5

10
3

文字

分享

5
10
3

有錢就是任性?富豪間的太空競賽是怎麼一回事,又與我們有何關係?

EASY天文地科小站_96
・2021/08/09 ・4541字 ・閱讀時間約 9 分鐘
  • 文/陳子翔|現就讀師大地球科學系, EASY 天文地科團隊創辦者

維珍集團創辦人布蘭森(Richard Branson),和亞馬遜公司創辦人貝佐斯(Jeff Bezos),上個月相繼搭乘自家公司太空船飛上太空,成了備受矚目的焦點。

然而可能是因為兩位富豪本身的財力與名氣,讓這場太空公司競爭被自家老闆搶盡鋒頭,很多相關討論話題都聚焦在布蘭森和貝佐斯展現「有錢人的任性」、「搭乘富豪版大怒神」之類的。但這兩次太空任務的成功對於太空發展的未來,以及並非超級富豪的我們,背後的意義遠不只是「富豪間的炫富」那麼簡單。

這是第一次有人到太空觀光嗎?

布蘭森和貝佐斯的競爭,看起來好像是為了搶先爭奪「太空人」的頭銜,但事實上布蘭森、貝佐斯和這次一同上太空的人,並不是第一批到太空的遊客。第一位「太空觀光客」早在 2001 年就付費搭乘俄羅斯聯盟號(Soyuz)太空船上過太空了,在 2001 至 2009 年間,也陸續有人透過這樣的方式到國際太空站體驗太空生活。

聯盟號太空船 。圖/Wikipedia

然而不論是聯盟號或是國際太空站,都不是為接待觀光客而打造的,職業的太空人也有很多的任務和工作要進行。因此其實這樣的太空旅遊方式,有點像搭著公務車是跑去別人的辦公室觀光,想必不適合大量開放。另一方面,用這樣管道上太空的人,需要通過基本的訓練,身體條件的限制也會比較嚴格。

綜合前面的因素,使即便有許多財力雄厚的人想上太空旅遊,能實際前往太空一遊的人還是少之又少,這樣「供不應求」的情況,也讓布蘭森、貝佐斯等太空公司老闆看見商機。

維珍銀河和藍色起源的太空觀光競爭

也許比大家想像中早很多,貝佐斯其實早在西元 2000 年就成立了藍色起源(Blue Origin)公司,而布蘭森則是在 2004 年成立維珍銀河(Virgin Galatic)。兩家公司都經過了多年的研發,才終於在今年七月用自己研製的火箭完成首次的商業太空任務。可以想像在這之前,兩家公司在幾乎沒有任何收益的情況下,投入的資本有多大!也必須說這樣的事的確應該也只有像布蘭森、貝佐斯這樣同時擁有驚人財力,又對太空充滿熱忱的企業家才可能辦得到。

美國網絡巨頭亞馬遜公司創辦人貝佐斯。圖/wikimedia
英國維珍集團董事長布蘭森。圖/wikimedia

而這次的商業太空競賽,與其說是布蘭森和貝佐斯在較勁誰能先上太空,不如說是維珍銀河和藍色起源這兩家公司,在太空觀光市場競爭先機,也是一次打響知名度與博得關注的大型宣傳。

不過,同樣是完成短時間的載人太空飛行,兩家公司使用的方式卻截然不同。接著就讓我們簡單認識維珍銀河和藍色起源,以及它們在這次的載人飛行採取的策略各自有哪些特點吧。

維珍銀河與太空船二號

維珍銀河的主要業務就是聚焦於太空觀光,而像是小型衛星發射這樣的任務,維珍集團旗下則有另有一家名為維珍軌道(Virgin Orbit)的公司經營。

懸掛在白騎士二號飛機上的太空船二號。圖/Wikipedia

而此次維珍銀河執行任務的太空船,名為太空船二號(SpaceShip Two),最大的特色就是採用「機載空中發射」。出發時,太空船會先懸掛在一架名為白騎士二號(White Knight 2)的特製飛機上。由白騎士二號掛著太空船二號,像是一般飛機一樣起飛,將太空船送到約 14 公里的高空,並在到達指定位置後釋放太空船。

太空船二號從飛機釋放後,會點燃火箭引擎開始快速向上爬升大約一分鐘。火箭引擎關閉後,太空船就會呈拋體運動,並隨者慣性爬升到約 90 公里高的頂點。直到太空船一路再次重返濃厚的大氣為止。

