3

31
3

文字

分享

3
31
3

是誰教機器人性別歧視?人工智慧複製人類偏見——高醫大性別所余貞誼專訪

科技大觀園_96
・2021/03/03 ・4566字 ・閱讀時間約 9 分鐘 ・SR值 605 ・十年級

科技始終來自於人性,人工智慧更是如此。此時此刻,人類社會中仍隱藏許多不平等與歧視,人工智慧與這些議題將如何互動?透過社群媒體可以如何解讀性別議題?任教於高雄醫學大學性別研究所的余貞誼助理教授,研究專長包括性別社會學、資訊科技與社會。她關注的重點之一,便是科技應用對社會溝通的影響

2018 年,亞馬遜宣布停止使用 AI (artificial intelligence) 篩選求職履歷,因為從招聘結果看來,這個 AI 居然嚴重的偏好男性

一個好好的 AI,哪裡學來性別歧視的壞毛病?從人身上阿。(設計對白)圖/Pixabay

2006 年機器學習演算法 (machine-learning algorithm) 突破瓶頸,讓人工智慧在某些情況,足以模擬人類的判斷,提供資訊解讀加速作業流程,如影像診斷、關鍵字判讀、資訊推薦、外文翻譯等。此外亦常見以演算法處理排序、挑選內容、過濾資訊等工作,經手人們的決策與信息流通。但快速便捷的同時,多數人不假思索信賴的演算法,也可能會反映強化已經存在的價值偏差,甚至夾帶嚴重的歧視偏見

如同開頭的案例,2018 年亞馬遜的 AI 演算法以過去十年間招聘資料進行訓練,最終演算法「忠實」呈現了招聘男女不平均,由於難以確保該演算法對於性別的公平性,亞馬遜只得棄用。1也有資料學家指出,許多商用的臉孔辨識系統擅長辨識白人男性,換個性別膚色就會失靈。2這些偏差的起因,都與訓練資料的取樣偏誤有關。如何在導入應用之前,發覺演算法失靈以避免可能的不公,將是未來科技社會發展的重要課題。3

用上人工智慧之前:用在哪?該怎麼用?

而除了前述源自訓練資料造成的不公,如人工智慧這類科技工具該用在何處,該如何設計才能稱得上妥適,也存在探討的空間。

-----廣告,請繼續往下閱讀-----
余貞誼認為,人臉辨識科技應用的解讀魔鬼藏在細節裡,需要深刻探究背後的執行與設計邏輯。圖/曹盛威攝

最新的一個爭議案例,發生在印度北方邦的首府勒克瑙 (Lucknow)。當地政府規劃於今 (2021) 年在已知的 200 個性騷擾熱點設立監視錄影器,佈署 AI 人臉辨識進行監看,偵測女性出現困擾表情,即傳送警報予警察局。4

「第一個顧慮的點,是要如何辨認什麼是被性騷擾後不適或是驚恐的表情?」

余貞誼認為,這類科技應用的解讀魔鬼藏在細節裡,需要深刻探究背後的執行與設計邏輯。

印度率先於各國考慮採用 AI 於性騷擾事件,背景脈絡與其 AI 人才的發展息息相關。成功前例便有 2018 年 4 月印度警方使用臉部辨識軟體,根據婦女和兒童發展部 (The Ministry of Women and Child Development) 與失蹤兒童追蹤網站 (Track Child) 提供的照片,在四天之內追蹤到將近 3000 名失蹤兒童的紀錄。5爾後也傳出意圖打造全球最大的臉部辨識系統於刑事系統中,因此有此應用構想確實有跡可循。

但是此次應用人臉辨識系統於警方的監視錄影機,很多執行細節並未審慎考量。非政府組織網路自由基金會 (Internet Freedom Foundation) 就指出,監看臉部表情並不妥當,除了極可能失誤判斷,也形同監視路過女性的一舉一動。

