Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

該吝嗇還是大方? 小腦袋中的策略性餽贈

哇賽心理學_96
・2013/01/03 ・771字 ・閱讀時間約 1 分鐘 ・SR值 553 ・八年級

-----廣告,請繼續往下閱讀-----

編譯 / 文蒨

結帳之後你會把零錢投進櫃檯旁的樂捐箱嗎?對成人而言,捐贈這類的利他行為可能是出自於同理或關懷,當然也可能包括了基於其它目的的自私,例如提高自己的名譽。對於孩子們而言呢,利他行為被解釋為同理、喜好或渴望公平等內在動機。最近的一項研究指出,外在條件亦會影響兒童的利他行為:在有人看得見其行為和結果的狀況下,孩子們會顯得特別大方。

耶魯大學的Kristin Lyn Leimgruber及其同事以64位五歲兒童為研究對象,他們分成32組,每組由「給予者」和「接受者」組成,彼此角色不進行互換,而每次實驗中,給予 者選擇給與對方1或4張貼紙。實驗進行兩項操弄:「接收者是否看得見給予者」和「接受者是否能看見給予者分配的結果」。(呈現在透明或不透明的容器中)

實驗結果顯示,在接受者看得見給予者且也看得到對方給自己多少貼紙的狀況下,給予者最願意給他們多張的貼紙;而當接受者無法看見給予者時,給予者則不會顯得那麼慷慨,尤其當接受者亦看不見分配結果時,給予者則顯得最吝嗇。這意味著,即使是孩子,他們也會依觀眾的存在與否以及行為的透明程度來策略性的選擇是否該表現得大方或小器。

-----廣告,請繼續往下閱讀-----

至於為什麼呢?研究者表示,有可能是因為給予者在看得到接受者的情況下,會產生共鳴,以至於願意給予較多的貼紙;或也可能是想避免當接收者不滿意得 到的狀況時,會給予負面、否定的答覆,而答案仍是開放的。人一輩子都在社會化,對於兒童來說,在甚麼狀況下該給予多少、是否該考慮對方或自己也只是其中一些,他們還有很多要學呢。

(圖片來源:Pink Sherbet Photography@flickr

外電:Five Year Olds Are Generous Only When They’re Watched. ScienceDaily (Oct. 31, 2012)

文獻:Kristin L. Leimgruber, Alex Shaw, Laurie R. Santos, Kristina R. Olson. Young Children Are More Generous when Others Are Aware of Their Actions. PLoS ONE, 2012; 7 (10): e48292 DOI: 10.1371/journal.pone.0048292

-----廣告,請繼續往下閱讀-----

轉載自 心理與睡眠教學網

-----廣告,請繼續往下閱讀-----
文章難易度
哇賽心理學_96
45 篇文章 ・ 11 位粉絲
希望能讓大眾看見心理學的有趣與美,期待有更多的交流與分享,讓心理學不只存在於精神疾患診療間或學校諮商室,更能擴及到生活使之融入每一刻。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
0

文字

分享

0
2
0
惱怒飛機上的哭聲和幫助脆弱的嬰兒,都是人類演化後的行為?——《利他衝動》
知田出版_96
・2024/12/09 ・3771字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

苦難與同理心:能激發出援助還是自我關注?

縱貫全文,我們持續主張,苦難演化得十分凸顯、讓我們不能不關注,而且它還得以在子代照護背景脈絡中激發行動。利他反應模型的這項原則,似乎與巴特森(Daniel Batson)和讓.德塞蒂(Jean Decety)以及其他人的普遍觀點互相衝突,後者主張苦難會阻礙援助。

根據同理心──利他行為假設,人們在感到溫暖、柔情、冷靜、關切和慈悲時,會專注關心他人的需求,並提供無私的援助;相反,當發愁、憂心、痛苦、不安和沮喪時,他們就會專注關切自己的需求,並只有在自己的苦難減輕時,才會提供幫助。舉個例子,當實驗室中的學生目睹某人受到痛苦的電擊時,表示感受同理心的觀察者,即便可以離開,也都會伸援,至於感到個人苦難的人,則較少提供幫助,除非他們被迫留下並繼續觀看痛苦的電擊。因此,人們有能力出於無私的原因提供幫助,但可以出於自私的動機行事,以緩解自己的苦難。