從火箭引擎關閉到落回較濃厚的大氣這四分鐘,太空船上的乘客就能感受失重狀態,體驗太空中漂浮的感覺,同時太空船二號也會刻意將飛行姿態調整為「倒飛」的樣子,讓乘客可以從飛機頂部與側面的窗戶鳥瞰地球。此外太空船二號將尾翼設計成可變形的形式,讓太空船能夠在重返大氣的不同階段中提供良好的控制。

飛行的最後階段,飛行員會駕駛太空船以無動力滑翔的方式返回機場降落,完成任務。

太空船二號飛行剖面。圖/FAA

而另一個有趣的地方是,太空船二號基本上是純手動駕駛的飛行器,甚至連太空船的控制系統也不是採取今日多數飛機使用的線傳飛控(Fly by wire),而是傳統的機械式操控,可說是尖端科技與傳統飛行技術的結合,相當特別。

藍色起源與新雪帕德號

不同於維珍銀河,藍色起源的業務範疇就不局限於太空觀光,火箭和火箭引擎的設計與製造也是該公司的業務,像是美國的聯合發射聯盟(ULA)下的下一代的主力運載火箭火神號(Vulcan),就將採用藍色起源公司設計的BE4火箭引擎。同時藍色起源也正在設計一型可重複使用的重型運載火箭──新葛倫號(New Glenn)。總體而言,藍色起源的業務範圍相對與知名的 SpaceX 比較類似,是一家服務範圍相當廣的太空公司。

而這次包含貝佐斯在內的四位乘客,所搭乘的新雪帕德(New Shepard)號,是垂直發射式的火箭,也是目前最常見的火箭形式。火箭本身為單節式,使用液態氫、液態氧做為推進劑。而乘客所乘坐的太空艙則在火箭推進器頂部,每次旅程最多可以乘坐六位乘客。與太空船二號截然不同的是,新雪帕德號是全程自動控制的,因此太空艙內所有人都不用做任何操作,就能完成整趟旅程。

搭乘新雪帕德號整趟旅程大約只有十分鐘,火箭發射後引擎會持續點燃大約 140 秒,在火箭熄火後,太空艙就會自動與推進器分離,進入拋物線的軌道。太空艙飛行的最大高度大約會來到 110 公里,與飛行高度大約 90 公里的太空船二號相比,新雪帕德號有越過 100 公里高的「卡門線」。至於乘客體驗失重狀態的時間,則與太空船二號差不多都是四分鐘,因此兩者實際上在太空中的體驗與視野應該是相差不遠的。而新雪帕德號太空艙返回大氣的方式,則是利用三具降落傘進行減速,緩緩飄回地面降落。

另一方面,由於推進器下落時的阻力較小,新雪帕德號的推進器會比太空艙還早返回地面。而新雪帕德號的推進器擁有如同鋼鐵人般「懸停降落」的本領,在降落的最後一刻,推進器會用自身火箭動力懸浮於降落基地上方再緩緩落地,相當壯觀。有趣的是,雖然火箭用自身動力垂直降落是 SpaceX 獵鷹九號火箭(Falcon9)的招牌,但其實 2015 年 11 月時,新雪帕德號硬是比獵鷹九號早了一個月達成這樣的成就喔!不過由於獵鷹九號是軌道發射載具,飛行的速度和高度都遠高於幾乎只是直上直下的新雪帕德號,因此兩者技術上的難度其實還是有不小的差距。

懸停降落中的新雪帕德火箭。圖/NASA Flight Opportunities

此外,新雪帕德火箭擁有相當好的安全設計。舉例來說,如果推進器在發射過程中發生問題、可能有爆炸風險時,太空艙本身設有的逃生火箭就可以將太空艙帶離推進器並安全降落。另外在這次載人任務成功前,新雪帕德號也已經累積了 15 次成功的無人試飛任務。

私人公司百花齊放的新太空時代

由於成本和技術難度都非常高,在過去,發射火箭到太空可說是只有傾國家之力(而且是少數的大國)才有辦法完成的事。然而近十年,這樣的狀況有了相當大的變化。

除了維珍銀河、藍色起源在太空觀光的領域取得了初步的成功,馬斯克(Elon Musk)成立的 SpaceX 也已經在過去十幾年間完成了衛星發射、太空站補給、低地球軌道載人太空飛行等等,只有少數「國家」完成過的壯舉。另外,這幾年新興的太空公司也如雨後春筍般地冒出,也都希望能在太空市場中殺出一片天。

商業太空發展這能為我們帶來什麼好處呢?

