破政客與媒體大肆渲染的嘴砲之種種誤導。

雖然《給未來總統的能源課》整本書的內容大致上在《給未來總統的物理課》也有,不過《給未來總統的能源課》裡的資訊更詳細也更新。例如《給未來總統的物理課》出版時,還未發生福島第一核電廠核災(福島第一原子力発電所事故 )以及2010年墨西哥灣漏油事故(Deepwater Horizon oil spill),所以理查‧繆勒很識趣地在《給未來總統的能源課》開頭就討論這兩大能源災難。

能源掌控了一個國家的命脈,美國甚至為了保障能源供及的安全,而設立了一個內閣行政部門--能源部(U.S. Department of Energy (DOE))。當然,不僅是美國,能源政策也是絕大部分先進國家的未來領袖,從現在就該好好地上的一堂課!能源作為世界上最舉足輕重的商品,許多國家為了爭奪能源不擇手段,甚至不惜發動戰爭。美國攻打伊拉克為了啥?全世界人民,除了少數天真到不行的人會相信那是為正義而戰,都心知肚明為了是啥!

原油價格的波動就足以衝擊民生物價,例如油電雙漲,造成人民痛苦指數攀升,在不少國家還釀成暴動。能源問題向來錯綜複雜,牽扯經濟民生、政策發展、外交關係都十分深遠。在美國的水門事件(Watergate scandal)中,深喉嚨(Deep Throat)告誡《華盛頓郵報》(The Washington Post) 記者伍德沃德(Bob Woodward,1943-)要「追查金流」(follow the money),如果要瞭解許多國際事件,那麼就要「追查油流」(follow the oil)。可是如果沒有多懂一點能源科學,那麼不僅無法追查油流,也可能輕易迷失在專家學者的論戰之中不可自拔。不相信的話,去讀讀反核和擁核陣營的筆戰吧 (XD) 甭說要做出正確的決斷。

著名的演化生物學家和科普作家麥特.瑞德里(Matt Ridley)在《世界,沒你想的那麼糟:達爾文也喊Yes的樂觀演化》The Rational Optimist: How Prosperity Evolves)也明確地告訴我們,我們現在能夠生活在人類有史以來物資生活最富裕的時代,其中一個關鍵就是因為有了石油的開採和利用(請參見〈世界,真的沒你想的那麼糟嗎?〉)!美國近年在頁岩油開採技術的突破,也將讓美國的能源安全之保障大幅提高。

不過,油可載舟、亦可覆舟。在我們大量使用能源之際,也可能會受到能源反噬,該如何防範?理查‧繆勒很明確地告訴大家,他起先公然質疑全球暖化是人類活動造成的之說,於是帶領一群柏克萊的菁英,大規模地分析了海量的資料,結果發現原來地球平均溫確實上升,而且可以用二氧化碳濃度上升來解釋!因此,理查‧繆勒還要告訴未來總統,不僅要努力保障能源的供給,更重要的還有尋找各種替代方案來降低二氧化碳的排放!理查‧繆勒很仔細地分析他對各種替代方案的見解,並且逐條審查、逐條表決。不過二氧化碳排放也是國際政治問題,因為快速發展的中國需要配合,現在中國也積極開發頁岩氣,算是被理查‧繆勒料中。

讀了《給未來總統的能源課》瞭解能源真相,就能不再人云亦云了吧!呃,不對,儘信書不如無書,我們也不該讀了《給未來總統的能源課》就跟著繆勒云亦云。身為一個擁核派,繆勒反而並沒有說服我要支持核四,因為他拿海嘯上萬的死亡人數來和因核災罹癌的死亡人數相比,並無法說明核電有多安全,加上他完全把受核災影響的人數,那些流離失所,經濟大受打擊的人數忽略掉了。日本當時因為風向的關係,有很大比例的輻射物飄離日本,如果當時吹的是東風,直接衝擊到東京,後果就不堪設想了。台灣北海岸一 年到頭有一半時間吹東北季風,剛好是核四往台北盆地的方向……

