0

9
2

文字

分享

0
9
2

「新太空 2.0」時代來臨!盤點新創太空產業的衛星部署手段

黃 正中_96
・2021/09/26 ・3448字 ・閱讀時間約 7 分鐘

近年來以美國為首,國際上民營新創太空產業如雨後春筍,以新技術、新概念吸引風險投資,挑戰傳統太空產業,稱為新太空(NewSpace)2.0。

新太空的新創公司通常規模比較小,為了增加競爭力,常以併購或合資的方式,加速產業成長;所涵蓋的範圍包括火箭、小型衛星或衛星元件等領域,以價格破壞性經營,加強與傳統太空產業的競爭。

本文將分析量產的衛星精確部署到太空軌道,提高太空任務的新功能與價值;並盤點在此潮流下創新技術,和新創的太空產業。

論「快速量產衛星」的必要

新創航太公司為了更貼近市場需求,創新衛星量產技術、使用商用(COTS)元件,快速切入市場,提高產品附加價值的新衛星功能。例如使用微衛星以每小時拍攝一次地球上任何地點,並快速提供詳細圖像;使用衛星連接地面上廣大地區,構建太空網路;或者利用衛星開採小行星高價值的稀有礦物等等。

新創衛星公司所使用商用零件,設計小型或立方衛星,儘管它們的尺寸很小,但可以共同提供功能和服務,卻比傳統衛星更大、數據產品媲美大衛星。量產衛星優點是可以一次發射許多衛星,發射費用比傳統的大衛星便宜得多,但是缺點是,設計 / 任務壽命較短。

最小可行產品(Minimum Viable Product, MVP)

新創公司為了發堀利基市場,開發最小可行產品(Minimum Viable Product, MVP)1。一旦建立了 MVP 衛星,新創公司再進行優化調整。MVP 為了減輕重量,加快生產速度,設計時忽略了部分功能,如推進次系統(Propulsion Subsystem)、部分姿態控制(AOCS)或沒有備份設計(backup design)等等,以便快速進入市場。

美國的 Planet Labs 公司 180 顆遙測照相衛星,Spire Global 公司 110 顆氣象服務衛星公司,或挪威的 Iceye 公司 10 顆透過雲層對地球照相的合成孔徑雷達小型衛星等等,證明 MVP 可以在很少的預算下,製造和發射衛星到太空,並傳送數據返回地球。

美國 Planet Labs 公司的 Dove satellites。圖/Planet Labs 臉書

快速量產的代價——衛星損壞率高

但是,利用商用航電元件快速製造,在太空高輻射的環境,可能面臨高衛星損壞率,例如新創 Planet Labs 公司 2設計和製造著名的 Doves Triple- CubeSat 微型衛星,2015 年創立後發射了 339 顆 3U 高解析度的 Dove 遙測立方衛星,但是 2021 年 8 月只剩下約 180 顆衛星運作中。

另外的案例 Spire Global 公司從太空觀測雲數據和分析,提高了天氣模型的預測能力。自創建以來,已發射了 140 多顆衛星,目前有 110 顆 3U 立方氣象衛星星系營運中。

SpaceX 的 Starlink 太空網路公司3,到 2021 年 9 月 14 日為止,已經發射了 1791 顆低軌通訊衛星,統計有 125 顆衛星故障或離開太空返回地球,目前太空網路擁有 1615 顆低軌衛星建構太空網路,所以新太空的高衛星損壞率,令人印象深刻。

搭公車上太空,立方衛星「以量取勝」

大量微小或立方衛星搭乘所謂的「公車火箭」到太空,若是衛星計畫經費較多,可以搭乘單個火箭進入太空。但是大部分的計劃在預算限制下,搭乘「公車火箭」到達軌道後,整“群”離開火箭,微小 / 立方衛星以一種相當不受控制的方式繞地球漂移。

福爾摩沙衛星七號衛星搭乘火箭。圖/科技部臉書

這種「下車」方式,對於遙測照像任務,「打群架」方法是有效的,但不是最佳的方式,每顆衛星都可以拍照並發送下來,但個別衛星可能會聚集在一起,從而照相送回多餘的圖像。

對於通信衛星架構,「打群架」是沒有經濟價值的,因為在不受控制的衛星群體,只能隨機覆蓋地表,對於地面用戶來說,無法定時收到監控資料,也無法忍受隨時斷訊的通訊。

新創公司的決勝關鍵:更精確的太空軌道部署

為了增加小衛星任務所產生的產品價值,未來更精確的軌道部署,將會產生革命性的決勝關鍵,每顆衛星將被更仔細、周到地放置到精確的軌道上,使整個星系的價值,大於各自執行任務的總和。