-----廣告,請繼續往下閱讀-----

余貞誼分析,透過官方演算法篩選「受威脅」的女性表情,等同認定這類的事件存在固定的「被害者」形象,除了疏於保護「不夠典型」的受害者,也可能變相為另一種受害人責怪的材料,強化助長「理想受害者」的形象

「用這樣子的方法,會帶來的爭議比解決的問題還要多。」余貞誼指出,公權力錯誤的使用,視同將此演算法所得的結果視為「證據」,有可能導致惡性循環迴圈 (pernicious feedback loop),從出發點即隱含了歧視觀點,並持續強化歧視觀念。政府單位使用演算法需要審慎評估其後果。

官方演算法篩選「受威脅」的女性表情,除了疏於保護「不夠典型」的受害者,也可能強化「理想受害者」的刻板印象。圖/Pexels

印度本次的爭議中,選擇攝影機「看向誰」本身,就已經體現了權力立場,無論是偵測哪個性別,如此的設計都存在著嚴重瑕疵。而更多的問題還包括:這類公權力涉入的演算法,被觀看、紀錄、分析的人本身,其隱私資料是否有受到足夠的哪些保護?有哪些人可以接觸到資料?收集的資料是否有足夠的保護設計?這些都是未來任何牽涉廣泛的科技方案,無論是設計者或是使用者,都必須要審慎考慮的問題。

看見科技中的性別議題:誰的設計,誰能得利?

數位科技產品推出,設計者往往難以意識自身經驗的偏差,而使用者也有可能後知後覺。該如何察覺數位產品中可能存在的偏差?余貞誼介紹了《數據女性主義》(Data feminism,暫譯)6 裡提出的七個原則,由提問來檢視科技產品中的權力:是誰(或不是誰)從事相關技術工作?哪些族群的目標具有優先性?誰會從中獲利?又會有誰因此受忽略或傷害?

-----廣告,請繼續往下閱讀-----

「要先問出『誰』,這個關鍵問題。」余貞誼認為,由此可一窺各種特權,包括了性別議題,如何融入數據產品。

舉例來說,性愛機器人 (Sex Robot) 的爭議,很明顯可以反映出優先以男性視角為中心的產品設計。最早推出的性愛機器人如美國公司 Realbotix 的 Harmony ,其設計服務的對象明顯是異性戀白人男性,除了存在固化的性別腳本,也有科學家指出可能會帶來心理與道德上的隱憂。7

光是決定優先推出的產品、是怎樣的樣貌,就反映了某種權力分配的議題。

設計者優先考慮自己的視角無可避免,但如此一來,蓬勃發展的 AI 產業就更值得密切關注。2018 年,世界經濟論壇 (World Economic Forum, WEF) 全球性別差距報告,指出全球的 AI 從業人員有 78% 為男性組成,性別差距懸殊。AI 快速蔓延各領域應用的此時此刻,如果未能在密切檢視主要由男性視角出發的 AI 應用,將可能擴大既存的性別差距。

-----廣告,請繼續往下閱讀-----

那麼,研發 AI 的時候,該如何避免複製社會上常見的不平等呢?

2018 年二十國集團女性會議 (Women 20, W20) 上,全球資訊網基金會 (World Wide Web Foundation) 提出了運作 AI 的兩個注意事項,以避免帶有性別意識或其他偏見。

首先是應注意訓練資料的平等程度,除了資料的數量,更應該注重質量,尤其檢視樣本中是否存在特定「數據匱乏」(data desert) 的情況,使 AI 缺乏資料無法解讀特定族群。不只性別資料數量應當平均,還包括應納入邊緣與少數族群的資訊。

運作 AI 應注意訓練資料的平等程度,除了資料的數量,更應該注重質量。圖/Pexels

其次,應該找出系統性的偏誤,利用開放資料與邏輯運算進行修正。透過擴大資訊的透明度、訂定相關守則並且開放其它意見的溝通與監督,才有機會避免系統性的偏誤。如前述亞馬遜的履歷 AI 所根據的資料即具備此類系統性的問題,W20 並認為可透過政府單位規範提升 AI 服務的資訊透明度,訂立準則進行監督來修正相關問題。