況且,美國地大物博,核電廠離首府不像核四離台北市那麼近,核能普遍安全的問題,也不該過度延伸至所有核電廠都安全。關於我對核電的淺見,請參見〈核必有核不可?〉吧。

本文原刊登於The Sky of Gene

 

文章難易度
Gene Ng_96
295 篇文章 ・ 23 位粉絲
來自馬來西亞,畢業於台灣國立清華大學生命科學系學士暨碩士班,以及美國加州大學戴維斯分校(University of California at Davis)遺傳學博士班,從事果蠅演化遺傳學研究。曾於台灣中央研究院生物多樣性研究中心擔任博士後研究員,現任教於國立清華大學分子與細胞生物學研究所,從事鳥類的演化遺傳學、基因體學及演化發育生物學研究。過去曾長期擔任中文科學新聞網站「科景」(Sciscape.org)總編輯,現任台大科教中心CASE特約寫手Readmoo部落格【GENE思書軒】關鍵評論網專欄作家;個人部落格:The Sky of Gene;臉書粉絲頁:GENE思書齋

0

1
0

文字

分享

0
1
0
怎麼證明澳洲人吃剩的蛋殼,來自 5 萬年史前巨鳥?
寒波_96
・2022/09/14 ・2882字 ・閱讀時間約 6 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

古代人對生態環境的影響,不容易回答。人類抵達澳洲的年代早於 5 萬年,在此之後,澳洲有一批大型動物滅團,但是與人類的關係多少,專家們各有主張。有時候,甚至連人類是否接觸過某種動物都無法肯定。

一項 2022 年發表的研究,證實一款滅絕的史前大鳥確實與人類發生關係,而且材料相當特別:蛋殼中的古代蛋白質。[參考資料 1, 2, 3]

澳洲南部 5 萬年前的牛頓巨鳥與古巨蜥(Megalania)想像圖,兩者皆已滅絕。圖/Peter Trusler

澳洲 5 萬年前鳥蛋殼,是塚雉還是巨鳥?

用於分析的材料是澳洲南部出土的一批蛋殼,有被煮食的痕跡;它們距今大概 5 萬年左右,可以推測是古代人的食物。蛋殼來自哪種鳥呢?

活跳跳的鳥類可以根據外貌識別,去世後只剩骨頭的鳥類,也能靠著型態差異分辨。而鳥類產下的蛋,不同鳥蛋的外觀有別,厚度等特徵也有所不同,有時候光是憑藉蛋殼,便能判斷物種。

有專家主張這批古代人吃剩的蛋殼來自牛頓巨鳥(Genyornis newtoni),這是一款不會飛的大鳥,身高超過 2 公尺,體重 220 到 240 公斤,一顆蛋有 1.5 公斤重。

牛頓巨鳥在人類抵達澳洲後就消失了,但是沒什麼人類獵捕的骨頭證據。倘若蛋殼真的產自巨鳥,可以推論這款鳥類的消失與人有關。然而,也有專家認為這批蛋殼來自塚雉(megapode)。塚雉體型比牛頓巨鳥小很多,只有 5 到 7 公斤重。

澳洲南部尋獲史前鳥蛋殼的遺址位置。圖/參考資料 1

由史前蛋殼中的蛋白質,判斷未知鳥類的演化位置

5 萬年前成為人類大餐的鳥蛋,究竟何許鳥也?這項研究搜集多種鳥類的蛋殼型態作比較,也寄希望於遺傳學。蛋殼的成分主要由碳酸鈣等礦物質構成,不過其中也有少量 DNA、蛋白質;可惜出土蛋殼中無法取得足夠的古代 DNA。

生物去世後,遺傳物質開始崩解,蛋白質的結構比 DNA 更穩固,生還機率更高。好消息是,蛋殼中仍保有一些蛋白質片段,而且足以判斷親戚關係。

組成蛋白質的氨基酸序列取決於 DNA 編碼,只要知道基因的 DNA 序列,便能得知蛋白質的序列。定序 DNA 比蛋白質容易太多,絕大部分時候假如不知道 DNA 序列,便不會知道蛋白質。

但是聰明的讀者馬上會想到,我們知道牛頓巨鳥的基因組嗎?假如不知道,即使獲得蛋殼中的蛋白質片段,又該如何比對呢?

