2

4
0

文字

分享

2
4
0

AI 戰警出動——抓出惡意程式,資訊安全有保障!

科技大觀園_96
・2022/02/27 ・3145字 ・閱讀時間約 6 分鐘
數位戰警網路掃黑。圖/fatcat11 繪

網路數位世界黑影幢幢,美國有線電視新聞網 CNN 曾報導,全世界每天產生超過 100 萬個惡意程式;臺灣軟體聯盟也曾發布調查報告,全球企業因惡意程式攻擊,每年損失超過 10 兆新臺幣,相當於我國 109 年度政府總預算的 5 倍。駭客散播惡意程式橫行網路,不僅企業深受其害,各國政府也防不勝防。

行政院資通安全處偵測統計,我國各政府單位每月被攻擊次數高達 2,000 萬到 4,000 萬次。近期最受矚目的就是,總統府在蔡英文總統 520 連任就職前夕,驚傳遭駭客入侵電腦竊取資料;接著 5 月底美國資安公司「Cyble Inc」揭露駭客在暗網[1]兜售「臺灣全國戶政登記資料庫」超過 2,000 萬筆臺灣民眾個資,接連引發輿論譁然。

面對駭客無窮盡的闇黑攻擊,臺灣大學電機工程學系教授林宗男從 2018 年開始,帶領團隊利用資料科學處理分析,建立網路異常與攻擊預測模式,發展「AI Cyber Security」(人工智慧網路安全)系統,從偵測藏身於 Windows 與 Android 系統的惡意程式、暗網流量分類與網路惡意流量偵測等「四管齊下」,全面展開網路掃黑行動,防堵駭客散播惡意程式搞破壞。 

國立臺灣大學電機工程學系教授林宗男。圖/李宗祐攝

抓出惡意程式的 AI 網路安全系統

這項研究計畫今年邁進第 3 年,「我們做出來的技術,都是可以馬上用的真槍實彈!」林宗男透露,相關前瞻技術初步成果陸續發表後,「國家安全局就找上門,要跟我們技術合作。」隨著世界各國競相重點投資,引領 AI 成為國力象徵,研究團隊除了以建置臺灣國家級網路防禦系統為目標,更希望這套系統能夠推廣成為捍衛各國企業或組織的數位戰警。

就如同 CNN 報導,全世界每天產生超過 100 萬個惡意程式,網路數位世界危機四伏;但值得注意的是,這個數據還是 2015 年的統計,現在恐怕有增無減。研究團隊以先發制人策略,杜絕惡意程式伸出魔爪,利用 CNN(Convolutional Neural Networks,卷積神經網路)模型[2]訓練 AI ,偵測是否有惡意程式潛伏在使用者電腦 Windows 或手機 Android 系統蠢蠢欲動。

Windows 與 Android 的惡意程式偵測

「我們的目標是在他還沒有執行之前,阻止惡意程式啟動。」面對五花八門的應用程式,研究團隊指出,使用者在下載執行前,「把程式的 exe 執行檔轉換成圖片檔,放進我們建立的模型,AI 就會告訴你這個程式是惡意程式的機率是多少。如果很高,就不要執行,避免系統被惡意程式感染。」林宗男強調,能夠辨認程式碼到底是惡意或者是正常,是確保網路安全最重要的基本功。

偵測惡意程式效率明顯提升 7.2%。把執行檔圖形化的方法更為安全,只看圖的結構,不會啟動執行檔,可以避免在偵測過程被感染。圖/林宗男實驗室提供

經過測試驗證,Windows 偵惡系統成功率與準確率達 88.9%,超越全球圖形處理器領導廠商 NVIDIA 發表的 AI 偵惡技術 7.2%。林宗男指出,很多軟體公司都競相投入研究,就過去已公開發表的研究論文,NVIDIA 抓駭效率暫時領先群雄;臺大團隊與擁有雄厚資源的 NVIDIA 研究團隊相較,就像是小蝦米與大鯨魚,能夠超越他們很不容易。「但這僅是初步研究結果,我們還在持續精進中。」 