首先,商業太空公司的發展會使許多新的市場被開闢與創造,而新市場的出現就會吸引更多人與更多企業投入其中,帶來很多新的可能性。例如在這次維珍銀河與藍色起源所競爭的「太空觀光業」,就是過去不曾出現過的新事物,而像是訂閱式衛星網際網路服務、商業太空望遠鏡等等,也都是正逐漸成形的「新太空服務」。

再來,商業發展下由於企業的相互競爭與追求獲利,會讓前往太空的成本持續降低。過去需要幾千萬甚至上億美金才能夠讓自己的衛星上太空,現在最低甚至一百萬美金有找。而私人太空公司也正設計著更多可重複使用的太空載具,期望進一步壓低前往太空的成本。如同馬斯克說,如果飛機是一種不可重複使用的交通工具,那麼一張機票的價格想必會貴的不可思議。過去太空運載火箭就是一種不可重複使用的載具,因此發射衛星和太空船的價格當然居高不下。這次為太空旅遊設計的太空船二號、新雪帕德號都是完全可重複使用的,而 SpaceX 能夠發射衛星的獵鷹九號火箭,也能夠重複使用第一節火箭。這些都能大幅的降低前往太空,以及發射衛星的成本。

或許未來有一天,太空旅行的費用能讓多數人都能夠負擔。圖/Pexels

截至今天,太空發射的成本目前已經可以壓低到「讓許多有錢人能上太空旅遊」的程度。或許未來有一天,太空旅行的費用能讓多數人都能夠負擔,而發射衛星的成本也大幅降低,讓各式各樣的產業與服務都能在太空有新的可能性。

如同數十年前搭乘飛機旅行,或是一百年前乘坐汽車都是富豪的專利,但在技術不斷精進以及商業的競爭下,如今搭乘飛機和汽車早已不再是遙不可及的白日夢。同時公路運輸、航空運輸也都成了現今人類社會中不可或缺的命脈,但相信在動力車輛、動力飛行器剛剛問世時,也很難預期它們會成為現今的模樣。

當然,當太空產業快速發展,就如同過去所有新興產業的快速成長一樣,除了能帶來好處與利益,同時也會形成許多外部成本。但人類的科技與文明一直以來就是在進步的同時面對新的問題,在推進的過程嘗試找到平衡,但當我們回過頭一看,常常就會發現世界已經在這樣的過程中,變得更加便捷與進步。

因此,其實維珍銀河與藍色起源這次的商業首飛任務成功,除了對於布蘭森、貝佐斯是好消息外,對於世界而言,也是又一次看見商業太空時代發展的可能性,也讓我們期待未來能夠看到一個不一樣太空新時代,並享受其帶來的好處與便利。

參考資料

  1. SmallSat Rideshare Program
  2. Spaceflight Pricing
  3. Space Launch to Low Earth Orbit: How Much Does It Cost?

延伸閱讀

  1. New Shepard VS SpaceShipTwo – Everyday Astronaut
  2. 一閃一閃亮晶晶,滿天都是人造衛星 – 泛科學
  3. 【時事新聞】聯合號太空飛機首次動力飛行成功 – EASY 天文地科小站

數感宇宙探索課程,現正募資中!

文章難易度
所有討論 5
EASY天文地科小站_96
19 篇文章 ・ 474 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事


0

27
5

文字

分享

0
27
5

極目遠眺的意義:天文學家為何追尋第一代星系

Tiger Hsiao_96
・2022/05/15 ・3764字 ・閱讀時間約 7 分鐘
  • 文/蕭予揚 清大天文所碩士生,將於約翰・霍普金斯大學攻讀天文博士
      林彥興 清大天文所碩士生,EASY 天文地科團隊總編

近日,來自東京大學和倫敦大學學院的科學家 播金優一(Yuichi Harikane) 在天文物理期刊《The Astrophysical Journal》發表了一篇論文,宣稱他們可能找到目前最遠的星系(名為 HD-1,紅移值 z 約為13),打破了原本最遠(GNz-11,z 約為 11)的紀錄。

天文學家為什麼執著要找最遠的星系呢?
是單純為了破紀錄而破、抑或是蘊藏了什麼科學涵義?
天文學家們又是怎麼尋找、並且推論這些星系多遠的呢?

HD1 的影像。圖/Harikane et al.