我們自己的研究有時確實會披露很棘手的苦難。例如,我們往往會複製出巴特森的發現,遭逢苦難的受害者有可能觸動觀察者的同理心以及負面反應。當人們觀看我們最悲苦醫院患者的錄影時,一部分參與者甚至還表示他們感到驚恐(亦即忐忑、憤怒、驚恐)。這種高度負面的反應還更加引人注目,因為參與者知道,這些是真正的重症病人或末期患者。

因此,當他人表達的苦難會引發多餘的、會感染的負面感受之時,嫌惡反應也就可能因此發生──特別當他們的問題看來很沒有道理或者難以解決。(舉例來說,一位護理師表示,「嗯,對這個問題她打算怎麼辦?」)不過還不算滿盤皆輸,因為比起對快樂的患者,一般人對苦難的患者會看出更多需求、感受更多同理心,並提供更多幫助。不過這種慷慨精神是有侷限的。

-----廣告,請繼續往下閱讀-----

例如,倘若參與者必須坐下來陪伴患者,而不是只給他們幾塊錢並不做社交接觸,那麼他們就會提高協助快樂患者的相對偏好度。所以,即便苦難肯定帶來嫌惡的知覺和感受,它仍能成功傳達需求並激發反應,而這也正符合它的設計功能。

倘若我們思忖,在任意給定的情境中,利他反應模型的種種屬性如何權衡取捨,也就能預測這類複雜的關係。舉例來說,飛機上有小寶寶啼哭時,人們就會抱怨。這似乎自相矛盾,因為,我們理當演化來幫助那些身處苦難的寶寶。

利他反應受情境權衡影響,飛機上寶寶啼哭引抱怨反映其限制。圖/unsplash

啼哭的力量:無助者需求與觀察者情緒的博弈

然而,這種惱怒和模型相符,因為那些寶寶並不是其他乘客熟悉的或有感情紐帶的對象,他們多數人都相隔太遠,不會陶醉於寶寶的可愛模樣,也不知道是哪裡出了問題,所以幫不上忙。因此「飛機上有小寶寶啼哭」經典案例自然會惹人苦惱──這就證明了聲音很凸顯,激使我們去讓它平息──然而我們沒辦法產生同理心,也幫不上忙,因為欠缺界定親代照護的感情紐帶、熟悉度、專門知識和掌控權,況且社會規範告訴我們,不要去碰陌生人的寶寶,進一步約束自身的舉止。

碰到兒童虐待一類狀況時,這種衝突就變得更嚴重了,這時照護者會抽身或甚至攻擊、傷害他們應該保護的兒童。根據研究,由於苦難是如此明顯、有激勵性,而且不容忽視,於是當苦難或啼哭接連持續了好幾個小時或好幾天時,人們也就會變得非常煩躁,特別當沒有明確的解決方案之時(好比,由於寶寶罹患腹絞痛)。

-----廣告,請繼續往下閱讀-----

人們必須接受培訓,並在這種情況下獲得支持而非遭受懲罰;他們應該能夠讓自己置身激烈情境之外,好讓自己冷靜下來,而且我們需要提供幫助,好讓照護者能夠休息片刻。釀成這種情況的起因,是由於人類演化出的本性是在相互支持的社會性團體生活中養育兒童,然而如今我們多數人所體驗的西方式工業化獨自育兒方式,卻已經與此脫節所致。

與苦難不能激發援助的情況相反,只要觀察者理解狀況,能介入並對他們的反應抱持信心,那麼即便強烈的和嫌惡的苦難,也依然能夠促成援助。哺乳類動物的神經激素壓力反應之所以演化出現,並不是為了讓我們在工作壓力下能吃餅乾,這種反應的演化,是藉由調動交感和新陳代謝歷程,犧牲了消化和成長等較慢、長期的生理歷程所促成的即時行動。