儘管缺乏牛頓巨鳥的基因組,好消息是,隨著基因體學發達,已經有大量鳥類物種的定序資訊,像是 Bird 10000 Genomes(B10K)計畫。所以可以根據各種鳥類的蛋白質序列差異,畫出演化樹,再將蛋殼中取得的蛋白質置於其中一起比較,便能判斷未知鳥類的分類位置。

加入蛋殼鳥後,各種鳥類以蛋白質差異建構的演化樹。鴕鳥(Struthio camelus)、鴯鶓(Dromaius novaehollandiae)屬於古顎類(Palaeognathae),和蛋殼鳥分屬不同群。蛋殼鳥(undetermined ootaxon)被歸類為雞雁小綱(Galloanseres)旗下,很早分家的分枝;塚雉(Alectura lathami)屬於雞形目(Galliformes),演化位置和蛋殼鳥差異不少。圖/參考資料 1

大鳥家族史:牛頓巨鳥、鴕鳥、恐鳥為各自獨立巨大化

依照可供分析的氨基酸變異,蛋殼鳥被歸類到雞雁小綱(Galloanseres)中很早分家的演化位置;而塚雉屬於雞形目(Galliformes,旗下有雞、火雞、珠雞、孔雀等一大堆鳥類),分家的時間要更晚得多。

藉由蛋殼殘存的遺傳訊息,無法判斷它是誰的最近親,不過肯定絕對不會是塚雉及其近親。因此論文判斷,蛋殼應該為牛頓巨鳥的蛋蛋。

倘若真的是牛頓巨鳥,或者說是 Genyornis 屬旗下的鳥類,這項分析也有助於釐清它的分類位置。說起不會飛的大鳥,大家都會想到鴕鳥、澳洲的鴯鶓(emu),還有紐西蘭已經滅團的恐鳥(moa);它們全部都屬於古顎類(Palaeognathae),和牛頓巨鳥所屬的雞雁小綱是平行關系。

澳洲的牛頓巨鳥及其近親們,目前被歸類為 Dromornithidae,屬於雞雁小綱旗下已經滅團的一支。所以大鳥與大鳥之間其實不是太近的親戚,是各自獨立巨大化的。

人類與 Genyornis 屬鳥類的體型比較。圖/prehistoric wildlife

竊蛋人對巨鳥滅團有責任

不少恐龍愛好者聽過,當年出土竊蛋龍與恐龍蛋化石時,還以為它們是盜獵其他恐龍的蛋,所以取名為竊蛋龍。後來才發現是誤會,它們懷抱的其實自己的蛋,可惜汙名已定,無法改名。人類盜獵大鳥的蛋無庸置疑,同理可稱之為「竊蛋人」。

鳥類靠生蛋繁衍後代,對其他動物而言卻是營養豐富的食物,人類只要有機會當然也不會放過。史前人類除了吃鳥蛋,也會將蛋殼加工製成工具與裝飾品;鴕鳥蛋殼的大量利用,甚至還能用來探討長達數萬年的非洲文化演化。

這回新研究以新奇的分析手法證實,5 萬年前的澳洲人會採集牛頓巨鳥的巨蛋來吃。由此推測,這款澳洲大鳥的滅絕,竊蛋人多半脫不了關係。

最後值得一提,由古早樣本取得非特定古代蛋白質(例如膠原蛋白、AMELY 以外的其他蛋白質)的分析辦法,繼古代 DNA 之後也成為古生物學、古人類學的新利器。澳洲的巨鳥蛋殼以外,雲南的步氏巨猿、西班牙的前人、青藏高原東側,甘肅的夏河丹尼索瓦人等材料,其中殘存的蛋白質片段都帶來寶貴的演化線索。