時間推回到二十世紀初,當時的科學家們對宇宙大小到底是恆定或是膨脹爭論不休,其中,愛因斯坦(Albert Einstein)便是支持「宇宙穩恆態理論」的知名科學家。而支持膨脹宇宙的科學家們,一直到西元 1929 年,愛德溫.哈伯(Edwin Hubble)透過測量其他星系,發現了宇宙在膨脹,才為膨脹宇宙(也就是日後人們所說的「大爆炸理論 The Big Bang Theory」)注入了一劑強心針。

接下來的各種證據,如宇宙微波背景輻射、宇宙中元素的比例等,讓天文學家們越來越確信宇宙的年齡是有限的,並開始利用紙筆與超級電腦,來推測最早、也就是第一代星系及恆星的樣貌,並嘗試用望遠鏡,來尋找早期星系是否和我們預測的相符。

科學家是如何知道距離的呢?

天文學家並沒有一把長達「一百多萬光年」的尺,那他們是如何尋找,並且知道這些早期星系距離我們有多遠呢?讓我們把兩個問題分開,先來探討在宇宙學尺度下的距離是怎麼得到的。

由於我們知道宇宙在膨脹,而這些遠離我們的星系所發出的光,也會因為類似都卜勒效應的影響,有著紅移的現象。而越遠的星系遠離我們的速度越快,它們紅移值也就越大;而從實驗室中,我們知道每種元素都會發出特定的譜線,藉由測量到星系光譜中特定譜線的實際位置,並與那條譜線所該在的位置比較,就能夠計算這些星系的紅移值了。

而結合紅移值和其他測量到的宇宙學參數(例如哈伯常數),就可以從星系的紅移值計算出物理上的距離,比如大家常會看到的「光年」。

星系的紅移(Redshift)與它跟地球的距離(Distance)可以互相換算。圖/林彥興

那既然這樣,我們只要測量所有星系的光譜,不就能知道最遠的星系是哪一個了嗎?可惜事情並沒有這麼簡單。

一來,很多星系(尤其是越遠的星系)都很黯淡,難以測量光譜,二來,測量光譜實際上是又貴又耗時的。所以,以「尋找」的為目的,做單一波段的搜索通常是比較實際的作法。但若是使用單一波段,不就代表我們沒有光譜,這樣不就又不知道距離了?

Well yes, but actually no。大家應該都聽過盲人摸象的故事,透過觀測越多的波段,我們就越能描繪出實際上的光譜,再根據現有的理論模型,我們就可以利用光譜擬合來推論出這些星系的紅移值。

那要如何鎖定這些早期的星系?

天文學家總不可能對每個能測量到的星系都做很多波段的觀測,並且大費周章的利用理論模型去擬合他們。很多特定的望遠鏡(例如 ALMA、JWST)是要寫觀測計畫書和其他天文學家競爭觀測時間的,總要給出一個有力的理由,才能讓你的觀測計劃脫穎而出。

但還沒有資料之前,天文學家要怎麼知道哪個星系是最遠的?這便產生了一個「沒有工作要怎麼有工作經驗」的迴圈。怎麼辦呢?天文學家就是要想辦法,在已經觀測的深空資料庫中去尋找最遠的星系。

哈伯太空望遠鏡拍攝的「哈伯極深空 Hubble Extreme Deep Field」影像。藉由比較圖片中不同紅移的星系的性質,天文學家就能重建出過去百億年來星系的形成與演化歷史。圖/NASA; ESA; G. Illingworth, D. Magee, and P. Oesch, University of California, Santa Cruz; R. Bouwens, Leiden University; and the HUDF09 Team

而要怎麼在龐大的資料庫中尋找遙遠的星系呢?讓我們再次簡單回顧歷史。量子物理在十九世紀末至二十世紀初逐漸開始發展時,瑞士物理學家約翰.巴耳末(Johann Balmer)研究激發態的氫原子所放出的光譜,發現在可見光波段,氫原子只會發射一系列特定波長的譜線。隨後美國物理學家西奧多.萊曼(Theodore Lyman)也接著發現,氫原子從受激態回到基態時,會放出一系列位於紫外線波段的譜線,這些特定的譜線也被稱為萊曼系。