人們在理解並有信心介入時,即便是巨大的苦難仍能激發援助行動。圖/unsplash

我們的壓力系統經過演化,能在脅迫下最有效地快速反應,好比當觀察者受了壓力驅使,必須迅速採取行動來幫助某人──假定他們知道該怎麼做,也知道分寸。所以,即便苦難線索啟動你的壓力和自主神經系統,當我們無法行動時──強烈激情和不安找不到明確的出口之時──它們就會產生冷漠、紛擾或攻擊行為,因為這些狀態本身就是演化來激發行動。

人們面臨苦難時,若認為自己有可能遭人操控,也會感到矛盾。由於苦難會激發援助行為,人們有時會偽裝陷入苦難來誘發支持,這有可能讓開始懷疑受害者的觀察者感到困窘、惱怒、生氣或反感。舉例來說,赫迪便曾描述,像狨猿和檉柳猴這類合作養育後代的新世界猴,通常會與無助的寶寶分享食物,特別是當牠們乞求食物之時。

-----廣告,請繼續往下閱讀-----

然而,當年輕個體年齡增長獨立生活,成年個體就比較不會與牠們分享食物,而這就會導致年輕個體以愈強烈並引人嫌惡的方式懇求乞討食物,有時訴諸偷竊。這種現象已經在著名的吸血蝠動物模型的利他行為研究中重複驗證,研究發現,成年蝙蝠較少與已經發育超越青少年階段,理當自給自足的蝙蝠分享血餐。

小寶寶確實很無助,起碼在嬰兒早期階段是如此,實在不能認為他們是藉由啼哭來「操控」照護者,起碼不像是幼童、較大兒童和成人那般以刻意的、邪惡的手法來操控。嬰兒有可能「使用」哭聲來激使照護者為他們提供食物、溫暖、撫慰或移除有害刺激物。這是他們溝通需求的僅有方式之一。這些需求有的並不是真的很緊急,不過即便是需求被動照護,好比身體撫慰,也可能影響嬰兒的長期健康和幸福。

例如,寶寶獨自被留在嬰兒床或汽車座椅時,通常就會放聲啼哭,因為他們喜歡照護者充滿愛心的溫暖擁抱。不過這些並不是必須立刻解決的急迫需求(而且就汽車座椅的情況,這說不定正是拯救他們的要素)。

嬰兒以啼哭表達需求,這也是他們唯一與外界的溝通方式。圖/unsplash

即便寶寶使用哭泣來激使我們幫助他們,我想我們都同意,他們並不是刻意密謀對付任何人,而且他們的要求也相當合理──特別是在面對相當惱人的現代裝置之時。因此,寶寶哭聲的真情實意、毫不誇張,未加操控的性質,提供了一種促成行動的誘發刺激,而且就算出自成年人,我們也依然遵從。

-----廣告,請繼續往下閱讀-----

苦難的演化功能:從激發行動到引發嫌惡

人們對於苦難哭聲的音質非常敏感,能區分反映出不同需求的哭聲,好比需要接觸、肚子餓了和疼痛。因此在醫院接受腿部注射的新生兒,所引發的同情比較多,超過在圖書館因無法帶回家的玩具,半哀鳴半啼哭的十八個月大的兒童。後面這樣的哀鳴和啼哭,會讓觀察者感到非常煩躁,他們甚至還可能覺得小孩是在操控而惱火,特別當目標是要取得玩具火車或更多金魚餅乾等獎賞時。然而,聽到新生兒為真正的需求而啼哭時,人們確實會心生同情,這樣的哭聲比較溫和、有規律,並暗示了脆弱的、幼態的、受苦受難和有援助需求的理想組合。

苦難不是單一事物。苦難有多樣化形式和背景脈絡,其中有些有激勵作用,另有些沒有。不過倘若我們從照護無助新生兒的背景脈絡來理解苦難,模式便自然浮現。真正的苦難,肇因於嚴重的急迫狀況,而需要觀察者提供力所能及之幫助的困境是有激勵作用的,而當觀察者不熟悉或沒有形成感情紐帶、不知道該怎麼辦、力有未逮,幫不上忙,或者感覺受了操控,這時苦難就可能引人嫌惡,也不太可能激發援助。