更精確的軌道部署將成為任務規劃中首要考量,當雜亂無章的群轉變成精心編排的星系,其中均勻分佈的小衛星以優化其覆蓋範圍和數據價值時,小衛星架構的價值將得到充分體現。

優化「衛星系」的兩種辦法

有兩種實現衛星系(Constellation)優化的方法,第一種是單獨發射小衛星,或者一次發射兩到三個在特殊的小型火箭上發射,這些火箭可以「隨時隨地」運送航太器,眾多的小型火箭新創公司 Rocket Lab 和 Vector Space Systems 等,瞄準此新市場,計劃將小型衛星運送到低軌太空。

這種方法存在兩個挑戰,可能無法使其適用於所有星系。首先,大型星系需要大量發射,即使每週發射一枚火箭,完全部署一個星系也可能需要數月甚至數年的時間,其次發射費用按公斤計算,總經費也不便宜。

優化星系的第二種方法是為每個小衛星配備機載推進次系統,許多衛星可以共用火箭發射,例如由 SpaceX 的 Falcon 9 或 Falcon Heavy 等發射器的低每公斤成本發射,離開火箭以後就需要耗費自身燃料,抵達任務軌道。儘管所有飛行器都將成群離開火箭,但它們可以使用各自的推進系統分散到預先選擇的各個軌道中,以優化星系均勻性。

這種方法的好處是可以利用機載推進系統提供額外的任務價值,例如通過補償阻力來延長任務壽命,重新配置星系以彌補發射失誤,或在壽命結束時使衛星脫離軌道,減少太空垃圾,但是燃料使用過多,減少任務壽命卻也無可奈何。

獵鷹 9 號將 60 顆 Starlink 衛星送入軌道。圖/SpaceX

成本太高?新型「微推進系統」問世

新太空 2.0 的新創公司,有許多小衛星沒有包含推進次系統,主要是因為技術還不夠成熟,而且成本太高,無法納入 MVP。精確部署衛星所需的推進系統成本,市場上推進系統大部分是手工建造的,對於新創公司無法負擔。設計、開發和製造過程,還沒有發展到大規模生產。

但市場對於大量製造的機載推進系統需求強大,針對此問題,美國 Orbion Space Technology 以及 ExoTerra Resources 新創公司推出霍爾效應推進器(Aurora Hall-effect thruster),以及 Tethers Unlimited、Deep Space Industries 和 Momentus 公司,亦推出水離子推進器(Water Plasma propulsion),水離子推進裝置,進入太空小型推進器的市場。

水離子推進器。圖/參考資料 5

沒錢裝推進系統?你需要的是「太空運輸」服務

針對為了節省燃料以提高壽命,以及沒有配備星載推進系統的立方 / 微衛星,美國新創太空運輸的 Momentus 公司,推出離開火箭以後,在太空將立方 / 微衛星或其他小型衛星,在太空中運輸到所需任務軌道。

義大利的 D-Orbit 公司今年(2021)5 月部署了 20 顆義大利 ION 衛星,成功示範可以改變高度和傾角的太空運輸。D-Orbit 公司並計劃於今年(2021)10 月為 Planet SuperDove 公司在太空「最後一英里的太空運輸」服務,運輸 12 顆地球遙測衛星。

但是你可知道「最後一里路」要走多久?

以我國的福爾摩沙七號衛星星系為例,衛星設計有星載的推進系統和攜帶燃料,用來調整衛星在太空的飛行軌道;福衛七號的六顆衛星於2019年6月25日發射升空,離開獵鷹九號火箭以後,總共花了 20 個月逐漸調整軌道,才將六枚衛星的軌道面布置,形成在地球上空以 60、120、180、240、300度的夾角,涵蓋全球的氣象觀測衛星星系部署。

新太空 2.0 時代來臨!將顛覆傳統衛星公司

新太空(NewSpace)2.0 顛覆甚至於威脅到傳統衛星公司,例如 Intelsat 同步軌道通信衛星公司因過時或更高的價格使他們無法與低成本寬頻通訊競爭導致破產4,同樣的澳洲衛星通訊公司 Speedcast 和為航空公司和船舶提供 Wi-Fi 服務的 Global Eagle 公司與 Intelsat 公司一樣也都負債累累。

新太空快速的行業變化,也影響了衛星地面部分;例如衛星天線製造商 Phasor 在被新創 Kymeta 用更高效率覆蓋整個 Ku 頻段衛星天線公司淘汰而申請破產。去年 OneWeb 的破產困境源於缺乏靈活性,讓 SpaceX 競爭對手以超越其技術而破產。