最後余貞誼補充,由於資料科學家常缺乏對於現場脈絡的理解,《數據女性主義》以及 Google Brain 的數據科學家莎拉‧虎克 (Sara Hooker) ,均提出研發 AI 等數據計畫,應當重視「接地氣」的知識,納入多元參與才有機會打造出更有效、更有創意的方案。

-----廣告,請繼續往下閱讀-----

以性別議題做為試金石,避免人工智慧放大歧視的未來

除了 AI 的從業人員應當銘記在心,自身立場可能帶來的偏差,AI 使用者對於資料來源、資訊與現實間的差距,也應當有一定的體認,甚至提供回饋貢獻。舉例來說,於 2009 年發表於 Nature 風靡一時的「Google 流感趨勢預測」(Google Flu Trend),就在後續幾年間被證實沒有預測效力。當演算法採取間接資料做出推論,使用者對於原始資料與演算法屬性應該有足夠的認識,方不至以管窺天差之千里。

討論到 AI、社群媒體或科技將如何型塑我們的未來,余貞誼主張,任何科技發展的後續效應,主要是人群、情境與科技產物互動的綜合效果,不宜輕易落入「科技決定論」。余貞誼曾以關鍵字分析批踢踢的厭女與性別挑釁,認為由於社群媒體的匿名性以及極化特性,容易聚集極端意見,加上與現實間的界線消弱同情心、倫理規範模糊,因而容易聚集呈現激烈的偏見言論。相同的科技物質基礎不見得會出現同樣結果,仍要端看人與情境的最終互動。

近年來,經諸多有識者的關注,科技設計於性別議題的敏感度逐漸增加。Google 在 2020 年 2 月公開宣告, Google Cloud Vision API 取消照片辨識「男性」「女性」性別標籤,希望以此避免對 AI 灌輸性別偏見。8,9而史丹佛大學歷史系的隆達·希賓格 (Londa Schiebinger) 設立的「性別化創新」網站,也提供科學家與工程師可運用的性別/分析實用方法。如未來設計機器人該如何避免強化性別刻板印象,並列出六種可同時顧及社交投射需求的做法,包括挑戰既有的刻板印象、客製化設計、設計無性別或性別流動的機器人等。10

未來設計機器人應該避免強化性別刻板印象。圖/Pexels

「討論性別,其實就是討論權力,那是一種很具象的『看見權力』的方式。」余貞誼說明從事性別研究的起點,權力有時候很抽象,由性別的角度能協助將之具像化,因而察覺其分佈與影響。

-----廣告,請繼續往下閱讀-----

科技需要克服的偏見絕不止於性別,而探討科技如何受人的權力與價值觀影響,性別議題可說是個最好的試金石,讓我們一窺各種決策之下人性、情境、科技的互動。人工智慧最終發展是載是覆,就端看人類的智慧是否足以駕馭這把雙面刃了。

參考資料

  1. 亞馬遜發現招聘用人工智慧系統歧視女性,決定棄用
    亞馬遜AI徵才歧視女性挨轟- 國際
  2. Buolamwini, J., & Gebru, T. (2018, January). Gender shades: Intersectional accuracy disparities in commercial gender classification. In Conference on fairness, accountability and transparency (pp. 77-91). PMLR.
  3. Courtland, R. (2018). Bias detectives: the researchers striving to make algorithms fair, Nature. Accessed 23 July, 2018. Available: httpa.
  4. 打擊猖獗性犯罪 印度加裝AI監視器偵測女性表情
  5. 印度警方使用人臉辨識技術,在4 天內發現近3000 名失蹤兒童
  6. Book: “Data Feminism”
  7. 暗黑的AI性與愛學者警告:性愛機器人有害- 國際
    AI性愛機器人恐危害人類心理與道德專家籲管制[影] | 國際
  8. Google 圖片辨識AI 工具將不再標記男女| TechNews 科技新報
  9. 高雄醫學大學性別研究所:Al 與社會—數據女性主義
  10. 性別化創新
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 3
科技大觀園_96
82 篇文章 ・ 1126 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
210 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