科學文獻有必要更明確地釐清,苦難何時會促使人們走向困難處境,何時則會讓他們遠離,並拿包含利他反應模型屬性的情境(好比受害者與觀察者存有感情紐帶、呈幼態模樣、明顯受苦受難,並需要觀察者力所能及的即時幫助)來與不包含這些屬性的情境進行比對。這些研究將能讓我們就現實世界對苦難之反應範圍方面達成更完整的認識,這類反應並不總是充滿同情,但確實會產生比自我關注更多的可能結果。

——本文摘自《利他衝動:驅策我們幫助他人的力量》,2024 年 11 月,知田出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

知田出版_96
5 篇文章 ・ 0 位粉絲
成為世界幸福、希望的緣起──知田出版「環境永續」、「心靈提升」、「自我成長」等類型圖書,探討由個體的轉變進而影響整個群體命運等議題,希望藉由閱讀,以更多元化的角度,讓每一位讀者的心跟著轉動,認識到我們生活在同一顆星球。 已出版:《回到地球》、《人類是五分之四的灰熊》、《利他衝動:驅策我們幫助他人的力量》等書。

0

0
0

文字

分享

0
0
0
小孩過早發育?留意兒童性早熟,及早治療減少未來疾病風險
careonline_96
・2024/05/22 ・2491字 ・閱讀時間約 5 分鐘

「印象深刻一對姊妹,年紀差兩歲,但是妹妹突然快速成長,從原本的身高小姊姊半顆頭,短短兩年內大幅超越了姊姊。」收治案例的林口長庚醫院兒童內分泌科邱巧凡醫師指出,「檢查發現,妹妹有性早熟問題, 5 歲多便出現乳房、陰毛發育的狀況,骨齡檢查也已達 11 歲,呈現明顯超前的現象。」

因為骨齡超前許多,導致預估成年身高只有 139 公分,符合健保給付性早熟針劑治療條件,經申請審查通過,小女孩開始接受每三個月施打一次性早熟針劑的治療。邱巧凡醫師說,治療過程中,妹妹的第二性徵明顯消退,長高速度也回歸正常狀態,療程結束後身高達到 160 公分,讓家人鬆了一口氣。

性早熟是指小小年紀就出現第二性徵,邱巧凡醫師指出,性早熟定義為女孩 8 歲前出現乳房發育或長出陰毛,10 歲前初經來潮;男孩在 9 歲前出現睪丸長大、陰莖長大、長陰毛等,發生率女孩明顯高於男孩。邱巧凡醫師補充,家長較容易關注到的變聲、長喉結、長陰毛等性徵出現,通常已是男孩青春期發育中後期的階段,因此男孩的性早熟往往容易被忽略,或是延誤診斷與治療。

發現性早熟趕快查原因

導致性早熟的原因很多,包括遺傳、飲食、女孩肥胖、環境荷爾蒙、其他疾病影響等。邱巧凡醫師說,有些孩童是因為罹患腦部疾病、腎上腺腫瘤、卵巢腫瘤、睪丸腫瘤等所致。由於性早熟的原因很多,所以需要仔細檢查、評估,並根據發病原因進行治療。

-----廣告,請繼續往下閱讀-----

由於性荷爾蒙會促使骨骼加速成長所以性早熟孩童在一開始可能會長得較快,但是因為生長板的加速閉合,整體生長時間大幅減少,往往成年身高卻較為矮小。邱巧凡醫師提醒,在成長過程中,如果發現孩子的身高比同齡孩童異常高或矮,或是成長速度過快、過慢,都要提高警覺。