相對於 Windows 偵惡系統獨立開發,Android 偵惡系統則是與日本 NICT(情報通信研究機構)合作研發,利用臺大團隊提出的新演算法,把 NICT 研發的 AI 偵惡系統抓駭效率從 92% 提升到 96.2%,青出於藍而勝於藍,讓日本團隊印象深刻。 

Android 惡意程式偵測:研究團隊透過取出已知惡意程式的可執行檔特徵,並利用反混淆技術加入新的特徵,再透過 AI 演算法處理特徵,判斷是否為惡意 Android 程式。圖/林宗男實驗室提供

透過機器學習,分析暗網流量

雖然無法做到百分之百滴水不漏,但為了知已知彼,研究團隊更直搗黃龍,「潛水」暗網蒐集情資,分析駭客行為特徵。林宗男表示,駭客為了躲避追蹤,都在暗網活動,因為透過 TOR 瀏覽器加密,網管人員無法辨識使用者到底是在上網聊天、傳資料、發送 Email,還是看 YouTube 聽音樂或追劇等。對追蹤技術研究者而言,到暗網觀察駭客「水面下」的活動,是很重要的情資來源。 

研究團隊透過 AI 研究分析已知惡意程式的網路行為特徵,再側錄蒐集暗網不同使用者上傳流量與行為模式,找出「壞人經常走的路徑」,把暗網流量做善惡分類,研判哪些是正常上網行為,哪些是惡意程式發動攻擊。林宗男舉例,就像防疫期間每個人都戴著口罩,但年紀大的和年紀輕的行為就是不一樣,「我們就是利用 AI 從行為特徵分辨使用者上網行為是否正常。」 

研究成果經與美國 IBM 和中華電信合作驗證測試,辨識率高達 99.6%,遠超過加拿大研究團隊的 81.6%。對 ISP(網路服務供應商)而言,若能明確辨識暗網流量分類,就不必把看影片或聽音樂等受到惡意攻擊可能性極低的影音串流,全部導入 IDS(入侵檢測系統)資安偵測,大幅節省資源。

暗網流量類型分類:臺大研究團隊利用 AI 演算法分析網路流量特徵,把經過匿名加密的流量分門別類,協助網管人員有效而安全的管理網路。圖/林宗男實驗室提供

惡意流量偵測,鞏固第 2 道防線

研究團隊也利用最近 3 年眾所周知的 10 種惡意程式,包括 2017 年肆虐全球的勒索軟體 WannaCry(想哭)進行惡意流量偵測「實兵演練」。畢竟惡意程式偵測不可能做到百分之百,漏網之魚在所難免。根據資安調查顯示,惡意程式滲透入侵電腦系統之後,平均長達 56 天才會被發現。 

「惡意流量偵測其實是第 2 道防線!發生惡意流量代表電腦已經中毒了,我們的目標是在最短時間偵測出惡意流量。」林宗男透露,跨國網路科技公司 CISCO 現有商用偵測系統精確度已達 97.7%,「我們做得再好,也僅能微幅提升到 98.2%。」研究團隊再發揮 3 個臭皮匠勝過 1 個諸葛亮的精神,把 2 套系統截長補短,將精確度再向上提升 0.3%,堅持沒有最好、只有更好的信念,鍥而不捨地挑戰不可能的任務。

惡意流量偵測:研究團隊透過 AI 研究分析已知惡意程式的網路行為特徵,加速偵測發現網路異常流量,並揪出潛伏在網海裡面興風作浪的惡意程式。圖/林宗男實驗室提供

eID 的潛在風險

然而,林宗男也深知,資安不可能做到百分之百的絕對安全。當內政部決定在明年全面換發 new eID 數位身分證,建置 T-Road(政府資料傳輸平臺),打造跨政府機關資料通道網路,推動「一卡多用」串聯戶籍資料、健保資料庫、汽機車駕照交通監理資料、國民年金與勞保勞退年金等,同時政府也將讓 new eID 擁有線上交易完整性與不可否認性,做為電子商務交易憑證。林宗男對此呼籲政府應正視 new eID 缺乏法源依據的問題,更要從資訊安全的角度,重新審慎評估全面換發數位身分證的必要性。 