因此新太空的來臨,太空產業需著重技術創新,適應快速市場變遷,隨時關注市場的變化與趨勢。對於一個創新技術競爭的衛星新創參與者,摩爾定律將主導創新和開發新市場。

參考資料

  1. NewSpace 2.0: Moving beyond the Minimum Viable Product
  2. 〈Wikipedia〉Planet_Labs  
  3. 〈Wikipedia〉Starlink
  4. NewSpace 2.0: Moving beyond the Minimum Viable Product
  5. Water propulsion technologies picking up steam
  6. Satellite bankruptcies circa 2000 vs. 2020: We’ve come a long way!me-a-long-way

文章難易度
黃 正中_96
5 篇文章 ・ 3 位粉絲
國家實驗研究院國家太空中心研究員。勿忘對科學研究的熱情,勇敢築夢,實現夢想…...


0

0
0

文字

分享

0
0
0

什麼是「造父變星」?標準燭光如何幫助人類量測天體距離?——天文學中的距離(四)

CASE PRESS_96
・2021/10/22 ・3033字 ・閱讀時間約 6 分鐘
  • 撰文|許世穎

「造父」是周穆王的專屬司機,也是現在「趙」姓的始祖。以它為名的「造父變星」則是標準燭光的一種,讓我們可以量測外星系的距離。這幫助哈柏發現了宇宙膨脹,大大開拓了人們對宇宙的視野。然而發現這件事情的天文學家勒梅特卻沒有獲得她該有的榮譽。

宇宙中的距離指引:標準燭光

經過了三篇文章的鋪陳以後,我們終於要離開銀河系,開始量測銀河系以外的星系距離。在前作<天有多大?宇宙中的距離(3)—「人口普查」>中,介紹了距離和亮度的關係。想像一支燃燒中、正在發光的蠟燭。距離愈遠,發出來的光照射到的範圍就愈大,看起來就會愈暗。

我們把「所有發射出來的光」稱為「光度」,而用「亮度」來描述實際上看到的亮暗程度,而它們之間的關係就是平方反比。一旦我們知道一支蠟燭的光度,再搭配我們看到的亮度,很自然地就可以推算出這支蠟燭所在區域的距離。

舉例來說,我們可以在台北望遠鏡觀測金門上的某支路燈亮度。如果能夠找到到那支路燈的規格書,得知這支路燈的光度,就可以用亮度、光度來得到這支路燈的距離。如果英國倫敦也安裝了這支路燈,那我們也可以用一樣的方法來得知倫敦離我們有多遠。

我們把「知道光度的天體」稱為「標準燭光(Standard Candle)」。可是下一個問題馬上就來了:我們哪知道誰是標準燭光啊?經過許多的研究、推論、歸納、計算等方法,我們還是可以去「猜」出一些標準燭光的候選。接下來,我們就來實際認識一個最著名的標準燭光吧!

「造父」與「造父變星」

「造父」是中國的星官之一。傳說中,「造父」原本是五帝之一「顓頊」的後代。根據《史記‧本紀‧秦本紀》記載:造父很會駕車,因此當了西周天子周穆王的專屬司機。後來徐偃王叛亂,造父駕車載周穆王火速回城平亂。平亂後,周穆王把「趙城」(現在的中國山西省洪洞縣一帶)封給造父,而後造父就把他的姓氏就從本來地「嬴」改成了「趙」。因此,造父可是趙姓的始祖呢!(《史記‧本紀‧秦本紀》:造父以善御幸於周繆王……徐偃王作亂,造父為繆王御,長驅歸周,一日千里以救亂。繆王以趙城封造父,造父族由此為趙氏。)

圖一:危宿敦煌星圖。造父在最上方。圖片來源/參考資料 2

回到星官「造父」上。造父是「北方七宿」中「危宿」的一員(圖一),位於西洋星座中的「仙王座(Cepheus)」。一共有五顆恆星(造父一到造父五),清代的星表《儀象考成》又加了另外五顆(造父增一到造父增五)。[3]

英籍荷蘭裔天文學家約翰‧古德利克(John Goodricke,1764-1786)幼年因為發燒而失聰,也無法說話。1784 年古德利克(John Goodricke,1764-1786)發現「造父一」的光度會變化,代表它是一顆「變星(Variable)」。2 年後,年僅 22 歲的他就當選了英國皇家學會的會員。卻在 2 週後就就不幸因病去世。[4]

造父一這顆變星的星等在 3.48 至 4.73 間週期性地變化,變化週期大約是 5.36 天(圖二)。經由後人持續的觀測,發現了更多不同的變星。其中一群變星的性質(週期、光譜類型、質量……等)與造父一接近,因此將這一類變星統稱為「造父變星(Cepheid Variable)」。[5]