延伸閱讀

參考資料

  1. Demarchi, B., Stiller, J., Grealy, A., Mackie, M., Deng, Y., Gilbert, T., … & Miller, G. (2022). Ancient proteins resolve controversy over the identity of Genyornis eggshell. Proceedings of the National Academy of Sciences, e2109326119.
  2. The first Australians ate giant eggs of huge flightless birds, ancient proteins confirm
  3. Egg-eating humans helped drive Australia’s ‘thunder bird’ to extinction

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

寒波_96
172 篇文章 ・ 605 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

3

2
1

文字

分享

3
2
1
全球熱浪災情頻傳!臺灣熱成這樣,竟然不符合「熱浪」的定義?
Heidi_96
・2022/09/02 ・3393字 ・閱讀時間約 7 分鐘

世界各地熱浪災情頻傳

今年稍早,熱浪侵襲印度和巴基斯坦一帶, 5 月氣溫頻頻突破 45℃,最高溫甚至來到 51℃,是 122 年以來最強的熱浪。

對此,瑞典哥德堡大學(University of Gothenburg)地球科學教授陳德亮表示,要是溫室效應持續加劇,南亞地區每年頻繁出現的熱浪,將影響超過 5.5 億人口,造成食物短缺和難民潮——這樣的場景很有可能在 80 年內上演。

在日本,6 月就迎來了氣象觀測史上持續最久的「猛暑日」(單日最高氣溫超過 35℃),總共持續了 9 天。

下圖為日本氣象廳歷年來的統計數據:綠色長條圖對應縱軸,是每年猛暑日的天數;藍色折線圖是 5 年平均線;紅色斜線則是長期下來的平均趨勢。

1910–2021 年間,日本出現猛暑日的頻率呈現上升趨勢。圖/日本氣象廳

在英國,7 月氣溫飆至 40.3℃。然而,2020 年才有研究團隊推測,在 2100 年前,英國氣溫超過 40°C 的可能性極低,沒想到才過兩年,就打破了氣候模型的預測。

針對今年英國熱浪的情況,世界氣象歸因組織(World Weather Attribution)的分析報告也指出,要不是人為造成的氣候變遷,英國絕對不可能超過 40°C,而且熱浪的溫度也會比現在還要低 2–4°C。

英國熱浪的溫度逐年升高。圖/Nature

在歐洲,居民同樣飽受熱浪之苦。法國、西班牙、葡萄牙、義大利等地都超過 45°C,泰晤士河源頭乾涸、萊茵河水位創下歷史新低,中歐的水文地標「飢餓之石(Hungerstein)」也重見天日。

在捷克境內易北河的飢餓之石上,就刻著這樣一行字:「如果你看到我,那就哭泣吧(Wenn du mich siehst, dann weine)」。

為什麼會有熱浪?跟一般的熱有什麼不同?

簡單來說,熱浪的成因與地球的氣壓系統有關,特別是高壓系統。

當高壓系統長時間盤踞一地時,就稱為「熱穹(heat dome)」。在熱穹範圍內,因為高壓中心氣流下沉,阻礙地面暖空氣上升,導致暖空氣更密集、溫度更高,連帶影響地表溫度。

高氣壓迫使上升的暖空氣下降,導致暖空氣更密集、溫度更高。圖/NOAA

除此之外,影響各地熱浪的因素都不相同,但大致可以分成以下幾種:

  1. 北極暖化噴射氣流遷移:伍德威爾氣候研究中心(Woodwell Climate Research Center)的氣候科學家佛朗西斯(Jennifer Francis)說明「北極暖化」導致北極噴射氣流擺動,原本應該帶給歐洲冷空氣,可是卻沒有,因此造成熱浪。
  2. 聖嬰現象反聖嬰現象:「聖嬰現象」將赤道東太平洋的溫暖海水帶到美州西岸;「反聖嬰現象」則帶來冷水。目前,地球處在反聖嬰時期,因此未來若是聖嬰現象發生,夏季溫度將進一步升高,美洲熱浪也會更加頻繁。
  3. 燃燒化石燃料:科學家指出,人為燃燒化石燃料確實導致了氣候變遷,而且這樣的影響範圍遍及全球。英國布里斯托大學(University of Bristol)氣候科學家薇琪.湯普森(Vikki Thompson)則表示,熱浪強度將隨著全球氣溫升高而上升。
太平洋海水溫度圖:上圖為聖嬰現象期間,下圖則為反聖嬰現象期間。圖/中央氣象局

臺灣熱成這樣,不算熱浪嗎?

先講結論,不算!在臺灣氣象觀測史上,也從來沒有出現過熱浪。

根據中央氣象局統計資料,在橫跨近百年的前 30 筆高溫排行榜中,近三年(2020–2022)就包辦了其中 12 筆,從 38.8℃ 到 40.2℃ 都有。今年 8 月 21 日,花蓮富源自動觀測站更測得 41.6℃ 的高溫。[註]

註:這項記錄沒有列入中央氣象局的高溫排行榜,因為能夠上榜的只有 28 個人工測站的資料,其他 300 多個自動測站都被排除在外。

臺灣氣象觀測史上前 10 筆高溫紀錄。資料來源/中央氣象局

可是,都這麼熱了,為什麼不算熱浪呢?考量到不同地區有不同類型的氣候,世界各國對於熱浪的認定標準都不同。

若參考世界氣象組織(WMO)的定義,必須是「連續 5 日的最高溫,超過歷年最高溫度平均值 5℃ 以上」,才能稱為熱浪。

以臺北市為例,必須連續 5 天出現 39.3℃ 以上的高溫,才符合熱浪的天氣定義,因此即使是受到熱島效應影響的臺北市,至今也都沒有出現過熱浪。

延伸閱讀:我來到一個島,它叫做都市熱島——《都市的夏天為什麼愈來愈熱?》

那麼,未來有可能發生熱浪嗎?應該也不會。

雖然偶爾有熱帶大陸氣團,從中國帶來乾熱的大氣,但臺灣四面環海,有海風調節,海溫最高也只有 30℃ 左右,不太可能出現異常高溫。

極端高溫有多危險?連狗狗都可能被柏油路燙傷!

在熱浪期間,由於高壓籠罩、降雨減少,更容易發生乾旱,而乾燥炎熱的氣溫也容易引發森林大火,造成惡性循環。

舉例來說,加拿大西部去年遭逢熱浪,氣溫飆升至 49.6℃,頻繁的森林大火促成積雨雲形成,帶來致災性雨量,或是降下閃電,引發更多火災。

除了生態危機以外,熱浪還很有可能造成農作物欠收與能源供應短缺。在交通運輸方面,歐洲鐵軌膨脹變形,紛紛減班或停駛,而水位下降、河床乾涸等問題,也阻礙了水路運輸。

另外,英國也呼籲民眾盡量不要外出遛狗,免得狗狗中暑、曬傷,或是被柏油路燙傷。

如何應對極端高溫造成的「熱傷害」?

在氣溫高、濕度高、風速弱,或是天氣突然變熱的情況下,如果在劇烈運動、戶外作業時,沒有適時補充水分與鹽分,就可能對身體造成「熱傷害」,包括熱痙攣、熱暈厥、熱水腫、熱衰竭與熱中暑。根據衛福部統計,今年 7 月,就有 444 人因熱傷害而送往急診,是去年同期的 1.8 倍,而且呈現逐年上升的趨勢。

俗話說得好:「預防勝於治療。」與其逐一認識這五種熱傷害(請參考熱傷害自我保護懶人包),不如學學如何預防,那就是——多喝水、待在陰涼處,隨時注意身體狀況。尤其是嬰幼兒、長者、過重者、慢性病患、戶外活動者、服用特定藥物者,更要小心防範。