「透過 new eID 建置 T-Road 聽起來好像很方便、很進步,但對駭客而言,要偷取全國 2,300 萬人的資料,也非常方便。一旦出現資安破口,整個系統就會因單點失效而全面瓦解。」林宗男說,「new eID 把國人從出生到死亡所有資料全部放在 T-Road,我們都知道網路沒有絕對安全,還要把所有的東西全部放在一個籃子裡面嗎?」政府應該要有分散風險的危機意識,數位身分證絕對不能「一卡多用」。  

註解

  1. 利用 TOR(The Onion Router 洋蔥路由器)瀏覽器遮蔽使用者真實位址,避開網管系統追蹤的匿名網路。
  2. 參考人類大腦視覺組織建立的深度學習模型。

數感宇宙探索課程,現正募資中!

文章難易度
所有討論 2
科技大觀園_96
82 篇文章 ・ 1091 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。


2

8
3

文字

分享

2
8
3

既是科學家,也是樂團鼓手!──專訪數學物理學家程之寧

研之有物│中央研究院_96
・2022/03/11 ・5978字 ・閱讀時間約 12 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文|郭雅欣、簡克志
  • 美術設計|林洵安、蔡宛潔

在學術與搖滾的多重維度上行走

還記得美劇《The Big Bang Theory》嗎?劇中常常出現的物理名詞「弦論」,是描述物理世界基本結構的理論。中央研究院「研之有物」專訪院內數學研究所程之寧研究員,她正是研究弦論的科學家,也是熱愛音樂的搖滾樂團鼓手,這種跨領域身份並不衝突,兩邊都需要創造力與紀律。由於天生斜槓的性格,讓程之寧在數學和物理領域大展身手,透過數學的深入探討,她試圖將弦論更往前推進。最近程之寧更跨足到人工智慧領域,為學界提供理論物理上的貢獻。

中研院數學所程之寧研究員,主要研究 K3 曲面(特殊的四維空間)的弦論,她發現模函數和有限對稱群之間有 23 個新的數學關聯,稱之為「伴影月光猜想」(Umbral Moonshine)。圖/研之有物

萬有理論和難以捉摸的「月光」

世界從那裡來呢?物理世界的本質是什麼呢?回答這樣的大哉問,一直是理論物理學家所追求的目標。從牛頓力學(日常應用)、廣義相對論(探討很重的物質)到量子力學(探討很小的物質),隨著物理學不斷發展,我們似乎一步步接近答案,但至今卻還未走到終點。

舉例來說,如果有個東西很重又很小,就像「黑洞」,或是大爆炸時的宇宙,我們要怎麼用數學描述?於是科學家試圖整合廣義相對論和量子力學,找出所謂的「萬有理論」(Theory of Everything)──能完全解釋物理世界基本結構的核心理論。

程之寧研究的「弦論」就企圖發展成這樣一個萬有理論。弦論一如其名的「玄妙」,它設定宇宙所有的粒子都是由一段段「能量弦線」所組成,每一種基本粒子的振動模式不同,產生不同的粒子特性。

「人類一直以來的夢想之一就是,如果能用一句話解釋所有事情,那該有多麼美好。」中研院數學所研究員程之寧說道。

程之寧的研究牽涉到數學上的「月光猜想」(Moonshine)與弦論中 K3 曲面的連結。月光猜想是存在於模函數係數與特殊群之間的數學關聯,程之寧與其研究夥伴共發現了 23 個新的關連,並稱之為「伴影月光猜想」(Umbral Moonshine)。

基於弦論的假設,我們的世界是十維的,除了人們在日常生活中可以感知到的 3+1 維(空間+時間),還有六維是因為尺寸太小而無法用肉眼觀察的,這些看不到的維度影響著物理世界,最終也產生了我們這個物理世界所需的各種條件與特性。

綜觀程之寧的研究,橫跨了物理與數學兩個領域,她笑稱自己「天生斜槓」。在學術上,程之寧原先喜歡文學,之後卻走上數理研究的道路;在音樂上,程之寧喜愛搖滾樂,至今仍在自己的樂團裡擔任鼓手。

她如何看待自己一路走來的各種轉折?游徜在數學與物理之間,她又對這兩個領域的連結有怎樣的體會?在與「研之有物」的訪談中,程之寧侃侃而談她的經歷、想法,以及對學術研究的熱忱所在。

在弦論的設定中,宇宙所有的粒子都是由一段段「能量弦線」所組成,每一種基本粒子的振動模式不同,產生不同的粒子特性。圖/iStock
  • 請問您是如何對數學及物理產生興趣?從何時開始?