圖二:造父一的亮度變化圖。橫軸可以看成時間,縱軸可以看成亮度。圖片來源:ThomasK Vbg [5]

勒維特定律:週光關係

時間接著來到 1893 年,年僅 25 歲的亨麗埃塔‧勒維特(Henrietta Leavitt,1868-1921)她在哈佛大學天文台的工作。當時的哈佛天文台台長愛德華‧皮克林(Edward Pickering,1846-1919)為了減少人事開銷,將負責計算的男性職員換成了女性(當時的薪資只有男性的一半)。[6]

這些「哈佛計算員(Harvard computers)」(圖三)的工作就是將已經拍攝好的感光板拿來分析、計算、紀錄等。這些計算員們在狹小的空間中分析龐大的天文數據,然而薪資卻比當時一般文書工作來的低。以勒維特來說,她的薪資是時薪 0.3 美元。順帶一提,這相當於現在時薪 9 美元左右,約略是台灣最低時薪的 1.5 倍。[6][7][8]

圖三:哈佛計算員。左三為勒維特。圖片來源:參考資料 9

勒維特接到的目標是「變星」,工作就是量測、記錄那些感光板上變星的亮度 。她在麥哲倫星雲中標示了上千個變星,包含了 47 顆造父變星。從這些造父變星的數據中她注意到:這些造父變星的亮度變化週期與它們的平均亮度有關!愈亮的造父變星,變化的週期就愈久。麥哲倫星雲離地球的距離並不遠,可以利用視差法量測出距離。用距離把亮度還原成光度以後,就能得到一個「光度與週期」的關係(圖四),稱為「週光關係(Period-luminosity relation)」,又稱為「勒維特定律(Leavitt’s Law)」。藉由週光關係,搭配觀測到的造父變星變化週期,就能得知它的平均光度,能把它當作一支標準燭光![6][8][10]

圖四:造父變星的週光關係。縱軸為平均光度,橫軸是週期。光度愈大,週期就愈久。圖片來源:NASA [11]

從「造父變星」與「宇宙膨脹」

發現造父變星的週光關係的數年後,埃德溫‧哈柏(Edwin Hubble,1889-1953)就在 M31 仙女座大星系中也發現了造父變星(圖五)。數個世紀以來,人們普遍認為 M31 只是銀河系中的一個天體。但在哈柏觀測造父變星之後才發現, M31 的距離遠遠遠遠超出銀河系的大小,最終確認了 M31 是一個獨立於銀河系之外的星系,也更進一步開拓了人類對宇宙尺度的想像。後來哈柏利用造父變星,得到了愈來愈多、愈來愈遠的星系距離。發現距離我們愈遠的星系,就以愈快的速度遠離我們。從中得到了「宇宙膨脹」的結論。[10]

圖五:M31 仙女座大星系裡的造父變星亮度隨時間改變。圖片來源:NASA/ESA/STSci/AURA/Hubble Heritage Team [1]

造父變星作為量測銀河系外星系距離的重要工具,然而勒維特卻沒有獲得該有的榮耀與待遇。當時的週光關係甚至是時任天文台的台長自己掛名發表的,而勒維特只作為一個「負責準備工作」的角色出現在該論文的第一句話。哈柏自己曾數度表示勒維特應受頒諾貝爾獎。1925 年,諾貝爾獎的評選委員之一打算將她列入提名,才得知勒維特已經因為癌症逝世了三年,由於諾貝爾獎原則上不會頒給逝世的學者,勒維特再也無法獲得這個該屬於她的殊榮。[12]

本系列其它文章:

天有多大?宇宙中的距離(1)—從地球到太陽
天有多大?宇宙中的距離(2)—從太陽到鄰近恆星
天有多大?宇宙中的距離(3)—「人口普查」
天有多大?宇宙中的距離(4)—造父變星

參考資料:

[1] Astronomy / Meet Henrietta Leavitt, the woman who gave us a universal ruler
[2] wiki / 危宿敦煌星圖
[3] wiki / 造父 (星官)
[4] wiki / John Goodricke
[5] wiki / Classical Cepheid variable
[6] wiki / Henrietta Swan Leavitt
[7] Inflation Calculator
[8] aavso / Henrietta Leavitt – Celebrating the Forgotten Astronomer
[9] wiki / Harvard Computers
[10] wiki / Period-luminosity relation
[11] Universe Today / What are Cepheid Variables?
[12] Mile Markers to the Galaxies

CASE PRESS_96
1 篇文章 ・ 3 位粉絲
CASE的全名是 Center for the Advancement of Science Education,也就是台灣大學科學教育發展中心。創立於2008年10月,成立的宗旨是透過台大的自然科學學術資源,奠立全國基礎科學教育的優質文化與環境。
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策