然而,要是不幸碰上這種情況,請按照以下五個步驟處理:

  1. 陰涼:移動到陰涼處休息。
  2. 脫衣:脫掉多餘的衣物。
  3. 散熱:保持環境通風。(切勿泡冰水、擦酒精!)
  4. 喝水:迅速補充水分和電解質,如運動飲料。
  5. 送醫:若情況嚴重,如意識不清、痙攣、休克等,應儘速送醫。
夏日炎炎,沒事別出門曬太陽,也要記得多補充水分。圖/衛生福利部國民健康署

參考資料

  1. 熱浪煉獄!巴基斯坦城市氣溫達51℃ 中暑民眾苦不堪言:這種高溫將奪走我們的生命
  2. Ullah, S., You, Q., Chen, D., Sachindra, D. A., AghaKouchak, A., Kang, S., et al. (2022). Future population exposure to daytime and nighttime heat waves in South Asia. Earth’s Future, 10, e2021EF002511.
  3. 大雨や猛暑日など(極端現象)のこれまでの変化
  4. Christidis, N., McCarthy, M. & Stott, P.A. (2020).The increasing likelihood of temperatures above 30 to 40 °C in the United Kingdom. Nature Communications, 11:3093. 
  5. Without human-caused climate change temperatures of 40°C in the UK would have been extremely unlikely
  6. Extreme heatwaves: surprising lessons from the record warmth
  7. 熱浪來襲,是天災還是人禍?
  8. Explainer: What’s causing the recent U.S. heat waves?
  9. What is a heat dome?
  10. Extreme weather: What is it and how is it connected to climate change?
  11. Thompson, V., Kennedy-Asser, A. T., Vosper, E., Lo, Y., Huntingford, C., Andrews, O., Collins, M., Hegerl, G. C., & Mitchell, D. (2022). The 2021 western North America heat wave among the most extreme events ever recorded globally. Science advances, 8(18), eabm6860. 
  12. 聖嬰現象(ENSO)|交通部中央氣象局
  13. 天氣排行榜|交通部中央氣象局
  14. 地獄之門再開啓 台北會那麼熱嗎
  15. 越來越熱!什麼是熱浪?氣候變遷會對您我造成哪些「熱傷害」?
  16. 熱傷害自我保護懶人包
  17. 防熱傷害三要訣 夏日炎炎保安康
所有討論 3
Heidi_96
6 篇文章 ・ 11 位粉絲
PanSci 編輯部角落生物|外語系畢業,潛心於翻譯與教學,試圖淡化語言與知識的隔閡。

0

2
1

文字

分享

0
2
1
每年有一千萬公頃的森林消失!把樹種回去,就可以解決問題了嗎?──《牛津通識課|再生能源:尋找未來新動能》
日出出版
・2022/07/19 ・1997字 ・閱讀時間約 4 分鐘

碳捕捉:把電廠排出來的二氧化碳再抓回去!

一九九〇年代,尚未開發出風能和太陽能,當時對氣候變遷的擔憂日益增加,因此有人建議捕捉和儲存那些從化石燃料發電廠排放出來的二氧化碳,如此就可將其轉變成一種低碳電力。

碳捕捉主要是透過化學反應將煙道氣(flue gas)中的二氧化碳分離出來,然後再將其壓縮液化,泵入地下洞穴,例如含水層或是廢棄的油氣田。

同時要針對傳統的發電機開收排放二氧化碳的費用。這將鼓勵電廠採用碳捕捉技術,不過前提是碳價要夠高,超過捕捉和封存二氧化碳的成本。

然而,即使在龐大的歐盟市場,碳的價格也從未高到足以讓碳捕捉在電力生產中具有競爭力,而且真正在運作的碳捕捉工廠很少。

碳捕捉將煙道氣(flue gas)中的二氧化碳分離出來,然後再加工處理。圖/Envato

即使如此,捕捉二氧化碳排放依舊可望成為一種脫碳方法,在未來某些產能製程中合乎成本效益。一個例子是將天然氣轉化為氫氣,這還能用於加熱和製造燃料電池,或用於生產水泥以及甲醇和氨等重要工業化學品。

碳捕捉的各種可行性:直接從空氣抓?多種一點樹?

也有人認真思考過直接從空氣中捕捉二氧化碳的可行性,因為目前我們所面對的現實非常危險,即二氧化碳排放量下降的速度恐怕來不及讓上升溫度控制在攝氏 1.5 度內。

種植更多的樹木可能是最簡單也最便宜的方法,但首先必須遏止每年大量的伐林問題。

每年約有一千萬公頃的森林遭到砍伐,用於種植大豆、棕櫚油和其他作物,以及放牧牲畜。這樣的伐林導致全球每年約 10% 的二氧化碳排放量和生物多樣性的重大損失。

目前二氧化碳排放量下降的速度沒辦法使上升的溫度控制在 1.5°C 內,再加上樹木被大量的砍伐,導致全球每年約 10% 的二氧化碳排放量和生物多樣性的重大損失。圖/Envato

此外,封存大量二氧化碳所需的樹林面積也相當大──約要美國國土面積的四分之一,需要超過六年,甚至幾十年的時間才能讓樹木長到成熟,每年只能吸收平均全球燃燒化石燃料的 10% 排放量。

而在成長期過後,還需要更換樹木,因為在建築中也會使用到木材。有人建議,可以燃燒林業的廢棄物來產生能量(熱或電),並捕捉和封存排放出來的二氧化碳。

這種生質能源的碳捕捉尚有爭議,必須要確保改變土地利用的這項變動最後的結果是產生淨負排放,而不是增加碳的排放量。此外,這種方法尚在開發中,可能會與其他對可耕地和淡水的需求產生競爭關係。

多種樹,真的可以救地球嗎?事情可沒有我們想的那麼簡單!圖/Pixabay

不過,可以使用化學吸收器直接從空氣中捕捉二氧化碳,這種方法比生質能源更緻密、更可靠, 只是目前的價格較為昂貴。

奧利金能源公司(Origen Power)正在開發將碳捕捉與具有商業價值的石灰生產相結合,這樣的製程可望降低成本。

吸碳新創公司「Carbon Engineering」也在開發另一種方法,是使用與二氧化碳接觸會形成碳酸鈣的氫氧化鉀。整個過程以石灰來合成氫氧化鉀,形成碳酸鈣,然後將其加熱,釋放出二氧化碳,進行壓縮和封存──這時便會再度合成石灰。他們預估,以這種方式捕捉二氧化碳的成本可望降低至每噸 100 美元。

碳捕捉的展望與未來

為了增加產值,可以將捕捉來的二氧化碳與氫結合(比方說以再生電力來電解水,製造出氫氣),這可用來合成低碳燃料,取代汽油、柴油或航空燃料,這樣一來,其總排放量會遠低於某些生質燃料。

若是要捕捉和封存燃煤發電廠排放的二氧化碳,電力成本會增加約 60%,而使用再生能源來發電,成本則低得多。

然而,隨著空氣碳捕捉的研發和大量投資,再加上在某些工業製程中捕捉二氧化碳,以及重新造林,預估到二〇五〇年時,碳捕捉可能會吸收掉全球年排放量的 10%。

到二〇五〇年,再生能源和核能的總發電量可能接近當前全球需求量的 90%,透過碳捕捉,全世界可能會達到二氧化碳淨零排放。但要處理大量再生電力,電網在輸送和分配上需要適應風場和太陽光電場輸出量的種種變數,因此發展儲能設備非常重要。

——本文摘自《牛津通識課|再生能源:尋找未來新動能》,2022 年 6 月,日出出版,未經同意請勿轉載。

日出出版
8 篇文章 ・ 4 位粉絲