一開始考大學時,其實我想去念中文系(笑)。不過,因為我高中是選理組,而且只念了一兩年,對文科考試比較沒把握,加上對工程科系沒興趣,最後就選擇臺大物理系就讀。

後來發生兩個轉折,第一個是我很認真的去修了大學中文系的課,結果發現真的沒有想像中容易。第二個就是我發現物理系的課還蠻有趣的,像量子力學和相對論,讓我覺得還想再多學一點、多知道一點。

我開始覺得如果念完臺大物理系就停下來,好像有一種小說沒讀完的感覺,所以就想繼續讀碩士班。那時還沒有覺得自己會走上學術研究的路,單純抱著想把故事看完的想法。

  • 後來是如何接觸到弦論?弦論是如何引起您的興趣?

後來我去荷蘭念碩士,指導教授是諾貝爾物理獎得主 Gerard ’t Hooft。他其實蠻不認同弦論,但他對於如何處理量子力學與相對論很有興趣。

當時 ’t Hooft 教授在建議我碩士題目時就說:「你也知道我不太認為弦論是一條正確的道路,不過聽說弦論最近真的在量子重力這一塊有一些成果。不如妳去讀一讀,看看是不是真的有一些東西在那裡,也可以比較一下其他量子重力理論。」

在我很認真的比較各個量子重力理論之後,就變成弦論派了(笑)。’t Hooft 教授對此也保持開放態度,他有幾個不錯的博士生後來也變成弦論學家,之後我在 Erik Verlinde 的指導下念博士時,就完全以弦論為研究主題了。

  • 研究理論物理會影響您對現實世界的理解嗎?

蠻多人會問我說,妳學了量子力學,是不是就會比較了解這個世界不是非黑即白?或問我量子力學跟宗教是不是有關?可是我覺得我分得很開,我不會去做這樣的連結,我還是活在現實裡,走路時大部分都在專注於自己不要跌倒之類的。

如果真的要講,我蠻感激我們的存在,因為我所學的東西讓我知道這是沒有必然性的。我們能這樣以一種人形的很奇怪的生物的形式存在,然後在這樣一個環境過一輩子,是機率很低的事情,而且我還蠻開心我是當人,而不是奇怪的阿米巴蟲或外星生物!有些人會從這裡連結到宗教或轉世,但我不會,我就停在這裡。

  • 來談談您的研究,伴影月光猜想與 K3 曲面弦論之間是什麼關係?

弦論中有很多的可能性,我們可以挑選特定的四維,然後假設這四維空間是個 K3 曲面。例如說,我們可以把兩個甜甜圈乘起來,在上面做特殊的奇異點,來製造出一個 K3 曲面。這個曲面有一些很有趣的對稱性。從弦論的角度來講,我們可以透過這個過程,找出一個解釋為何有伴影月光猜想的框架。

「把維度乘起來」這個概念很難想像,但這在數學上是成立的。我舉例一個我們能想像的「乘起來」:如果有一個空間是一條線,另一個空間是一個圓,乘起來就變成一個圓柱形,從一個方向剖面可以切出圓,另一個方向則切出線。而在數學上,不管幾維,能不能在紙上畫的出來,都可以這樣操作。

程之寧向「研之有物」採訪團隊解釋「把維度乘起來」的概念。圖/研之有物
  • 如何透過計算,發現捉摸不定的「月光」?

有時候這看似湊巧,一個數學上的函數正好就是弦論某個問題的答案。但其實並不是真的那麼巧,弦論看起來很有彈性,好像什麼都可以解釋,但它其實有非常多結構及限制。

當我在計算一個弦論理論時,它的內部結構可能原本就具有某些特定的性質,然後我再去觀察數學中,有這樣性質的函數可能就只有一兩個,只要再初步算一下,就能知道哪一個是答案。弦論學家日常的計算常常是這樣的,所以這是巧合嗎?是也不是。

  • 您曾經發現 23 個新的伴影月光猜想,您對這類題目特別有興趣嗎?