除了影響身高,性早熟還會對孩童造成長期的身心健康影響。邱巧凡醫師說,研究顯示,相較於沒有性早熟的孩童,性早熟孩童在成年後有較高的機會罹患肥胖症、代謝症候群、糖尿病、高血脂、高血壓、心血管疾病等疾病。女生也有較高機會罹患多囊性卵巢症候群,容易導致不孕。更值得留意的是,愈來愈多研究顯示性早熟還會增加罹癌風險,例如乳癌、子宮內膜癌、卵巢癌、睪丸癌及攝護腺癌等。

性早熟對身心都有影響

「研究發現,初經越早的女性,罹患乳癌的風險越高,而且惡性度較高。」邱巧凡醫師說,「根據 2012 年刊登在柳葉刀-腫瘤學雜誌(The Lancet Oncology)上面一個來自 117 個流行病學研究,分析近十二萬名乳癌患者與三十萬健康成人的資料,發現初經每提早一年,罹患乳癌的機率提高 5%;每晚一年停經,乳癌機率提高 2.9%。也就是說,雌激素暴露的時間越長,乳癌風險越高 (1)。」因此治療性早熟,除了讓孩童能正常長高,更重要的是希望減少未來的疾病風險。

心理層面方面,性早熟孩童因為過早出現第二性徵,外觀明顯與眾不同,較容易遭受同儕異樣眼光,相對承受較多心理壓力、容易社會適應不良,有研究發現性早熟孩童遭遇霸凌、騷擾、性侵等事件也高於一般正常發育的孩童,這些都是值得注意的問題。

-----廣告,請繼續往下閱讀-----

中樞性早熟該怎麼辦?

懷疑孩童有性早熟的狀況時,務必盡快就醫檢查。邱巧凡醫師說,利用理學檢查、超音波、骨齡檢查、血液檢驗、荷爾蒙測驗等綜合評估,確立性早熟原因以及影響程度,才能決定合適的治療方式。

針對中樞性早熟,目前主要以「性早熟針劑」治療,邱巧凡醫師解釋,性早熟針劑內含性釋素類似物(GnRH analogue),能與腦下垂體的促性腺激素釋放荷爾蒙(GnRH)接受器結合,經由去敏感化的機轉,達到抑制下游黃體化刺激素與濾泡刺激素的分泌,進而阻斷性荷爾蒙的製造。

「如果把 GnRH 接受器比喻成鎖頭,GnRH 就像一把鑰匙可以發揮作用,促使黃體化刺激素與濾泡刺激素的分泌。」邱巧凡醫師說,「性釋素類似物類似另一把鑰匙,當性釋素類似物先佔據鎖頭時,GnRH 便無法進入。如此一來,便能抑制黃體化刺激素與濾泡刺激素的分泌,阻斷性荷爾蒙的製造,避免性早熟繼續進展。」

中樞性早熟該怎麼辦?

性早熟針劑治療能有效抑制性荷爾蒙的製造,且安全性高。邱巧凡醫師說,臨床上會根據個別孩童的狀況,決定療程時間,一般而言,女生多數會治療到國小高年級,男生多數會治療到國中階段。

-----廣告,請繼續往下閱讀-----

因為給藥途徑是皮下注射,孩童在治療前難免會擔心害怕。邱巧凡醫師說,目前國內有兩種劑型(三個月注射一次的長效劑型以及一個月注射一次的短效劑型),長效劑型的優點是可以減少注射次數與回診次數,大幅提升治療的便利性。絕大多數孩童在開始治療後,都能接受此治療模式以及注射引起的短暫疼痛與不適。

貼心小提醒

邱巧凡醫師說,性早熟不只會影響身高,還會影響心理健康,且增加成年後罹患代謝症候群、糖尿病、高血脂、高血壓等問題,甚至提高乳癌、子宮內膜癌、卵巢癌等風險。在孩子的生長過程中,照顧者要持續留意生長狀況,長得太高、太矮、太快、太慢,或是不對的年齡出現第二性徵都要提高警覺。如果有任何疑問,請及早至「兒童內分泌科」就診諮詢與評估。

  • Lancet Oncol . 2012 Nov;13(11):1141-51. doi: 10.1016/S1470-2045(12)70425-4.
-----廣告,請繼續往下閱讀-----

討論功能關閉中。