3
0

文字

分享

0
3
0
AI 破解生命密碼!AlphaFold 3 揭開蛋白質折疊的終極謎團
PanSci_96
・2024/10/07 ・1619字 ・閱讀時間約 3 分鐘

AlphaFold的誕生:人工智慧的奇蹟

2018 年,Google 旗下的 DeepMind 團隊推出了第一代 AlphaFold,這是一款基於深度學習的 AI 模型,專門用於預測蛋白質的三維結構。AlphaFold 的命名取自「fold」一詞,意為折疊,指的是蛋白質在胺基酸鏈構成後迅速摺疊成其功能所需的三維結構。

AlphaFold 的突破在於其能夠預測出蛋白質折疊的可能性,這是一個傳統計算方法無法達到的領域。第一代 AlphaFold 在國際 CASP 比賽中取得了一定的成功,雖然其預測準確度尚未達到實驗室標準,但其潛力讓科學家們充滿期待。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

為什麼蛋白質結構預測如此重要?

蛋白質是生命的基石,它們的功能取決於其複雜的三維結構。然而,僅靠實驗技術來解析蛋白質的結構既昂貴又耗時。過去科學家依賴於如 X 光晶體繞射等技術來解析蛋白質的結構,然而這種方法雖然精確,但往往需要數年時間來得出一個結論。

到目前為止,人類已知的蛋白質數據庫中,全球僅解析了大約 22 萬種蛋白質的結構,這遠遠不足以滿足生物學和醫學研究的需求。尤其是人類的許多蛋白質結構仍然未知,這成為阻礙醫學進步的一個主要瓶頸,特別是在藥物開發和疾病治療上,因此如何加速對蛋白質的結構的解析至關重要。

-----廣告,請繼續往下閱讀-----

AlphaFold 2:技術飛躍

2020 年,AlphaFold 2 橫空出世,改進了多項技術,預測準確度大幅,幾乎達到了與實驗結果相媲美的程度。這一成就震驚了全球生物學界,許多科學家開始將 AlphaFold 2 應用於實際研究中。

AlphaFold 2 的成功源自於其三大技術革新:

  • 注意力機制:模仿人類的思維模式,從大局出發,關注蛋白質結構中的每一個細節,進而提高預測的準確性。
  • 多序列比對功能:通過搜尋類似的胺基酸序列,推斷新的蛋白質結構。
  • 端到端預測模式:利用深度學習神經網路,不斷反饋預測結果,持續優化模型。
AlphaFold 2 預測準確度大幅提升。 圖/envato

AlphaFold 3:下一代 AI 的力量

隨著 AlphaFold 2 的成功,DeepMind 並未停止其腳步。2024 年 5 月,AlphaFold 3 正式推出,這標誌著 AI 技術在生物學領域的又一個里程碑。AlphaFold 3 的改進再次吸引了科學界的目光,它強化了注意力機制,並引入了擴散模型,這使其能夠更快且更準確地預測複合蛋白質的結構。

擴散模型是一項關鍵技術,它能夠生成大量的可能蛋白質結構,並快速篩選出最可能的解答。與此同時,AlphaFold 3 還內建了「減幻覺」功能,這讓其在產生結果時能夠避免過多不切實際的預測,提升了結果的可信度。