我覺得數學有兩種,有些數學家喜歡系統性的事情,就像蓋房子一樣,在數學裡建造一個很美麗、非常有系統性的結構,可以把很多事情都放入這個結構來理解。

另一種比較少數的,就是喜歡獵奇,去收集分類奇奇怪怪的特殊東西,例如有這些性質的函數在哪裡?可能你算出來就是 5 個,你也不知道為什麼。月光猜想很明顯就屬於這一類。

兩種的樂趣感覺是不一樣的,我覺得應該都很棒,但我可能是屬於偏好獵奇的這種。

  • 您的研究連結了物理上的弦論與數學上的月光猜想,您怎麼看待這兩個知識體系的互動?

弦論是一個需要很多數學理論配合的物理理論,它是一個有點繁複的框架,我們什麼都要會一些,才能看懂這個理論。當你把許多不一樣的學門的知識加起來,有時候就會在某一個學門──例如幾何──有意想不到的收穫。

弦論在數學上也扮演探索與找尋新方向的角色,讓數學家有新的發現。雖然最後數學定理的證明還是得仰賴傳統數學方法,但在這二三十年間,我們一直從弦論身上找尋數學研究的新方向或有趣的猜想,看到了弦論與數學之間的互動。

數學家有兩種,一種人喜歡建立美麗又有系統性的結構,另一種人喜歡尋找和收集奇怪特殊的數學物件(比如函數),程之寧表示自己屬於後者。圖/研之有物
  • 剛才一開始提到,您高中只念了一兩年,是因為對學校沒有興趣嗎?

其實我一直都覺得上學很無聊。我小時候臺灣教育和現在很不一樣,一班 50 幾個人,老師必須盡量軍事化管理,大家最好都一模一樣,比較好管理。我和學校一直處於互相磨合的狀況,我自認已經努力配合學校,但學校一直覺得我在反抗,這可能是一個認知上的差別。

舉例來說,我小學的時候不想睡午覺,可是老師說大家都一定要睡午覺,不睡午覺的人要罰抄課文,所以我早上到學校時就會把已經抄好的課文交給老師。我覺得我這樣做是在配合老師的規定,可是以老師的立場會覺得我在反抗,學校教育中我遇到了很多類似的情況。

還有就是不喜歡高中的升學氛圍,同學和老師好像都只有一個活著的目標,就是「考大學」。我當時無法習慣升學氛圍,感覺好像活在平行宇宙一樣。

  • 高中休學後,您去唱片行工作,可否談談當時的想法?

我國中開始聽音樂,這是我除了看書之外的重要興趣,我也很快就喜歡上了搖滾樂。高中休學的時候,我唯一的謀生技能可能就是我對音樂的各類知識吧!所以我就去了唱片行,這是唯一一個我會做又有興趣的工作,還好那時候還有很多唱片行(笑)。

  • 對音樂的熱忱,讓您與朋友共組了樂團,並擔任鼓手。您是否比較過樂團生活和學術研究之間的異同之處?

有些人覺得我這樣很跳 tone,但我自己覺得還好。音樂和學術都是我發自內心覺得好玩的東西,兩者也有相同之處,例如它們都需要創造性,也都有需要了解的框架。數學需要嚴謹的證明,音樂演奏也需要遵循結構,例如不能掉拍。

音樂領域還有一點和數學類似──玩樂團的圈子也是以男性為主。我們樂團則是只有一個男生,其他都是女生,可能我真的天生對框架有點遲鈍,玩團之後才發現:「怎麼大家都是男生?」

程之寧表示,學術界仍有許多性別不平等問題未受重視。圖/研之有物
  • 也就是說,目前數學學術圈仍是男性主導,在研究路上,您有因為性別而感受到一些衝擊或眼光嗎?您怎麼面對?