氫原子的各個譜線家族,由上而下分別是位於紫外線的萊曼系,位於可見光的巴耳末系,以及位於紅外線的帕森系。圖/Szdori, OrangeDog

而用來尋找早期星系的第一種方法,也是最主要的搜索方法,就與萊曼系關係密切。天文學家發現,宇宙中有一種名為「萊曼斷裂星系(Lyman-break galaxies; LBGs)」的星系,這種星系的光譜有一個很明顯的特徵,便是在特定的波長以下就幾乎觀測不到,原因是波長更短的光(更高的能量)都被星際物質(Interstellar medium; ISM)和星系際物質(Intergalactic medium; IGM)的中性氫的萊曼線系給吸收了。

而萊曼線系中波長最短的譜線(常稱為萊曼極限)約在 91.2 奈米,最長的萊曼 α 譜線則約在 121.6 奈米。只要透過兩個波長足夠接近的波段去尋找「在長波長有觀測到、但在短波段沒觀測到的天體」(稱為 drop-out),就可以粗略的估計星系的紅移。

舉例來說,如果我們要找紅移值為 9 的萊曼斷裂星系,只需要稍微長於和短於 1216 奈米的兩個波段,看看有沒有星系出現在長波段的影像中,但在短波段的影像中卻沒有出現,就有可能是在紅移值為 9 的萊曼斷裂星系。如果要找越遠的萊曼斷裂星系,只需要換波長較長的波段即可。

近日打破紀錄的最遠星系,也是透過 H-band drop-out(在波長 H 波段沒有觀測到,而較長的波段有)所找出的。

光譜drop-out的例子。圖/Harikane et al (2022)

上圖為近日打破紀錄的最遠星系 HD1 的 H-band drop-out,可以看到長波段:4.5、3.6 微米以及 Ks 波段都有偵測到,但在 H 波段(以及更短波長)的影像就消失不見了。藍色的光譜 z 值為 13.3 的萊曼斷裂模型,灰色的光譜則為可能的低紅移汙染,z=3.9 的巴耳末斷裂模型。

當然,這只能幫助科學家初步的篩選,而且此種方法會受到一些其他非早期星系的汙染。

舉例來說,上文提到氫原子除了萊曼系以外,還有回到第一激發態的巴耳末系。若只是單純地透過 drop-out,因為巴耳末系本身的譜線就比萊曼系來得紅,所以也有可能找到的是紅移值較小的巴耳末斷裂;此外,非常紅且充滿塵埃的星系也會在光譜上出現類似「驟降」的特徵。

當然,更多波段以及光譜的觀測,都有助於釐清這些可能的汙染。而除了上述的方法以外,萊曼 α 發射體(Lyman-alpha emitters; LAEs)、伽瑪射線暴的宿主星系、重力透鏡效應等,也是尋找遙遠星系的重要方法哦!

那麼,找出這些早期星系有什麼科學意義?

現代宇宙學理論認為,宇宙在早期曾經經歷過兩次相變。第一次是宇宙從炙熱的游離態降溫回到中性的氣態,被稱為宇宙的復合時期(Epoch of Recombination),也是大家熟悉的宇宙微波背景的起源;第二次(也是最後一次)的相變,宇宙中的中性氫變成了游離化的氫離子,這個相變的過程被稱為再電離時期(Epoch of Reionization; EoR)。

而目前認為,第二次這個電離的原因,是第一代恆星和第一代星系所發出的強紫外線光,把周圍的中性氫游離成氫離子。藉由尋找越來越多的早期星系,我們就能透過這些早期星系來描繪宇宙再電離時期的歷史,而這又能夠進一步驗證現代宇宙學理論是否正確。不僅如此,研究這些早期星系,可以讓我們對於星系演化的歷史更往前推,或是研究早期星系的超大質量黑洞,是如何長到這麼大等等的議題。

未來展望

在 2021 年底順利升空的詹姆斯.韋伯太空望遠鏡(James Webb Space Telescope; JWST),其中一個主要的科學目標就是研究早期宇宙。如這篇文章一開始提到的「新的最遠的星系(HD-1)」,又如前一陣子發現的「最遠恆星 Earendel」,以及同一團隊的另一個紅移約 11 的星系,都在第一輪 JWST 的觀測計畫之中。

期待幾個月後 JWST 公布的第一批科學照片,能大幅革新我們對早期宇宙的認識。

參考資料(論文們)

延伸閱讀(科普文章)


數感宇宙探索課程,現正募資中!

Tiger Hsiao_96
56 篇文章 ・ 19 位粉絲
現為清大天文所碩二學生,即將赴美於約翰霍普金斯大學攻讀天文博士。