-----廣告,請繼續往下閱讀-----

AlphaFold 的實際應用:醫學與藥物開發

AlphaFold 3 的誕生,不僅是一個技術突破,還為醫學和藥物開發帶來了巨大的希望。過去,癌症治療中的標靶藥物需要經過漫長的實驗才能確定其作用原理,然而現在,通過 AlphaFold 的預測,科學家可以更加精確地針對癌細胞中的錯誤蛋白質,設計出更有效的藥物。

除此之外,AlphaFold 3 還在抗病毒藥物、抗生素以及阿茲海默症等領域展現了潛力。其能夠預測蛋白質與其他分子(如DNA、RNA)的交互作用,這使得研發新藥的過程大大加速。

AlphaFold 3 的挑戰與未來

儘管 AlphaFold 3 取得了驚人的進展,但其仍然面臨一些挑戰。首先,目前 AlphaFold 3 的模型尚未完全開源,這限制了研究人員對其內部運作的了解。為此,一些科學家已聯名要求 DeepMind 開放其程式碼,以便進行更深入的研究和應用。

不過,隨著 AlphaFold 3的逐步推廣,生物學家相信它將繼續改變生物學研究的方式。未來,這項技術有望在解決更多未解難題中發揮關鍵作用,並為醫學領域帶來更大的突破。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1254 篇文章 ・ 2382 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
免費字幕君!怎麼用 AI 語音辨識幫你自動生成字幕?
泛科學院_96
・2024/07/08 ・2458字 ・閱讀時間約 5 分鐘

下載 Youtube 影片、自動生成影片逐字稿、AI 智慧翻譯、匯出雙語 SRT 字幕、字幕內嵌 MP4 影片,甚至是把你的電腦當成 AI 運算伺服器、使用多模態 AI 模型來做圖片辨識……這一切的一切通通都免費,敢有可能 (Kám ū khó-lîng)?

今天的影片要來跟你分享開源 AI 套件 Ollama,這個開源套件AJ 最近上課演講工作坊逢人必教。

今天的影片,我們要手把手教你使用 Ollama 在你的電腦裡執行各種免費開源 AI 模型,希望你能跟我一樣成為 AI 暈船仔……Ollama 真香……啊扯遠了,我們沒有點數可以送。

今天的影片會分成三個部分:

-----廣告,請繼續往下閱讀-----
  1. Ollama 安裝與模型下載
  2. 結合 Memo 翻譯影片字幕
  3. 用多模態模型做圖片辨識

Ollama 安裝與模型下載

首先我們要先安裝 Ollama:

來到 ollama.com 點選 Download,下載適合自己的版本後進行安裝,安裝完畢之後,啟動 Ollama。以我的電腦來說右上角就會出現一個小小的 Ollama 圖示,這樣就成功安裝囉!

接著我們需要下載 AI 模型到你的電腦:

回到 Ollama 首頁,點選右上角 Models,這邊就會列出所有官方支援的模型,比如最近很流行的 Meta LLAMA 3、微軟的 Phi3、法國 Mistral AI 公司的 Mistral、Google Gemini 模型的開源版 Gemma 都有,你可以挑選喜歡的來測試。

-----廣告,請繼續往下閱讀-----

比如我點選 LLAMA 3 的連結,模型頁面有兩個地方要注意:一是模型大小,LLAMA3 是 4.7G,一般而言要玩大模型,電腦記憶體至少 16G,預算夠就 24G 不嫌多;如果你是使用一般文書電腦,記憶體 8G 的話,建議你現在馬上停止你的任何動作。我有測試過電腦會直接當機……不要說我沒有提醒你。

點開 Latest 選單可以依照需求選擇不同版本的模型:

不過我們直接點選最右邊複製執行指令,打開電腦的終端機程式,或著命令提示字元,貼上,這樣電腦就會開始下載並且自動安裝囉。

你可以用 ollama list 指令查看現在電腦內有哪些模型,如果硬碟容量有限,用 ollama rm 後面加上模型名稱可以刪除模型。比如:ollama rm llama3。我們這邊另外安裝 llava 模型:ollama run llava,這樣準備工作就完成囉。

-----廣告,請繼續往下閱讀-----

Ollama + memo

最近只要演講上課,我一定會分享 Memo 這套好用的軟體,我們之前也有一支影片分享他的用法。

最近 Memo 更新之後,我們就可以直接使用 Ollama 結合特定的模型來進行字幕的翻譯。舉例來說,我們打開 memo,複製 Youtube 網址;我們用這支 楊立昆 的演講,貼上網址,開始下載,下載完畢後使用電腦進行語音辨識,接著我們就可以使用 Ollama 搭配剛剛準備好的 LLama3 模型來做翻譯!


翻譯完畢之後就可以匯出 SRT 字幕


如果你本身是影片創作者,這招就可以輕鬆製作你的 SRT 字幕,再也不用花時間對字幕時間軸了。

-----廣告,請繼續往下閱讀-----

或者你要把影片字幕直接內嵌在做簡報的時候播放影片:


匯出 MP4 格式,語言選雙語。如果你還沒用過這招處理影片,我強烈建議你一定要試試看!

Ollama + Enchanted

接下來我們要分享另一套非常實用的工具——Enchanted。他也是開源,可以讓原本是文字介面的 Ollama
提供類似 ChatGPT 的對話視窗,甚至支援圖片辨識的多模態模型 llava,Mac 用戶可以直接去 App Store 免費安裝。


同時開啟 Ollama 跟 Enchanted LLM:

-----廣告,請繼續往下閱讀-----


就擁有一個漂亮的視窗介面,可以優雅的啟用各種想要測試的 AI 模型,他甚至有手機版 APP!用手機連線自己的蘋果電腦跑 AI 模型?這……這,真的可以免費用嗎?

讓我來試試看!

首先要先安裝 ngrok 這套程式,選擇自己的作業系統然後下載。Windows 用戶應該直接安裝就可以了,Mac 的用戶在終端機執行這行 Sudo 指令把程式解壓縮到 user local bin 資料夾,接著註冊一個免費的 ngrok 帳號。

複製 ngrok config 指令,貼回自己電腦的終端機,把連線金鑰寫入自己的電腦。

-----廣告,請繼續往下閱讀-----

最後一步,啟動連線,指令是:ngrok http 11434 –host-header=”localhost:11434″

一切順利的話就會看到類似這個畫面。

然後把 forwarding 的網址複製,打開 iPhone 或 iPad 的 Enchanted app,在設定 Setting 裡面把 Ollama 網址貼上,這樣就可以遠端調用電腦的 Ollama 來使用 AI 模型,比如選用稍早下載的 LLava 多模態模型。

傳一張照片,問它這是什麼?

-----廣告,請繼續往下閱讀-----


是不是非常神奇呢?
快練習把 ollama、ngrok 跟 Enchanted 串起來跟朋友炫耀吧!

總結

今天的影片跟各位分享了基於 Ollama 這個開源 AI 套件的各種有趣應用,你是否有成功在 iphone 上打造自己的 AI 服務呢?

  1. 太複雜了我決定躺平
  2. 笑話,我可是尊榮的 GPT Plus 用戶
  3. 沒有 Mac 電腦不能玩……嗚嗚嗚
  4. 你怎麼不介紹那個 ooxx Ollama 套件

如果有其他想看的 AI 工具測試或相關問題,也可以留言告訴我們~

更多、更完整的內容,歡迎上泛科學院的 youtube 頻道觀看完整影片,並開啟訂閱獲得

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

泛科學院_96
44 篇文章 ・ 52 位粉絲
我是泛科學院的AJ,有15年的軟體測試與電腦教育經驗,善於協助偏鄉NPO提升資訊能力,以Maker角度用發明解決身邊大小問題。與你分享人工智慧相關應用,每週更新兩集,讓我們帶你進入科技與創新的奇妙世界,為未來開啟無限可能!