有。那感覺很明顯,日復一日地要去面對,尤其是年紀還比較輕、還必須每一天去證明自己的能力的時候,特別有感。

我遇到時的反應就是,在心裡暗罵一句髒話,然後繼續做我要做的事。我不會想改變別人的想法,感覺那是浪費時間,就算環境給我的阻礙是這樣,我還是繼續去做該做的事。

可是有些事情沒那麼簡單,現在我也當過老師,有時候會看到年輕女生在學術界因為性別而被欺負,或遭到不公平待遇、甚至騷擾。

對此我感到心痛,覺得為何我們學術領域還是這樣的狀況?甚至為什麼性騷擾至今還是一個議題?可以確定的是,學術界許多性別不平等問題未受到重視。

  • 您現在已經有傑出的研究成果,還會因為性別而遭受質疑嗎?

我現在比較會遇到一個狀況反而是來自學生的質疑。我在荷蘭阿姆斯特丹大學教書時,有時候學生會因為我是女教授,而且我的外表在許多歐洲人眼中看起來就像小妹妹,所以比較容易去挑我的毛病。

在課堂上,下面坐的可能都是男學生,只有一兩個女學生,那個氣氛就會變得很奇怪。例如說偶爾會聽到學生評論我的身材或樣貌。

我有和其他一些在歐洲或美國的女性教授聊過這樣的問題,似乎不少人都有類似的不太愉快的經驗。感覺不是很好。

  • 看到您最近的研究和人工智慧(AI)有關,為何會想往這個方向發展?

我有兩個動機。一個就是我真的想深入了解人工智慧。我也可以像普羅大眾,看看 AI 下圍棋,讚嘆「哇!好厲害!」這樣就好,可是我覺得我一定可以真的去理解它,這可能就是數學家的自大吧!

另一方面,我知道對科學研究來說,未來 AI 將會是一個非常重要的工具。這是「在職訓練」的概念,我可能會用到這個新工具,或以後我可能會需要教這樣的課,因為學生是下一代的科學家。因為這些原因,我覺得我需要去訓練自己使用新的工具。在我的領域裡,也有一些有趣的、還沒被解答的科學問題,是 AI 有可能幫得上忙的,我看到了一些潛力。

  • 弦論和 AI 感覺差距很大,AI 也可以應用到弦論的研究嗎?

乍看之下,弦論的確比較抽象,也不像其他許多實驗會產生大量數據。但其實弦論有大量的可能性,我認為使用 AI 來在這些巨量的可能性當中搜尋特別有趣的理論,是一個有潛力能夠加深我們對弦論理解的新的研究方法。

而且 AI 的應用絕不僅限於巨量資料。如果是面對一些比較新的挑戰,在沒有現成的演算法可以用的情形之下,可以自己做出需要的功能嗎?這過程我覺得也非常很有趣,而且應該是會有成果的一條路。這種不是那麼顯而易見的事情,我覺得很有挑戰性,也蠻好玩的。

除了用 AI 來幫助物理跟數學的研究之外,我也試著物理研究當做靈感來源,找出新的 AI 的可能性,我覺得這也是一個很有趣的研究方向。我現在有和 AI 的學者合作,嘗試做出一些創新的演算法,真的還蠻有趣的。

  • AI 對您而言是全新的領域,您如何面對跨領域遇到的門檻?

一開始會覺得真的要去碰這個新的領域嗎?其實現在也還是偶爾會有這樣的懷疑。我在弦論領域可能已經是專家,但去了一個新的領域,我學得不會比二十歲的人快,要怎麼去跟人家競爭?是不是在浪費時間?

但也會想,與其想這麼多,不如先做再說。到目前為止我做了兩年多,感覺還蠻好的,我有學到東西,也有做出小小的貢獻。

其實我還蠻感激有這樣的學習機會。對我來說當科學家最大的好處就是,去搞懂一個新的東西就是工作的一部分。當科學家雖然蠻辛苦,但就結果論來說,我還蠻開心能當一位科學家!

延伸閱讀

  1. Moonshine Master Toys With String Theory | Quanta Magazine
  2. Mathematicians Chase Moonshine’s Shadow | Quanta Magazine
  3. 林正洪教授演講 一 怪物與月光(Monster and Moonshine),《數學傳播》

數感宇宙探索課程,現正募資中!

文章難易度
所有討論 2
研之有物│中央研究院_96
8 篇文章 ・ 16 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook